
Math 4630/6630 - Nonlinear Optimization - Spring 2021

Questions for Topic 2

Recall that when solving a system of nonlinear equations you must show full working.
You may only use computational tools to solve LINEAR systems of equations. If a
linear system occurs as a subproblem you may use computational tools to solve it.

2A. The problem of minimizing f(x) = 2x2

1
+x2

2
+2x1x2−4x1−5x2+x3 subject to 2x1+x2+x3 = 0

is known to have a solution. Use Lagrange multipliers to find it. You should deal with the issue of
whether a constraint qualification holds. However, you do not need to prove that your answer is a
minimizer (rather than a maximizer or saddle point).

2B. The problem of maximizing f(x) = 6x+ 2y2 + z subject to 2z − 3y = 1 and 2x+ y2 − z = 0
is known to have a solution. Use Lagrange multipliers to find it. You should deal with the issue of
whether a constraint qualification holds. However, you do not need to prove that your answer is a
maximizer (rather than a minimizer or saddle point).

2C. The problem of minimizing f(x) = x2+1 subject to x3

2
= x4

1
is known to have a unique global

solution. Use Lagrange multipliers to find it. You should deal with the issue of whether a constraint
qualification holds. However, you do not need to prove that your answer is a minimizer (rather
than a maximizer or saddle point). [Note: this question is not totally straightforward!]

2D. The problem of minimizing f(x) = x2
1−16x1+4x2

2−48x2 subject to x1+2x2 ≤ 7 is known to
have a solution. Use the Karush-Kuhn-Tucker conditions to find it. You should deal with the issue
of whether a constraint qualification holds. However, you do not need to prove that your answer is
really a minimizer (rather than a maximizer or saddle point).

2E. The problem of minimizing f(x) = 2x2

1
+ 2x1x2 + x2

2
− 10x1 − 4x2 subject to 3x1 + x2 ≤ 13

is known to have a solution. Use the Karush-Kuhn-Tucker conditions to find it. You should deal
with the issue of whether a constraint qualification holds. However, you do not need to prove that
your answer is really a minimizer (rather than a maximizer or saddle point).

2F. The Separating Hyperplane Lemma. A closed set in Rn is one that contains its boundary.
A cone in Rn is a nonempty set C such that αc ∈ C whenever c ∈ C and α ≥ 0.

Suppose C is a closed convex cone in Rn, and suppose x∗ /∈ C. Because C is closed, there is a
point c∗ ∈ C that is a closest point in C to x∗ (this is a general property of closed sets, and where
we use the fact that C is closed).

(a) Let d(x) = ‖x− x∗‖2 for x ∈ Rn (d is the square of the distance to our given point x∗). Show
that ∇d(x) = 2(x− x∗). (Hint: it may help to expand d(x) in terms of coordinates of x.)

(b) Use the fact that C is convex to show that for any c ∈ C, c − c∗ ∈ A(C, c∗) (i.e., c − c∗ is an
attainable direction at c∗ for the set C). (Hint: use the line segment from c∗ to c.)

(c) Considering the problem of minimizing d(x) for x ∈ C, use (a) and (b) to show that (c∗ −
x∗)T(c− c∗) ≥ 0 for all c ∈ C.

(d) Use (c) and the fact that C is a cone to show that (c∗ − x∗)Tc∗ = 0. (Hint: use α < 1 and
α > 1 with c∗.)

(e) Use (c) and (d) to show that (c∗ − x∗)Tc ≥ 0 for all c ∈ C.

(f) Use (d) to show that (c∗ − x∗)Tx∗ < 0. (Hint: vTv > 0 for any nonzero vector v.)

Thus, we have shown the existence of a vector a (specifically, a = c∗ − x∗) such that aTc ≥ 0
for all c ∈ C (by (e)) but aTx < 0 (by (f)).


