
Math 2600/5600 - Linear Algebra - Fall 2015

Extra Problems and Answers/Solutions to Practice Problems for Chapter 1

Note: For some problems answers without full explanation are given, while for some problems complete
solutions are given. On homework you are always expected to give complete solutions with full details.

1.2.1. See book for problem. Answers in book.

1.2.8. See book for problem.

Solution: (a+ b)(x+ y) = a(x+ y) + b(x+ y) by (V9)
= (ax+ ay) + (bx+ by) by (V10), twice
= ax+ ay + bx+ by by a consequence of (V3).

1.2.11. See book for problem.

Solution: To show that V = {0} is a vector space we check all the axioms.
(V1) u+ v exists in V for all u, v ∈ V (closed).

The only possible values of u and v are u = v = 0 and u+ v = 0 + 0 = 0 ∈ V .
(V2) u+ v = v + u for all u, v ∈ V (commutative).

The only possible values of u and v are u = v = 0 and u+ v = 0 + 0 = 0 = 0 + 0 = v + u.
(V3) u+ (v + w) = (u+ v) + w for all u, v, w ∈ V (associative).

The only possible values of u, v, w are u = v = w = 0 and u + (v + w+ = 0 + (0 + 0) = (0 + 0) + 0 =
(u+ v) + w.

(V4) There exists 0 ∈ V so that v + 0 = 0 + v = v for all v ∈ V (identity).
Certainly 0 ∈ V . The only possible value of v is v = 0 and v + 0 = 0 + 0 = 0 and 0 + v = 0 + 0 = 0, as

required.
(V5) For every v ∈ V there exists −v ∈ V such that v + (−v) = (−v) + v = 0 (inverses).

The only possible value of v is v = 0 and if we take −v = 0 then v + (−v) = 0 + 0 = 0 and (−v) + v =
0 + 0 = 0, as required.

(V6) αv exists in V for all α ∈ F, v ∈ V .
The only possible value of v is v = 0 and for any α, α0 = 0 exists in V .

(V7) 1v = v for all v ∈ V .
The only possible value of v is v = 0 and 1v = 1(0) = 0 = v.

(V8) α(βv) = (αβ)v for all α, β ∈ F, v ∈ V .
The only possible value of v is v = 0 and for any α and β, α(βv) = α(β0) = α0 = 0 = (αβ)0 = (αβ)v.

(V9) (α+ β)v = αv + βv for all α, β ∈ F, v ∈ V .
The only possible value of v is v = 0 and for any α and β, (α+β)v = (α+β)0 = 0 = 0+0 = α0+β0 =

αv + βv.
(V10) α(u+ v) = αu + αv for all α ∈ F, u, v ∈ V .

The only possible values of u and v are u = v = 0, and for any al we have α(u + v) = α(0 + 0) = α0 =
0 = 0 + 0 = α0 + α0 = αu+ αv.

[This is very tedious. It is much easier to prove this using the Subspace Theorem from 1.3, taking the
set containing the 0 vector inside something larger we already know is a vector space.]

1.2.13. See book for problem. Answer in book.

1.2.16. See book for problem.

Answer: Yes, Rm×n = Mm×n(R) is a vector space over Q. The addition axioms (V1)–(V5) do not depend
on the field, so they still hold. All the axioms involving scalar multiplication, (V6)–(V10), still hold because
any scalar in Q is also in R.

As a general principle, if V is a vector space over F , and K is a subfield of F , then V is also a vector
space over K.
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1.2.18. See book for problem.

Answer: No; for one thing, addition is not commutative.

X1. Is the empty set a (real) vector space?

Solution: No. Axiom (V4) (book’s (VS3)) says that a vector space contains an additive identity, so it must
have at least one element.

1.3.1. See book for problem. Answers in book.

1.3.5. See book for problem.

Solution: A matrix M is symmetric if Mij = Mji. Suppose A is a square matrix, say n × n. Then AT is
also n × n, so B = A + AT exists. Take i, j with 1 ≤ i, j ≤ n. We have Bij = Aij + (AT)ij = Aij + Aji.
We have (BT)ij = Bji = Aji + Aij (swapping the roles of i and j in the previous equation). We see that
Bij = Aij +Aji = Aji +Aij = (BT)ij for every i and j, so B = BT, and B is symmetric.

1.3.8. See book for problem.

Answer: Answers to (a), (c), (e) are in book. (f) No. (Contains 0 and closed under scalar multiplication,
but not closed under addition. Geometrically this is a (two-sided) elliptical cone.)

1.3.11. See book for problem. Answer in book.

1.3.17. See book for problem.

Solution: This problem asks us to show that W is a subspace of V if and only if three conditions hold: (a)
W 6= ∅, (b) ax ∈ W whenever a ∈ F and x ∈ W , and (c) x+ y ∈ W whenever x, y ∈ W . Conditions (b) and
(c) are just (SS3) (closure under scalar multiplication) and (SS2) (closure under addition) of the Subspace
Theorem, so what we are being asked to show is that (SS1), 0 ∈ W , can be replaced by (a) in the Subspace
Theorem.

Suppose conditions (a)–(c) hold. Then (SS2)=(c) and (SS3)=(b) hold. SInce W 6= ∅ there is some
w ∈ W . Then by (b), 0w = 0 ∈ W , so (SS1) holds. Since (SS1)–(SS3) hold, W is a subspace of V by the
Subspace Theorem.

Now suppose that W is a subspace of V . By the Subspace Theorem, (b)=(SS3) and (c)=(SS2) hold.
Also, (SS1) holds, so 0 ∈ W , which means that W 6= ∅, so (a) holds. Hence (a)–(c) hold.

1.3.20. See book for problem.

Solution: We prove by induction on n that if a1, a2, . . . , an are scalars, and w1, w2, . . . , wn ∈ W (a subspace
of V ), then a1w1 + a2w2 + . . .+ anwn ∈ W .
Basis: If n = 1 then a1w1 ∈ W since W is closed under scalar multiplication by (SS3).
Induction step: Suppose that n = k ≥ 2, and assume the induction hypothesis, that the result holds when
n = k − 1. We have

a1w1 + a2w2 + . . .+ akwk = (a1w1 + a2w2 + . . .+ ak−1wk−1) + akwk.

Now a1w1 + a2w2 + . . . + ak−1wk−1 ∈ W by the induction hypothesis, and akwk ∈ W by (SS3) (closure
under scalar multiplication). Since (SS2) (closure under addition) holds for W , we therefore conclude that
a1w1 + a2w2 + . . .+ akwk = (a1w1 + a2w2 + . . .+ ak−1wk−1) + akwk ∈ W , as required. So the result holds
when n = k.
Conclusion: By the Principle of Mathematical Induction, the result holds for all integers n ≥ 1.

[Note: We can also say that the result holds for n = 0, since a linear combination of no vectors is equal
to the zero vector, which belongs to W by (SS1).]

X2. Use the Subfield Theorem to show that Q(
√
2) is a subfield of R. (Hint: you should know how to

rationalize a denominator.)

2



Solution: Q(
√
2) is defined as {a + b

√
2 | a, b ∈ Q}. We check the conditions of the Subfield Theorem in

the notes.

(SF1) 0 = 0 + 0
√
2 ∈ Q(

√
2).

(SF2) 1 = 1 + 0
√
2 ∈ Q(

√
2) and −1 = −1 + 0

√
2 ∈ Q(

√
2).

(SF3) If x1 = a1 + b1
√
2 and x2 = a2 + b2

√
2 are in Q(

√
2), where a1, b1, a2, b2 ∈ Q then we have x1 + x2 =

(a1 + b1
√
2) + (a2 + b2

√
2) = (a1 + a2) + (b1 + b2)

√
2 which belongs to Q(

√
2) because a1 + a2, b1 + b2 ∈ Q.

Thus, Q(
√
2) is closed under addition.

(SF4) If x1 = a1 + b1
√
2 and x2 = a2 + b2

√
2 are in Q(

√
2), where a1, b1, a2, b2 ∈ Q then we have x1x2 =

(a1 + b1
√
2)(a2 + b2

√
2) = a1a2 + (a1b2 + b1a2)

√
2 + b1b2

√
2
2

) = (a1a2 + 2b1b2) + (a1b2 + b1a2)
√
2 which

belongs to Q(
√
2) because a1a2 + 2b1b2, a1b2 + b1a2 ∈ Q. Thus, Q(

√
2) is closed under multiplication.

(SF5) If x = a + b
√
2 ∈ Q(

√
2) − {0} then we know x−1 = 1/x exists in R; we just need to prove that

it belongs to Q(
√
2). We know that a − b

√
2 6= 0 (if a − b

√
2 = 0 then we would have a = b

√
2, which is

impossible for rational numbers a, b unless both are zero). So

x−1 =
1

x
=

1

a+ b
√
2
=

a− b
√
2

(a+ b
√
2)(a− b

√
2)

=
a− b

√
2

a2 − 2b2
=

a

a2 − 2b2
+

−b

a2 − 2b2

√
2

which belongs to Q(
√
2) because

a

a2 − 2b2
,

−b

a2 − 2b2
∈ Q. Thus, Q(

√
2) is closed under taking reciprocals.

Since (SF1)–(SF5) hold, Q(
√
2) is a subfield of R.

X3. Show that Q(i) is a subfield of C.

Answer: Q(i) is defined as {a + bi | a, b ∈ Q}, where i2 = −1. As in X2, we check the conditions of the
Subfield Theorem. Conditions (SF1)–(SF3) are very similar to X2. For (SF4) we get x1x2 = (a1 + b1i)(a2 +
b2i) = (a1a2− b1b2)+ (a1b2+ b1a2)i ∈ Q(i). For (SF5) we get x−1 = 1/x = 1/(a+ bi) = (a− bi)/(a2+ b2) =
(a/(a2 + b2)) + (−b/(a2 + b2))i ∈ Q(i).

X4. (a) Construct the addition and multiplication tables for Z7.
(b) Using these tables, write down a two-column table with α and −α for each α ∈ Z7, and another two-

column table with α and α−1 for α ∈ Z7 − {0}.
(c) What are 4− 6 and 4÷ 3 in Z7?

Solution: (a)
+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

,

× 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

.

(b) To save room I give two-row tables rather than two-column tables. For −α, find entry β with α+ β = 0.

For α−1, find entry β with αβ = 1.
α 0 1 2 3 4 5 6

−α 0 6 5 4 3 2 1
,

α 1 2 3 4 5 6
α−1 1 4 5 2 3 6

.

(c) 4− 6 = 4 + (−6) = 4 + 1 = 5. 4÷ 3 = 4× (3−1) = 4× 5 = 6.

X5. We can define Zn = {0, 1, 2, . . . , n − 1} with addition and multiplication modulo n even if n is not a
prime. But when n is not a prime, this is not a field.
(a) Construct the multiplication table for Z6, and use it to explain why Z6 is not a field.
(b) Generalize your answer to (a) to explain why Zn is not a field when n ≥ 4 is not prime.
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Solution: (a)
× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

.

We see that there is no 1 in several of the rows
for nonzero elements: in particular, for rows 2, 3 and
4. Therefore, 2, 3 and 4 have no multiplicative inverse
in Z6.

(b) In general, suppose n ≥ 4 is not prime, then n = ab where a, b ≥ 2 are integers. We claim that a (or
similarly b) does not have a multiplicative inverse in Zn. Informally, the a row in the multiplication table
for Zn contains only multiples of a, and so cannot contain 1. We can make this more formal as follows.

Consider any a× s in Zn. This equals the remainder r after dividing a× s (in R) by n, so that (in R)
as = qn+ r for some integer q. Then r = as− qn = as− qab = a(s− qb), which is divisible by a. Hence r
cannot equal 1, and so there is no s with a× s = 1 in Zn.

1.4.1. See book for problem. Answers in book.

1.4.3. See book for problem. Answers in book.

1.4.4. See book for problem. Answers in book.

1.4.5. See book for problem. Answers in book.

1.4.10. See book for problem.

Solution: An n× n matrix is symmetric provided Aij = Aji for every i, j with 1 ≤ i, j ≤ n. We only need
to check this when i < j: when i = j it is always true, and for i > j we can swap i and j. So a 2× 2 matrix
A is symmetric precisely when A12 = A21.

Assuming our scalars are from a general field F , we have

span {M1,M2,M3} = span {
[

1 0
0 0

]

,

[

0 0
0 1

]

,

[

0 1
1 0

]

}

= {α1

[

1 0
0 0

]

+ α2

[

0 0
0 1

]

+ α3

[

0 1
1 0

]

| α1, α2, α3 ∈ F}

= {
[

α1 α3

α3 α2

]

| α1, α2, α3 ∈ F} = S (say).

Certainly every matrix A in S is symmetric because A12 = α3 = A21. On the other hand, given any
symmetric matrix A, we see that A ∈ S by taking α1 = A11, α2 = A22, and α3 = A12 = A21. Therefore, S
is precisely the set of symmetric 2× 2 matrices (with entries from F ).

1.4.11. See book for problem.

Answer: The linear combinations of a single vector x are just the scalar multiples of x. Geometrically in
R3, span {x} is just a line through the origin in the direction of the vector x, unless x = 0, when it is just
the subspace {0}.

1.4.13. See book for problem.

Solution: Because S1 ⊆ S2, every linear combination of elements of S1 is also a linear combination of
elements of S2. In other words, span S1 ⊆ span S2.

If S1 ⊆ S2 ⊆ V then applying the above twice, we have span S1 ⊆ span S2 ⊆ span V . But span V = V ,
so if span S1 = V we have

V = span S1 ⊆ span S2 ⊆ span V = V.

Since V ⊆ span S2 and span S2 ⊆ V , span S2 = V , as required.

1.5.1. See book for problem. Answers in book.

4



1.5.2. See book for problem. Answers in book.

1.5.8. See book for problem.

Solution: From α1(1, 1, 0) + α2(1, 0, 1) + α3(0, 1, 1) = 0 we get a linear system

α1 + α2 = 0 (1)
α1 + α3 = 0 (2)

α2 + α3 = 0 (3)
.

(a) In R, (1)+(2)−2(3) gives 2α1 = 0, so α1 = 0, and then substituting in (1) and (2) gives α2 = α3 = 0, so
the vectors are linearly independent.

(b) However, if F has characteristic 2 then 1 + 1 = 0 in F , so we see that α1 = α2 = α3 = 1 is a solution of
the system, so there is a nontrivial linear combination that is 0, and the vectors are linearly dependent.

1.5.9. See book for problem.

Answer: You can prove this directly, or use Lemma LI1 from class (problem 1.5.14 from book).

1.5.18. See book for problem.

Answer: Consider a nontrivial linear combination of polynomials from S. Look at the polynomial with
nonzero coefficient and subject to that, highest degree, say n. Consider the coefficient of xn.

1.5.20. See book for problem.

Answer: Suppose that α1f + α2g = 0; that means that α1f(t) + α2g(t) = 0 for every real number t. Plug
in two different values of t, say t = 0 and t = 1, and show that you get a system of linear equations whose
only solution is α1 = α2 = 0.

1.6.1. See book for problem. Answers in book.

1.6.2. See book for problem. Answers in book.

1.6.3. See book for problem. Answers in book.

1.6.4. See book for problem. Answer in book.

1.6.5. See book for problem. Answer in book.

1.6.11. See book for problem.

Answer: Since V has dimension 2 (because {u, v} is a basis), and the given sets have size 2, you just need
to show that they are spanning sets.

1.6.14. See book for problem.

Answer: One basis for W1 is {(0, 1, 0, 0, 0), (1, 0, 1, 0, 0), (1, 0, 0, 1, 0), (0, 0, 0, 0, 1)}; dimW1 = 4. One basis
for W2 is {(1, 0, 0, 0,−1), (0, 1, 1, 1, 0)}; dimW2 = 2.

1.6.17. See book for problem. Answer in book.

1.6.26. See book for problem. Answer in book.

Answer: Think about multiples of the polynomial (x − a).
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