
Math 2600/5600 - Linear Algebra - Fall 2015

Extra Problems and Answers/Solutions to Practice Problems for Chapter 6

Note: For some problems answers without full explanation are given, while for some problems complete
solutions are given. On homework you are always expected to give complete solutions with full details.

6.1.1. See book for problem. Answers in book.

6.1.3. See book for problem. Answers in book.

6.1.9. See book for problem.

Answer: (a) Suppose 〈x, z〉 = 0 ∀ z ∈ β. Since β is a basis, we can write x = α1z1 + α2z2 + . . .+ αnzn for
scalars α1, α2, . . . , αn and z1, z2, . . . , zn ∈ β. Then

〈x, x〉 = 〈x, α1z1 + . . .+ αnzn〉 = α1〈x, z1〉+ . . .+ αn〈x, zn〉 = 0
because 〈x, z〉 = 0 ∀ z ∈ β. Since 〈x, x〉 = 0, we must have x = 0.

(b) Suppose 〈x, z〉 = 〈y, z〉 ∀ z ∈ β. Then 〈x− y, z〉 = 〈x, z〉 − 〈y, z〉 = 0 ∀ z ∈ β. Hence, by (a), x− y = 0,
so x = y.

6.1.10. See book for problem.

Answer: Suppose x and y are orthogonal. We have

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉 + 2〈x, y〉+ 〈y, y〉

= 〈x, x〉 + 〈y, y〉 (because 〈x, y〉 = 0) = ‖x‖2 + ‖y‖2.

In R2 (or Rn or in fact any real inner product space) if we take a triangle with vertices a, b and c and
let x = b − a, y = c − b, then the third side is x + y = c − a, and there is a right angle at b precisely if
〈x, y〉 = 0. Then ‖x+ y‖ represents the length of the hypotenuse of the right triangle whose other sides have
lengths ‖x‖ and ‖y‖, so the formula above gives Pythagoras’s Theorem.

6.1.17. See book for problem.

Answer: Suppose ‖Tx‖ = ‖x‖ for all x ∈ V . Consider x ∈ N(T ), then Tx = 0 so ‖x‖ = ‖Tx‖ == ‖0‖ = 0,
from which x = 0. Thus, N(T ) = {0} and so T is one-to-one.

6.2.1. See book for problem. Answers in book.

6.2.2. See book for problem. Answers in book.

X12. (Algebraic derivation of projxy) Prove algebraically that if x 6= 0 then y − αx ⊥ x if and only if
α = 〈y, x〉/〈x, x〉.

Answer: Note that 〈x, x〉 6= 0 because x 6= 0. Hence y − αx ⊥ x ⇔ 0 = 〈y − αx, x〉 = 〈y, x〉 − α〈x, x〉 ⇔
α = 〈y, x〉/〈x, x〉.

6.2.13. See book for problem.

Answer: (a) Suppose S0 ⊆ S. To prove that S⊥ ⊆ S⊥

0
, we must show that every v ∈ S⊥ also belongs to

S⊥

0
. Suppose v ∈ S⊥, then 〈v, s〉 = 0 ∀ s ∈ S. If s0 ∈ S0, then s0 is also in S, so 〈v, s0〉 = 0, and this holds

∀ s0 ∈ S0. Hence v ∈ S⊥

0 .

(b) To prove that S ⊆ (S⊥)⊥, we must show that every s ∈ S also belongs to (S⊥)⊥. Suppose s ∈ S. Then
for every v ∈ S⊥ we have 0 = 〈v, s〉 (by definition of S⊥) = 〈s, v〉. Since 〈s, v〉 = 0 ∀ v ∈ S⊥, that means
that s ∈ (S⊥)⊥.

X13. Find a basis for {(1, 2, 3, 4), (−1, 0, 1, 0)}⊥ in R4 (by solving a system of linear equations).

1



Answer: Let S = {s1 = (1, 2, 3, 4), s2 = (−1, 0, 1, 0)}. Then x = (x1, x2, x3, x4) ∈ S⊥ if and only if
〈x, s1〉 = 〈x, s2〉 = 0. This gives a linear system of equations which we solve by transforming into an
augmented matrix and reducing to reduced row echelon form:

〈x, s1〉 = x1 + 2x2 + 3x3 + 4x4 = 0
〈x, s2〉 = x1 − x3 = 0

→

[

1 2 3 4 0
−1 0 1 0 0

]

→

[

1 0 −1 0 0
0 1 2 2 0

]

→
x1 − x3 = 0

x2 + 2x3 + 2x4 = 0
→

x1 = x3

x2 = −2x3 − 2x4

Hence,

S⊥ = {(x3,−2x3 − 2x4, x3, x4) | x3, x4 ∈ R}

= {x3(1,−2, 1, 0) + x4(0,−2, 0, 1) | x3, x4 ∈ R} = span {(1,−2, 1, 0), (0,−2, 0, 1)}

where {(1,−2, 1, 0), (0,−2, 0, 1)} is a basis for S⊥.

X14. Prove that for any subset S of V , S⊥ = (span S)⊥.

Answer: We need to show that S⊥ ⊆ span S⊥ and (span S)⊥ ⊆ S⊥.
Suppose v ∈ S⊥, so that 〈v, s〉 = 0 ∀ s ∈ S. Suppose y ∈ span S, then y = α1s1 + α2s2 + . . .+ αksk for

some scalars α1, α2, . . . , αk and s1, s2, . . . , sk ∈ S. Then
〈v, y〉 = 〈v, α1s1 + . . .+ αksk〉 = α1〈v, s1〉+ . . .+ αk〈v, sk〉 = 0

because 〈v, s〉 = 0 ∀ s ∈ S. Thus, 〈v, y〉 = 0 ∀ y ∈ span S. Hence, v ∈ (span S)⊥.
Conversely, suppose v ∈ (span S)⊥, so that 〈v, y〉 = 0 ∀ y ∈ span S. But every s ∈ S also belongs to

span S, so 〈v, s〉 = 0 ∀ s ∈ S. Hence v ∈ S⊥.
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