
Math 4630/6630 - Nonlinear Optimization - Spring 2021

Questions for Topic 1

1A. (a) Formulate the problem of finding the best line y = a0 + a1x through the the points (1, 1),
(2, 3) and (4, 6) as an optimization problem using the least squares objective function.

(b) Linear least squares problems, of which (a) is an example, can be solved by taking the gradient
of the objective function and setting it equal to 0. This gives a system of linear equations that can
be solved to find the optimum values of the coefficients. Solve (a) in this way. (The unknowns here
are a0, a1, so take the partial derivatives of your objective function with respect to each of these,
and set them equal to 0.)

1B. (a) Formulate the problem of finding the best even quadratic (quadratic symmetric about the
y-axis) y = a0 + a2x

2 through the the points (0, 7), (1, 6) and (2, 1) as an optimization problem
using the least squares objective function.

(b) Linear least squares problems, of which (a) is an example, can be solved by taking the gradient
of the objective function and setting it equal to 0. This gives a system of linear equations that
can be solved to find the optimum values of the coefficients. Solve (a) in this way, giving an exact

solution. (The unknowns here are a0, a2, so take the partial derivatives of your objective function
with respect to each of these, and set them equal to 0.)

1C. Find the critical point of the quadratic f(x, y) = 3x2+10xy+8y2+4x+6y and use definiteness
properties of the Hessian matrix to say as much as you can about whether the critical point is a
local minimizer, local maximizer or saddle point.

1D. Find the critical point of the quadratic f(x, y) = 2x2−8xy+10y2−4y+19 and use definiteness
properties of the Hessian matrix to say as much as you can about whether the critical point is a
local minimizer, local maximizer or saddle point.

1E. (Characterizations of positive definiteness) The following two properties are different ways of
characterizing whether a real symmetric n× n matrix A is positive definite. Property 1 is usually
used as the definition. In this question we will show that Property 2 is equivalent to Property 1,
using some fundamental properties of real symmetric matrices.

Property 1: vTAv > 0 for all v ∈ Rn, v 6= 0.
Property 2: All eigenvalues of A are positive (remember that λ ∈ R is an eigenvalue of A if there

is v ∈ Rn, v 6= 0 with Av = λv).

(a) (i) Show that Property 1 implies Property 2.

(ii) Use orthogonal diagonalization, below, to show that Property 2 implies Property 1.

Orthogonal diagonalization: If A is a real symmetric matrix, then A = UTDU , where U is a
real orthogonal matrix (U−1 = UT) and D is a real diagonal matrix with the eigenvalues of A
down the diagonal.

(b) There is a third property that characterizes being positive definite, i.e., it is equivalent to
Properties 1 and 2.

Property 3: All of detA1,detA2, . . . ,detAn are positive, where Ak is the k × k matrix obtained
by taking just the first k rows and the first k columns of A.

[Comment: Property 3 can be checked efficiently. It is the source of the usual second order condition
for a function f(x, y) of two variables to have a local minimizer: ∇f = 0, fxx = detA1 > 0 and
fxxfyy − f2

xy = detA2 > 0, where A = ∇2f : this shows A = ∇2f is positive definite.]
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Use Property 3 to determine whether or not each of the following matrices is positive definite.

(i)





3 2 1
2 5 4
1 4 6



, (ii)





4 2 0
2 3 −2
0 −2 2



.

1F. (a) Suppose Ai, i ∈ I, is a family of convex sets. Prove that the intersection ∩i∈IAi is also
convex.

(b) Give an example of two convex sets whose union is not convex.

1G. Let r ≥ 0. Prove that the set S = {x ∈ Rn | ‖x‖ ≤ r} is a convex set, where ‖x‖ =
√

x2
1 + x2

2 + . . .+ x2
n is the usual length of a vector. (Hint: use the properties that ‖αx‖ = |α| ‖x‖

for a scalar α and vector x, and the triangle inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for vectors x and y.)

1H. A function f : Rn → R is affine if f(αx + βy) = αf(x) + βf(y) whenever x, y ∈ Rn and
α, β ∈ R with α + β = 1. (Note that there is no other restriction on the value of α or β; in
particular we are not required to have α ∈ [0, 1] or β ∈ [0, 1].)

Prove that if f is both convex on Rn and concave on Rn, then f is affine. (Note that you will
have to treat the cases α < 0 and α > 1 differently from α ∈ [0, 1].)

1I. Suppose f is a convex function on Rn. Prove that the set S of global minimizers of f is a
convex set.

1J. Show that each of the following functions is convex on the specified convex set. If you can show
that the function is strictly convex on the interior of the given set, mention that also.

(a) f(x1, x2) = 5x2
1 + 2x1x2 + x2

2 − x1 + 2x2 + 3 on S = R2.

(b) f(x1, x2) = x2
1/2 + 3x2

2/2 +
√
3x1x2 on S = R2.

(c) f(x1, x2) = − sinx1 sinx2 on S = {(x1, x2) ∈ R2 | π
4
≤ x1 ≤ 3π

4
, π
4
≤ x2 ≤ 3π

4
}. (It’s probably

easiest to use the characterization of positive definiteness in terms of determinants of submatrices.)

1K. Use properties of the Hessian matrix to determine whether f(x1, x2) = 4x2
1 + 12x1x2 − x1 +

9x2
2−x2+4 is convex, concave, both, or neither on R2. Explain whether or not you can determine

strict convexity or strict concavity from the Hessian matrix.

1L. Suppose that a > 1. Consider the sequence x0, x1, x2, . . . defined by

x0 = a, xk+1 =
1

2
(xk +

a

xk

) for k ≥ 0.

It can be shown that this is a decreasing sequence that converges to a positive limit.

(a) Given that the limit exists and is positive, prove that lim
k→∞

xk =
√
a.

(b) Use the limit from (a) and the fact that the sequence is decreasing to prove that the sequence
converges (Q-)quadratically.

1M. If p > 0, then the sequence xk = 1/kp converges to 0. Show that it does not converge
(Q-)linearly. (This is known as sublinear convergence.)
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