Math 4630/6630 * Nonlinear Optimization * Spring 2021

Course outline

The course covers theory and techniques for both unconstrained and constrained optimization in a general (nonlinear) setting. The emphasis is on methods that are useful for solving real problems, although important theoretical ideas such as convexity and the Karush-Kuhn-Tucker conditions are also covered. We primarily discuss local optimization methods, although discussion of appropriate global optimization methods can be included in the paper.

The following topics will be covered.

- 1. Introduction
 - Optimization models
 - Conditions for optimality
 - Local versus global optimality
 - Convexity
 - Convergence analysis
- 2. Theory of constrained multi-dimensional optimization
 - Lagrange multipliers
 - Karush-Kuhn-Tucker conditions
- 3. Unconstrained one-dimensional methods
 - $\circ\,$ A. Derivative-zeroing methods
 - Newton's method
 - Bisection
 - Regula falsi
 - Secant method
 - B. Non-derivative methods
 - Bracketing framework
 - Golden section method
 - Quadratic interpolation
 - C. Cubic interpolation
- 4. Unconstrained multi-dimensional methods
 - A. Smooth functions
 - Line search framework
 - Taylor polynomials
 - Newton's method
 - Steepest descent
 - Quasi-Newton methods
 - Conjugate gradient methods
 - Convergence for line search framework
 - Trust region framework
 - B. Noisy functions
 - Nelder-Mead simplex method
 - Hooke-Jeeves pattern search
- 5. Constrained methods
 - Barrier functions
 - Penalty functions, including augmented Lagrangians
 - Sequential quadratic programming