Math 2600/5600-Linear Algebra - Fall 2015

Extra Problems for Chapter 2

X7. Describe the action of the linear transformations L_{A} for the following matrices. For example, if $A=$ $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ you should say: we have $L_{A} \in L\left(\mathbf{R}^{3}, \mathbf{R}^{2}\right)$ with $L_{A}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+2 x_{2}+3 x_{3}, 4 x_{1}+5 x_{2}+6 x_{3}\right)$.
(a) $A=\left[\begin{array}{rr}2 & 4 \\ -1 & -7\end{array}\right]$.
(b) $B=\left[\begin{array}{llll}3 & -2 & 7 & 9\end{array}\right]$.
(c) $C=\left[\begin{array}{rr}1 & 0 \\ -5 & 2 \\ 0 & 1 \\ 17 & -1\end{array}\right]$.

X8. A number of geometric transformations in \mathbf{R}^{2} or \mathbf{R}^{3} are known to be linear transformations. By using their effect on the standard basis vectors, find the standard matrices of the following linear transformations.
(a) $F_{1}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ which reflects points in the x-axis (line $y=0$).
(b) $F_{2}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ which reflects points in the line $y=-x$.
(c) $R_{2 \pi / 3}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ which rotates points $2 \pi / 3$ around the origin (angles measured anticlockwise).
(d) $S_{3}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ which shears points parallel to the y-axis, so that every point (x, y) is moved $3 x$ units upwards.
(e) $F_{3}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ which reflects points in the plane $y=0$.
(f) $P: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ which rotates points around the x axis by 90° clockwise (as we look back from infinity in the x direction).
(g) $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ which stretches vectors by factors of 2 in the x direction, 3 in the y direction, and 5 in the z direction (so that $(1,1,1)$, for example, maps to $(2,3,5)$).

X9. Find the standard matrices of the following linear transformations.
(a) $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{4}$ by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+2 x_{2}+3 x_{3}, 4 x_{1}+7 x_{3}, 9 x_{2},-6 x_{1}+x_{2}-x_{3}\right)$.
(b) $S: \mathbf{R}^{5} \rightarrow \mathbf{R}^{2}$ by $S\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(x_{1}+x_{3}+x_{5}, x_{2}+x_{4}\right)$.
(c) $R: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ by $R(a, b, c)=(9 c-a, 7 b-c, 2 b-3 a)$.

X10. In each case you are given the coordinate vector $[v]_{B}$ of a vector v relative to the ordered basis B of vector space V; find v.
(a) $[v]_{B}=(7,6,5,4,3,2), B=\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right]\right)$ in $\mathbf{R}^{3 \times 2}$.
(b) $[v]_{B}=(5,2,1,7), B=\left(x^{3}, 1, x, x^{2}\right)$ in $P_{3}(\mathbf{R})$.
(c) $[v]_{B}=(3,1,4,8), B=(\sin , \cos , \exp , \log)$ in the subspace $V=\operatorname{span} B$ of $C((0, \infty))$, continuous real functions defined on the positive numbers.
(d) $[v]_{B}=(5,6,7,8), B$ is the reordering $\left(e_{3}, e_{2}, e_{4}, e_{1}\right)$ of the standard basis of \mathbf{R}^{4}.
(e) $[v]_{B}=(9,8,6,4), B=\left(\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\right)$ in $\mathbf{R}^{2 \times 2}$.

X11. In each case find the coordinate vector $[v]_{B}$ of the given vector v relative to the ordered basis B of vector space V.
(a) $v=(1,2,3,4), B$ is the standard basis of $V=\mathbf{R}^{4}$.
(b) $v=(5,6,7,8), B$ is the reordering $\left(e_{3}, e_{2}, e_{4}, e_{1}\right)$ of the standard basis of $V=\mathbf{R}^{4}$.
(c) $v=2+x^{3}, B$ is the standard basis $\left(1, x, x^{2}, \ldots, x^{6}\right)$ of $V=P_{6}(\mathbf{R})$.
(d) $v=3+4 x+x^{4}, B$ is the ordered basis $\left(1, x-1, x^{2}-x, x^{3}-x^{2}, x^{4}-x^{3}\right)$ of $V=P_{4}(\mathbf{R})$.
(e) $v=\left[\begin{array}{rr}2 & 1 \\ -3 & 7\end{array}\right], B$ is the ordered basis $\left(\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\right)$ of $V=\mathbf{R}^{2 \times 2}$.

