Math 4630/6630 - Nonlinear Optimization - Spring 2021

Questions for Topic 2

Recall that when solving a system of nonlinear equations you must show full working. You may only use computational tools to solve LINEAR systems of equations. If a linear system occurs as a subproblem you may use computational tools to solve it.

2A. The problem of minimizing $f(x)=2 x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}-4 x_{1}-5 x_{2}+x_{3}$ subject to $2 x_{1}+x_{2}+x_{3}=0$ is known to have a solution. Use Lagrange multipliers to find it. You should deal with the issue of whether a constraint qualification holds. However, you do not need to prove that your answer is a minimizer (rather than a maximizer or saddle point).

2B. The problem of maximizing $f(x)=6 x+2 y^{2}+z$ subject to $2 z-3 y=1$ and $2 x+y^{2}-z=0$ is known to have a solution. Use Lagrange multipliers to find it. You should deal with the issue of whether a constraint qualification holds. However, you do not need to prove that your answer is a maximizer (rather than a minimizer or saddle point).

2C. The problem of minimizing $f(x)=x_{2}+1$ subject to $x_{2}^{3}=x_{1}^{4}$ is known to have a unique global solution. Use Lagrange multipliers to find it. You should deal with the issue of whether a constraint qualification holds. However, you do not need to prove that your answer is a minimizer (rather than a maximizer or saddle point). [Note: this question is not totally straightforward!]

2D. The problem of minimizing $f(x)=x_{1}^{2}-16 x_{1}+4 x_{2}^{2}-48 x_{2}$ subject to $x_{1}+2 x_{2} \leq 7$ is known to have a solution. Use the Karush-Kuhn-Tucker conditions to find it. You should deal with the issue of whether a constraint qualification holds. However, you do not need to prove that your answer is really a minimizer (rather than a maximizer or saddle point).

2E. The problem of minimizing $f(x)=2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}-10 x_{1}-4 x_{2}$ subject to $3 x_{1}+x_{2} \leq 13$ is known to have a solution. Use the Karush-Kuhn-Tucker conditions to find it. You should deal with the issue of whether a constraint qualification holds. However, you do not need to prove that your answer is really a minimizer (rather than a maximizer or saddle point).

2F. The Separating Hyperplane Lemma. A closed set in \mathbf{R}^{n} is one that contains its boundary. A cone in \mathbf{R}^{n} is a nonempty set C such that $\alpha c \in C$ whenever $c \in C$ and $\alpha \geq 0$.

Suppose C is a closed convex cone in \mathbf{R}^{n}, and suppose $x^{*} \notin C$. Because C is closed, there is a point $c^{*} \in C$ that is a closest point in C to x^{*} (this is a general property of closed sets, and where we use the fact that C is closed).
(a) Let $d(x)=\left\|x-x^{*}\right\|^{2}$ for $x \in \mathbf{R}^{n}$ (d is the square of the distance to our given point x^{*}). Show that $\nabla d(x)=2\left(x-x^{*}\right)$. (Hint: it may help to expand $d(x)$ in terms of coordinates of x.)
(b) Use the fact that C is convex to show that for any $c \in C, c-c^{*} \in A\left(C, c^{*}\right)$ (i.e., $c-c^{*}$ is an attainable direction at c^{*} for the set C). (Hint: use the line segment from c^{*} to c.)
(c) Considering the problem of minimizing $d(x)$ for $x \in C$, use (a) and (b) to show that ($c^{*}-$ $\left.x^{*}\right)^{\mathrm{T}}\left(c-c^{*}\right) \geq 0$ for all $c \in C$.
(d) Use (c) and the fact that C is a cone to show that $\left(c^{*}-x^{*}\right)^{\mathrm{T}} c^{*}=0$. (Hint: use $\alpha<1$ and $\alpha>1$ with c^{*}.)
(e) Use (c) and (d) to show that $\left(c^{*}-x^{*}\right)^{\mathrm{T}} c \geq 0$ for all $c \in C$.
(f) Use (d) to show that $\left(c^{*}-x^{*}\right)^{\mathrm{T}} x^{*}<0$. (Hint: $v^{\mathrm{T}} v>0$ for any nonzero vector v.)

Thus, we have shown the existence of a vector a (specifically, $a=c^{*}-x^{*}$) such that $a^{\mathrm{T}} c \geq 0$ for all $c \in C$ (by (e)) but $a^{\mathrm{T}} x<0$ (by (f)).

