## VECTOR SPACES

Loose definition: A field $F$ is a set of numbers (scalars) with,,$+- \times, \div$ behaving similarly to the way they do with real numbers. Examples: $\mathbf{R}, \mathbf{Q}$ (rationals, $=$ fractions), $\mathbf{C}$ (complex numbers). But NOT $\mathbf{Z}$ (integers): e.g., $2 \div 3 \notin \mathbf{Z}$, cannot divide and stay in $\mathbf{Z}$.
Definition: A vector space (or linear space) over a field $F$ consists of a set $V$ with operations of addition and scalar multiplication satisfying these rules:
$V$ is an abelian group under + :
(V1) $u+v$ exists in $V$ for all $u, v \in V$ (closed).
(V2) $u+v=v+u$ for all $u, v \in V$ (commutative).
(V3) $u+(v+w)=(u+v)+w$ for all $u, v, w \in V$ (associative).
(V4) There exists $0 \in V$ so that $v+0=0+v=v$ for all $v \in V$ (identity).
(V5) For every $v \in V$ there exists $-v \in V$ such that $v+(-v)=(-v)+v=0$ (inverses).
Scalar multiplication properties:
(V6) $\alpha v$ exists in $V$ for all $\alpha \in F, v \in V$.
(V7) $1 v=v$ for all $v \in V$.
(V8) $\alpha(\beta v)=(\alpha \beta) v$ for all $\alpha, \beta \in F, v \in V$.

## Distributive laws:

(V9) $(\alpha+\beta) v=\alpha v+\beta v$ for all $\alpha, \beta \in F, v \in V$ (scalar multn distributes over scalar addn).
(V10) $\alpha(u+v)=\alpha u+\alpha v$ for all $\alpha \in F, u, v \in V$ (scalar multn distributes over vector addn).
These ten rules are the vector space axioms.

## FIELDS

So what is a field? We want operations of addition and multiplication, and also their inverse operations of subtraction and division, that behave similarly to the way they do in the real numbers.
Definition: A field consists of a set $F$ with two binary operations + and $\times$ satisfying the following rules.
$F$ is an abelian group under + :
(F1) $\alpha+\beta$ exists in $F$ for all $\alpha, \beta \in F$ (closed).
(F2) $\alpha+\beta=\beta+\alpha$ for all $\alpha, \beta \in F$ (commutative).
(F3) $\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma$ for all $\alpha, \beta, \gamma \in F$ (associative).
(F4) There exists $0 \in F$ so that $\alpha+0=0+\alpha=\alpha$ for all $\alpha \in F$ (identity).
(F5) For every $\alpha \in F$ there exists $-\alpha \in F$ such that $\alpha+(-\alpha)=(-\alpha)+\alpha=0$ (inverses).
$F$ is almost an abelian group under $\times$ :
(F6) $\alpha \beta=\alpha \times \beta$ exists in $F$ for all $\alpha, \beta \in F$ (closed).
(F7) $\alpha \beta=\beta \alpha$ for all $\alpha, \beta \in F$ (commutative).
(F8) $\alpha(\beta \gamma)=(\alpha \beta) \gamma$ for all $\alpha, \beta, \gamma \in F$ (associative).
(F9) There exists $1 \in F, 1 \neq 0$, so that $\alpha \times 1=1 \times \alpha=\alpha$ for all $\alpha \in F$ (identity).
(F10) For every $\alpha \in F-\{0\}$ there exists $\alpha^{-1} \in F$ such that $\alpha \alpha^{-1}=\alpha^{-1} \alpha=1$ (inverses for NONZERO elements).
Distributive law:
(F11) $(\alpha+\beta) \gamma=\alpha \gamma+\beta \gamma$ for all $\alpha, \beta, \gamma \in F$.
These eleven rules are the field axioms.
Notes: (1) $F$ is not an abelian group under $\times$. But if we exclude 0 and let $F^{*}=F-\{0\}$ (this is common notation) then $F^{*}$ is actually an abelian group under $\times$, called the multiplicative group of $F$.
(2) The restriction $1 \neq 0$ excludes a trivial field with exactly one element.
(3) We can define subtraction by $\alpha-\beta=\alpha+(-\beta)$, and division by $\alpha \div \beta=\alpha \beta^{-1}(\beta \neq 0)$.

Infinite fields: The fields we are already familiar with are infinite: $\mathbf{R}$ (obviously), $\mathbf{Q}$ (rationals, i.e., fractions $p / q, p, q$ integer, $q \neq 0$ ), $\mathbf{C}$ (complex numbers, i.e. $a+i b, i^{2}=-1, a, b \in \mathbf{R}$ ). Notice $\mathbf{Q}$ is subfield of $\mathbf{R}, \mathbf{C}$ is extension of $\mathbf{R}$.
Other examples: (1) $\mathbf{Q}(\sqrt{2})$, which consists of all numbers of the form $a+b \sqrt{2}$ where $a, b \in \mathbf{Q}$.
(2) $\mathbf{Q}(i)$, the complex (or Gaussian) rational numbers, which consists of all numbers of the form $a+b i$ where $a, b \in \mathbf{Q}$.

Finite fields: For any integer $n \geq 1$ we can define $\mathbf{Z}_{n}=\{0,1,2, \ldots, n-1\}$, with addition and multiplication done modulo $n$. Modulo $n$ means do operation normally, then take remainder after dividing by $n$. If $p$ is a prime, $\mathbf{Z}_{p}$ is a field.
Examples: (1) In $\mathbf{Z}_{7}, 4+4=1,4 \times 5=6,6+1=0$ so $-1=6,2 \times 4=1$ so $4^{-1}=2$.
(2) Complete operation tables in $\mathbf{Z}_{5}$ :

| + | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 2 | 3 | 4 |
| 1 | 1 | 2 | 3 | 4 | 0 |
| 2 | 2 | 3 | 4 | 0 | 1 |
| 3 | 3 | 4 | 0 | 1 | 2 |
| 4 | 4 | 0 | 1 | 2 | 3 |,


| $\times$ | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 |
| 2 | 0 | 2 | 4 | 1 | 3 |
| 3 | 0 | 3 | 1 | 4 | 2 |
| 4 | 0 | 4 | 3 | 2 | 1 |.

(3) And in $\mathbf{Z}_{2}$ :

| + | 0 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 1 | 1 | 0 |,


| $\times$ | 0 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 1 | 0 | 1 |.

Here + is logical XOR (exclusive or) operation, and $\times$ is logical AND operation.
General finite fields: It turns out there is a finite field with $q$ elements precisely when $q$ is a prime power. So there are fields of order $2,3,4,5,7,8,9$ but not of order 6 or 10 . When $q$ is a prime power, the field of order $q$ is denote $G F(q)$.

When $p$ is a prime, $G F(p)$ just means $\mathbf{Z}_{p}$. But when $q$ is not a prime, $G F(q)$ is not the same as $\mathbf{Z}_{q}$. When $q=p^{k}, p$ prime, we can construct $G F(q)$ by adding an extra number satisfying a particular type of polynomial equation to $\mathbf{Z}_{p}$, like adding $i$ satisfying $i^{2}=-1$ to $\mathbf{R}$ to get $\mathbf{C}$.
Example: (4) We can think of $G F(4)$ as obtained from $\mathbf{Z}_{2}$ by throwing in $x$ with $x^{2}=x+1$. Then $G F(4)=\{0,1, x, x+1\}$ with addition and multiplication as follows:

| + | 0 | 1 | $x$ | $x+1$ |
| ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 1 | $x$ | $x+1$ |
| 1 | 1 | 0 | $x+1$ | $x$ |
| $x$ | $x$ | $x+1$ | 0 | 1 |
| $x+1$ | $x+1$ | $x$ | 1 | 0 |


| $\times$ | 0 | 1 | $x$ | $x+1$ |
| ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | $x$ | $x+1$ |
| $x$ | 0 | $x$ | $x+1$ | 1 |
| $x+1$ | 0 | $x+1$ | 1 | $x$ |.

Fields $G F\left(2^{k}\right)$ are particularly important; vector spaces over these fields are often used to construct error-correcting codes.

## Subfields

To prove that something is a subfield, we have a theorem very similar to the Subspace Theorem for vector spaces.
Subfield Theorem: Suppose $F$ is a field and $E \subseteq F$. Then $E$ is a subfield of $F$ (a field using the operations of addition and multiplication inherited from $F$ ) if and only if the following five conditions hold.
(SF1) $0 \in E$.
(SF2) $1,-1 \in E$.
(SF3) $E$ is closed under addition: if $\alpha, \beta \in E$, then $\alpha+\beta \in E$.
(SF4) $E$ is closed under multiplication: if $\alpha, \beta \in E$, then $\alpha \beta \in E$.
(SF5) $E$ is closed under taking reciprocals (multiplicative inverses) of nonzero elements: if $\alpha \in E-\{0\}$, then $\alpha^{-1} \in E$.

Characteristic of a field: If it is possible to add up a finite positive number of 1 's to get 0 in $F$, the minimum number of 1 's needed to get 0 is the characteristic char $F$ of the field. For example, char $\mathbf{Z}_{2}=2$, char $G F(4)=2$, char $\mathbf{Z}_{5}=5$. In general, char $G F\left(p^{k}\right)=p$ for $p$ prime.

If we cannot get 0 by adding up a finite positive number of 1 's then we say char $F=0$. So $\mathbf{R}$, Q, C all have characteristic 0 . (But there exist infinite fields with nonzero characteristic.)

Some results fail for fields of nonzero characteristic, or for fields of characteristic 2 in particular. Characteristic 2 is peculiar because in those fields addition is the same thing as subtraction.

## Practice Problems

X2. Use the Subfield Theorem to show that $\mathbf{Q}(\sqrt{2})$ is a subfield of $\mathbf{R}$. (Hint: you should know how to rationalize a denominator.)
X3. Show that $\mathbf{Q}(i)$ is a subfield of $\mathbf{C}$.
X4. (a) Construct the addition and multiplication tables for $\mathbf{Z}_{7}$.
(b) Using these tables, write down a two-column table with $\alpha$ and $-\alpha$ for each $\alpha \in \mathbf{Z}_{7}$, and another two-column table with $\alpha$ and $\alpha^{-1}$ for $\alpha \in \mathbf{Z}_{7}-\{0\}$.
(c) What are $4-6$ and $4 \div 3$ in $\mathbf{Z}_{7}$ ?

X5. We can define $\mathbf{Z}_{n}=\{0,1,2, \ldots, n-1\}$ with addition and multiplication modulo $n$ even if $n$ is not a prime. But when $n$ is not a prime, this is not a field.
(a) Construct the multiplication table for $\mathbf{Z}_{6}$, and use it to explain why $\mathbf{Z}_{6}$ is not a field.
(b) Generalize your answer to (a) to explain why $\mathbf{Z}_{n}$ is not a field when $n \geq 4$ is not prime.

