Math 4630/6630 - Nonlinear Optimization - Spring 2021 Formulation of Optimization Problems

Example: A uniform tubular column must handle a compressive load of P = 25,000 N (newton). The column is to be made of a material with yield stress $\sigma_y = 5,000$ N/cm², modulus of elasticity $E = 8.5 \times 10^6$ N/cm², and weight density $\rho = 2.0 \times 10^{-2}$ N/cm³. The length is to be $\ell = 250$ cm. The mean diameter d must be between 2 cm and 14 cm, and the thickness t between 0.2 cm and 0.8 cm. The induced stress $\sigma_i = P/(\pi dt)$ must not exceed either σ_y or the buckling stress $\sigma_b = \pi^2 E(d^2 + t^2)/(8\ell^2)$. Design the column to minimize its overall cost, which is c = 0.5W + 2d, where $W = \pi \ell dt \rho$ is the weight (in N) and d is the mean diameter (in cm).

Steps:

(1) Variables: choose 'design variables', those over which you have control.

(2) Objective: formulate objective function as function of design variables and determine whether it is to be maximized or minimized.

(3) Constraints: formulate restrictions given in problem as equations or inequalities involving design variables (including perhaps upper and lower bounds on the variables).