Formulation of Optimization Problems

Example: A uniform tubular column must handle a compressive load of $P=25,000 \mathrm{~N}$ (newton). The column is to be made of a material with yield stress $\sigma_{y}=5,000 \mathrm{~N} / \mathrm{cm}^{2}$, modulus of elasticity $E=8.5 \times 10^{6} \mathrm{~N} / \mathrm{cm}^{2}$, and weight density $\rho=2.0 \times 10^{-2} \mathrm{~N} / \mathrm{cm}^{3}$. The length is to be $\ell=250$ cm . The mean diameter d must be between 2 cm and 14 cm , and the thickness t between 0.2 cm and 0.8 cm . The induced stress $\sigma_{i}=P /(\pi d t)$ must not exceed either σ_{y} or the buckling stress $\sigma_{b}=\pi^{2} E\left(d^{2}+t^{2}\right) /\left(8 \ell^{2}\right)$. Design the column to minimize its overall cost, which is $c=0.5 W+2 d$, where $W=\pi \ell d t \rho$ is the weight (in N) and d is the mean diameter (in cm).

Steps:

(1) Variables: choose 'design variables', those over which you have control.
(2) Objective: formulate objective function as function of design variables and determine whether it is to be maximized or minimized.
(3) Constraints: formulate restrictions given in problem as equations or inequalities involving design variables (including perhaps upper and lower bounds on the variables).

