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The main result

Theorem. Almost surely as n → ∞, every 1-related group with 3
or more generators and relator of length n, is embedded into a
2-generated 1-related group which is an ascending HNN extension
of a free group, so it is

◮ Residually finite,

◮ Virtually residually (finite p-)group for all but finitely many
primes p,

◮ Coherent (that is all finitely generated subgroups are finitely
presented).
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Let G = 〈x1, ..., xk | R = 1〉 be a 1-relator group. Let w be the
corresponding walk in Z

k , connecting point O with point M.

◮ If k = 2 and one of the two support lines of w that is parallel
to ~OM intersects w in a single vertex or a single edge, then G

is an ascending HNN extension of a free group.

◮ If k > 2 then G is never an ascending HNN extension of a
free group.
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The Dunfield-Thurston result

Consider walks in Z 2 and their projections on R .
The projection is a random bridge. Support lines → extreme points
of the bridge.
A bridge is called good if it visits its extreme point only once,
otherwise it is bad

#good(n) ≤ #bad(n + 16)

pgood ≤ 216pbad

Hence pgood < 1.
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The Congruence Extension Property

Theorem (Olshanskii)Let K be a collection of (cyclic) words in
{a.b} that satisfy C ′(1/12). Then the subgroup N of F2 generated
by K satisfies the congruence extension property that is for every
normal subgroup L ⊳ N, 〈〈L〉〉F ∩ N = L.Hence H = N/L embeds
into G = F2/〈〈L〉〉.
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Embedding into 2-generated groups

Theorem (Kozáková, Sapir) Consider a group
G = 〈x1, x2, . . . , xk |R = 1〉, where R is a word in the free group on
{x1, x2, . . . , xk}, k ≥ 2. Assume the sum of exponents of xk in R is
zero and that the maximal Magnus xk -index of x1 is unique. Then
G can be embedded into a 2-=generated 1-related group which is
an ascending HNN extension of a finitely generated free group.
The embedding is given by the map xi 7→ wi , i = 1, ..., k where

w1 = aba2b...anban+1ba−n−1ba−nb...a−2ba−1b

wi = abia2bi ...anbia−nbi ...a−2bia−1bi , for 1 < i < k

wk = abka2bk ...anbka−nbk ...a−2bk
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Brownian Motion

Let C be the space of all continuous functions f : [0,+∞] → R
k

with f (0) = 0. We can define a σ-algebra structure on that space
generated by the sets of functions of the form
U(t1, x1, t2, x2, ..., tn, xn) where ti ∈ [0,+∞], xi ∈ R

k . This set
consists of all functions f ∈ C such that f (ti ) = xi . A measure µ
on C is called the Wiener’s measure if for every Borel set A in R

k

and every t < s ∈ [0,+∞] the probability that f (t)− f (s) is in A is

1
√

2π(t − s)

∫

A

e
−|x|2

2(t−s) dx .

That is Brownian motion is a continuous Markov stationary
process with normally distributed increments.
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Donsker’s theorem (modified)

Let PCR
n be the uniform distribution on the set of cyclically

reduced random walks of length n in R
k . Consider a piecewise

linear function Yn(t) : [0, 1] → R
k , where the line segments are

connecting points Yn(t) = Snt/
√

n for t = 0, 1/n, 2/n,
. . . , n/n = 1, where (Sn) has a distribution according to PCR

n .
Then Yn(t) converges in distribution to a Brownian motion, as
n → ∞.
We are using Rivin’s Central Limit Theorem for cyclically reduced
walks.
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indices

Let again w be the walk in Z
k corresponding to the relator R .

Suppose that it connects O and M. Consider the hyperplane P

that is orthogonal to ~OM, the projection w ′ of w onto P , and the
convex hull of that projection. From our theorem above, it follows
that the 1-related group G is inside an ascending HNN extension
of a free group if there exists a vertex of ∆ that is visited only
once by w ′. The idea to prove it is the following.
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Convex hulls and maximal indices, continued

Step 1. We prove that the number of vertices of ∆ is growing
(a.s.) with the length of w (here it is used that k ≥ 3). Indeed, if
the number of vertices is bounded with positive probability, then
with positive probability the limit of random walks w ′ (which is a
Brownian bridge) would have non-smooth convex hull which is
impossible by a theorem about Brownian motions (Theorem of
Cranston-Hsu-March, 1989).

Step 2. For every vertex of ∆ for any ‘bad” walk w ′ or length r we
construct (in a bijective manner) a “good” walk w ′ of length
r + 4. This implies that the number of vertices of “bad” walks is
bounded if the probability of a “bad” walk is > 0.
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Here is the walk in Z
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Illustration of Step 2

Here is the walk and its projection corresponding to the word

cb−1acac−1b−1caca−1b−1((b−1cbc−1))aab−1c .



Homework

HW 1. We know that the group 〈x , y , t | txt−1 = xy , tyt−1 = yx〉
is hyperbolic (A. Minasyan). By Olshanskii, it must have infinitely
many non-abelian finite simple homomorphic images. Find one.
The group has the one-relation presentation 〈x , t | [x , t, t] = x〉.
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