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1. INTRODUCTION

Optimization models

Optimization = find optimal = best = maximum or minimum

General optimization problem: max/min f(x) ← objective function, real-valued
subject to x = (x1, x2, . . . , xn) ∈ S ← feasible set , often described by constraints

Variables x1, x2, . . . here could be anything.

Types of optimization:
• Discrete, e.g. Travelling Salesman, Shortest Path, ...
• Mixed
• Continuous

◦ Linear: special theory, applications to discrete optimization (Math 4/6620).
◦ Nonlinear: complicated real-world situations; physical quantities; production and design

problems (this class).

Mathematical theory of optimization now important in practical situations because of availability
of computers and software to handle realistic problems, with thousands of variables.

Example: A uniform tubular column must handle a com-
pressive load of P = 25, 000 N (newton). The column is to
be made of a material with yield stress σy = 5, 000 N/cm2,
modulus of elasticity E = 8.5×106 N/cm2, and weight den-
sity ρ = 2.0 × 10−2 N/cm3. The length is to be ℓ = 250
cm. The mean diameter d must be between 2 cm and 14
cm, and the thickness t between 0.2 cm and 0.8 cm. The
induced stress σi = P/(πdt) must not exceed either σy or
the buckling stress σb = π2E(d2+t2)/(8ℓ2). Design the col-
umn to minimize its overall cost, which is c = 0.5W + 2d,
where W = πℓdtρ is the weight (in N) and d is the mean
diameter (in cm).

t

d

`

Steps:

(1) Variables: choose ‘design variables’, those over which you have control.

d (cm), t (cm). Specifying units is important!

(2) Objective: formulate objective function as function of design variables and determine whether
it is to be maximized or minimized.

min c = 0.5W + 2d = 0.5πℓdtρ+ 2d

= 0.5π(250)dt(2.0 × 10−2) + 2d

= 2.5πdt+ 2d.

(3) Constraints: formulate restrictions given in problem as equations or inequalities involving
design variables (including perhaps upper and lower bounds on the variables).

Bounds:
d ≥ 2
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d ≤ 14
t ≥ 0.2
t ≤ 0.8

σi ≤ σy:

P

πdt
≤ 5000

25000

πdt
≤ 5000

5

πdt
≤ 1

or (since d and t positive) dt ≥ 5/π.

- LHS now polynomial in variables, easy to compute, linear in each variable so behaves nicely with
respect to approximation.

σi ≤ σb:

P

πdt
≤ π2E(d2 + t2)

8ℓ2

25000

πdt
≤ π2(8.5 × 106)

8(2502)
(d2 + t2)

105

πdt
≤ 68π2(d2 + t2)

or (since d and t positive) dt(d2 + t2) ≥ 105

68π3
.

- Again perhaps nicer because LHS polynomial. Or maybe original better because both sides lower
degree? Experiment!

Message: same constraint can be written in different ways; some may work better than others.

Example: Curve fitting: Find best line y = a0+a1x through (1, 3), (3, 5) and (4, 7). Not collinear!
Variables: a0, a1 (dimension-free, no unit).

Objective: First need to decide how to measure ‘best’. Convenient choice: minimize sum of squares
of errors - least squares. Other reasonable choices: sum of absolute values of errors, maximum of
absolute values of errors. Advantages of least squares:

(1) Differentiable (sum or maximum of absolute values is not).
(2) Can be justified on statistical grounds: if errors normally distributed, corresponds to

‘maximum likelihood estimate’.
(3) Easy to solve.

Write f(x) = a0+a1x. In applications, think of f as model function, known values = measurements
with errors.

Residual (error = measured versus model value)
at x = 1: 3− f(1) = 3− (a0 + a1),
at x = 3: 5− f(3) = 5− (a0 + 3a1),
at x = 4: 7− f(4) = 7− (a0 + 4a1).

So objective is
min((3 − (a0 + a1))

2 + (5− (a0 + 3a1))
2 + (7− (a0 + 4a1))

2

Constraints: None. Problem is unconstrained .

Linear least squares problems easily solved via linear algebra, in theory. (See problems.) For large
problems must address practical issues of numerical linear algebra.

Standard nonlinear optimization problem:

min f(x) x = (x1, x2, . . . , xn) ∈ Rn

such that gi(x) = 0, i ∈ E equality constraints,

gi(x) ≥ 0, i ∈ I inequality constraints.
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Constraints define feasible set .
– If max, negate objective function.
– Move all expressions in constraints to LHS.
– If ≤, negate.
– All constraints assumed to have nonstrict inequalities so that feasible region is closed if gi’s

are continuous. Avoids problems where desired point on boundary of set but not feasible.

Conditions for optimality (need some terminology first)

Suppose f is a real-valued function on a set S ⊆ Rn. Then x∗ ∈ S is a
global minimizer of f on S if f(x) ≥ f(x∗) ∀ x ∈ S;
strict global minimizer of f on S if f(x) > f(x∗) ∀ x ∈ S with x 6= x∗;
local minimizer of f on S if ∃ ε > 0 so that f(x) ≥ f(x∗) ∀ x ∈ S with ‖x− x∗‖ < ε;
strict local minimizer of f on S if ∃ ε > 0 so that f(x) > f(x∗) ∀ x ∈ S with ‖x−x∗‖ < ε and

x 6= x∗;
Similar definitions for maximizers: reverse inequalities for f values.

Example: f(x) = x2
1 + x2

2 (square of distance from origin)

strict local max

strict global max

nonstrict

local max

strict global min

(1,1)

(2,0)(1,0)

(0,1)

(0,-1)

local/global minimum value of f = value of f at local/global minimizer. Minimizer is x ∈ Rn,
minimum value is f(x) ∈ R.

How do we find minimizers? For continuous function of one variable on closed interval, need to
look at (a) critical points (f ′ = 0), and (b) boundary points (ends). Worry about (b) later;
for now, what about minimizers in interior of feasible set?

B(x0, ε) = {x ∈ Rn | ‖x− x0‖ < ε} – open ball of radius ε around x0.
interior point x0 of S: ∃ ε > 0 such that B(x0, ε) ⊆ S (hence x0 ∈ S) (positive distance to

S = Rn − S).
boundary point x0 of S: ∀ε > 0, B(x0, ε) intersects both S and S = Rn − S (may have x0 ∈ S or

x0 /∈ S) (arbitrarily close to both S and S).
closed set S contains all its boundary points.
gradient of f is ∇f = [ ∂f

∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

]T.

NOTE: All vectors are column vectors!
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Theorem (First Order Necessary Condition): Suppose x∗ is a local minimizer of f on S ⊆ Rn

and x∗ is an interior point of S. If all partial derivatives of f exist at x∗, then ∇f(x∗) = 0. In
other words, all partial derivatives are 0 at x∗.
Proof: For each i consider fi(xi) = f(x∗

1, . . . , x
∗
i−1, xi, x

∗
i+1, . . . , x

∗
n). Since x∗ minimizes f , x∗

i

must minimize fi, so by first-year calculus 0 = f ′
i(x

∗
i ) =

∂f
∂xi

(x∗).

Reformulation: Any local minimizer of f on S must occur (i) where ∇f = 0, or (ii) where ∇f
does not exist, or (iii) at a boundary point.

Stationary point is where ∇f = 0; critical point is where ∇f = 0 or ∇f does not exist.

Given a stationary point, how can we tell if it’s really a minimizer? Need something like second
deriv. test for funtions of one variable. To get idea, look at multivariable version of Taylor
series.

Taylor series for f(x) = f(x1, x2, . . . , xn): if f has continuous 3rd derivatives,

f(x) = f(x0) + (x− x0)
T∇f(x0) +

1

2
(x− x0)

T∇2f(x0)(x− x0) +O(‖x− x0‖3).

– x0, x are column vectors;

– ∇2f = Hessian matrix =









∂2f

∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n









; symmetric if f has continuous 2nd

derivatives.

So we need to look at expressions like (something)T ∇2f (something). Some relevant definitions:

A real symmetric n× n matrix A is defined to be:
positive definite if vTAv > 0 ∀ v ∈ Rn with v 6= 0; all eigenvalues > 0
positive semidefinite if vTAv ≥ 0 ∀ v ∈ Rn; all eigenvalues ≥ 0
negative definite if vTAv < 0 ∀ v ∈ Rn with v 6= 0; all eigenvalues < 0
negative semidefinite if vTAv ≤ 0 ∀ v ∈ Rn; all eigenvalues ≤ 0
indefinite if ∃ v1, v2 ∈ Rn with vT1 Av1 > 0 and vT2 Av2 < 0. some eigenvalue > 0, some

eigenvalue < 0

A real symmetric matrix A (a) has all eigenvalues real, and (b) is diagonalizable: A = U−1DU where
D = diagonal matrix with eigenvalues of A down diagonal, U = orthogonal matrix (U−1 = UT).
Above properties can be represented in terms of eigenvalues.
Also third way to think of positive definiteness using determinants of submatrics; good for compu-

tation; see 1E.

Second Order Conditions: Suppose that x∗ is an interior point of S at which ∇f(x∗) = 0, and
so that f has continuous second derivatives in an open ball B(x∗, ε) ⊆ S for some ε > 0.

(i) Necessary condition for minimizer: If x∗ is a local minimizer of f on S, then ∇2f(x∗) is
positive semidefinite.

(ii) Sufficient condition for minimizer: If ∇2f(x∗) is positive definite, then x∗ is a strict local
minimizer of f on S.

Note: necessary and sufficient conditions are different.

(iii) Sufficient condition for saddle point: If ∇2f(x∗) is indefinite then x∗ is a saddle point of
f : there is a direction in which f has a strict local minimizer at x∗, and a direction in which f has
a strict local maximizer at x∗. Some people use much weaker definition of saddle point: stationary
but not local maximizer or minimizer.
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local min

local

max

saddle point

(Figure above is a 3-dimensional graph of a function of 2 variables.)

– Counterparts of (i) and (ii) for maximizers: replace ‘minimizer’ by ‘maximizer’ and ‘positive’ by
‘negative’.

– Converses of (i), (ii) and (iii) are not true.

Example: f(x, y) = 2x2 + 6xy + 5y2 − 2x− 8y + 10 on all R2.

Critical point: ∇f(x, y) =
[ ∂f

∂x
∂f
∂y

]

=

[

4x+ 6y − 2
6x+ 10y − 8

]

= 0

which gives
4x + 6y = 2 (1)
6y + 10y = 8 (2)

and (2)− 3
2 (1) gives y = 5 and then we get x = −7.

So there is one critical point, at (−7, 5).

Hessian A = ∇2f(x, y) =

[

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]

=

[

4 6
6 10

]

Eigenvalues:

det(λI −A) =

∣

∣

∣

∣

λ− 4 −6
−6 λ− 10

∣

∣

∣

∣

= (λ− 4)(λ − 1)− (−6)2 = λ2 − 14λ+ 40− 36

= λ2 − 14λ+ 4 = λ2 − 14λ+ 49 − 45 = (λ− 7)2 − 45

= (λ− 7 +
√
45)(λ− 7−

√
45) = 0

and hence λ = 7 ±
√
45, both > 0, so ∇2f(−7, 5) is positive definite, (−7, 5) is strict local

minimizer.

In fact, from properties of quadratics, actually strict global minimizer.

Idea of definiteness generalizes test for functions of two variables: condition for local minimizer
is fxxfyy − f2

xy > 0 and fxx > 0; really checking positive definiteness using determinants of
submatrices.

Example: f(x, y) = x2 + 6xy + 9y2 + 4x+ 12y − 3:
∇f = 0 everywhere along the line x+ 3y = −2, e.g. at (1,−1);
∇2f =

[

2 6
6 18

]

everywhere, eigenvalues λ = 0, 20, so positive semidefinite.

So cannot say for sure what happens at (1,−1) or other points on line. Can say it’s not a local
maximizer since ∇2f not negative semidefinite. In fact all points on line are nonstrict global
minimizers.

Local versus global optimality

Usually want global minimizer of f on feasible set S. May not exist; if exists, may be hard to find.
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Theory

If f continuous, S is closed bounded set then a global minimizer (and global maximizer) of f exists
(on boundary or where ∇f is 0 or doesn’t exist).

If S = Rn and f is continuous and coercive (lim‖x‖→∞ f(x) = +∞) then a global minimizer of f
exists, at a critical point. Just apply previous point with S being set where f is smaller than
something.

There are conditions for global minimizers involving convexity (more details soon), related to prop-
erties of ∇2f . For example, if S = Rn and ∇2f is positive semidefinite (definite) everywhere
then any stationary point (∇f = 0) is a (strict) global minimizer.

Methods

Chop S into smaller regions where f can be analysed. Use ideas like ‘bisection’ and ‘branch
and bound’, using ‘interval arithmetic’ and local minimizers to get bounds. Sometimes can
guarantee we really have global minimizer.

Seach methods that allow non-descent steps, have probabilistic aspect: e.g., taboo search, simulated
annealling.

Use population of points spread out over S: genetic algorithms, particle swarm, ant colony.

... and others; see ‘Handbook of Global Optimization’, volumes 1 and 2.

In this course focus on finding local minimizers.
– global opt. methods often rely on local opt. methods;
– in particular situation often have theory (convexity) or practical reaons for expecting local
minimizer to also be global minimizer.
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