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VECTOR SPACES

Loose definition: A field F is a set of numbers (scalars) with +, −, ×, ÷ behaving similarly to
the way they do with real numbers. Examples: R, Q (rationals, = fractions), C (complex
numbers). But NOT Z (integers): e.g., 2÷ 3 /∈ Z, cannot divide and stay in Z.

Definition: A vector space (or linear space) over a field F consists of a set V with operations of
addition and scalar multiplication satisfying these rules:
V is an abelian group under +:

(V1) u+ v exists in V for all u, v ∈ V (closed).
(V2) u+ v = v + u for all u, v ∈ V (commutative).
(V3) u+ (v + w) = (u+ v) + w for all u, v, w ∈ V (associative).
(V4) There exists 0 ∈ V so that v + 0 = 0 + v = v for all v ∈ V (identity).
(V5) For every v ∈ V there exists −v ∈ V such that v + (−v) = (−v) + v = 0 (inverses).

Scalar multiplication properties:
(V6) αv exists in V for all α ∈ F, v ∈ V .
(V7) 1v = v for all v ∈ V .
(V8) α(βv) = (αβ)v for all α, β ∈ F, v ∈ V .

Distributive laws:
(V9) (α + β)v = αv + βv for all α, β ∈ F, v ∈ V (scalar multn distributes over scalar addn).
(V10) α(u+ v) = αu+ αv for all α ∈ F, u, v ∈ V (scalar multn distributes over vector addn).

These ten rules are the vector space axioms.

FIELDS

So what is a field? We want operations of addition and multiplication, and also their inverse
operations of subtraction and division, that behave similarly to the way they do in the real numbers.

Definition: A field consists of a set F with two binary operations + and × satisfying the following
rules.
F is an abelian group under +:

(F1) α+ β exists in F for all α, β ∈ F (closed).
(F2) α+ β = β + α for all α, β ∈ F (commutative).
(F3) α+ (β + γ) = (α+ β) + γ for all α, β, γ ∈ F (associative).
(F4) There exists 0 ∈ F so that α+ 0 = 0 + α = α for all α ∈ F (identity).
(F5) For every α ∈ F there exists −α ∈ F such that α+ (−α) = (−α) + α = 0 (inverses).

F is almost an abelian group under ×:
(F6) αβ = α× β exists in F for all α, β ∈ F (closed).
(F7) αβ = βα for all α, β ∈ F (commutative).
(F8) α(βγ) = (αβ)γ for all α, β, γ ∈ F (associative).
(F9) There exists 1 ∈ F , 1 6= 0, so that α× 1 = 1× α = α for all α ∈ F (identity).
(F10) For every α ∈ F − {0} there exists α−1 ∈ F such that αα−1 = α−1α = 1 (inverses for

NONZERO elements).
Distributive law:

(F11) (α+ β)γ = αγ + βγ for all α, β, γ ∈ F .
These eleven rules are the field axioms.

Notes: (1) F is not an abelian group under ×. But if we exclude 0 and let F ∗ = F − {0} (this is
common notation) then F ∗ is actually an abelian group under ×, called the multiplicative group of
F .

(2) The restriction 1 6= 0 excludes a trivial field with exactly one element.
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(3) We can define subtraction by α− β = α+ (−β), and division by α÷ β = αβ−1 (β 6= 0).

Infinite fields: The fields we are already familiar with are infinite: R (obviously), Q (rationals,
i.e., fractions p/q, p, q integer, q 6= 0), C (complex numbers, i.e. a+ ib, i2 = −1, a, b ∈ R). Notice
Q is subfield of R, C is extension of R.

Other examples: (1) Q(
√
2), which consists of all numbers of the form a+ b

√
2 where a, b ∈ Q.

(2) Q(i), the complex (or Gaussian) rational numbers, which consists of all numbers of the form
a+ bi where a, b ∈ Q.

Finite fields: For any integer n ≥ 1 we can define Zn = {0, 1, 2, . . . , n − 1}, with addition and
multiplication done modulo n. Modulo n means do operation normally, then take remainder after
dividing by n. If p is a prime, Zp is a field.

Examples: (1) In Z7, 4 + 4 = 1, 4× 5 = 6, 6 + 1 = 0 so −1 = 6, 2× 4 = 1 so 4−1 = 2.

(2) Complete operation tables in Z5:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

,

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

.

(3) And in Z2:
+ 0 1
0 0 1
1 1 0

,
× 0 1
0 0 0
1 0 1

.

Here + is logical XOR (exclusive or) operation, and × is logical AND operation.

General finite fields: It turns out there is a finite field with q elements precisely when q is a
prime power. So there are fields of order 2, 3, 4, 5, 7, 8, 9 but not of order 6 or 10. When q is a prime
power, the field of order q is denote GF (q).

When p is a prime, GF (p) just means Zp. But when q is not a prime, GF (q) is not the same
as Zq. When q = pk, p prime, we can construct GF (q) by adding an extra number satisfying a
particular type of polynomial equation to Zp, like adding i satisfying i2 = −1 to R to get C.

Example: (4) We can think of GF (4) as obtained from Z2 by throwing in x with x2 = x + 1.
Then GF (4) = {0, 1, x, x + 1} with addition and multiplication as follows:

+ 0 1 x x+ 1
0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

,

× 0 1 x x+ 1
0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

.

Fields GF (2k) are particularly important; vector spaces over these fields are often used
to construct error-correcting codes.

Subfields

To prove that something is a subfield, we have a theorem very similar to the Subspace Theorem
for vector spaces.

Subfield Theorem: Suppose F is a field and E ⊆ F . Then E is a subfield of F (a field using
the operations of addition and multiplication inherited from F ) if and only if the following five
conditions hold.

(SF1) 0 ∈ E.
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(SF2) 1,−1 ∈ E.
(SF3) E is closed under addition: if α, β ∈ E, then α+ β ∈ E.
(SF4) E is closed under multiplication: if α, β ∈ E, then αβ ∈ E.
(SF5) E is closed under taking reciprocals (multiplicative inverses) of nonzero elements: if

α ∈ E − {0}, then α−1 ∈ E.

Characteristic of a field: If it is possible to add up a finite positive number of 1’s to get 0 in F ,
the minimum number of 1’s needed to get 0 is the characteristic charF of the field. For example,
charZ2 = 2, charGF (4) = 2, charZ5 = 5. In general, charGF (pk) = p for p prime.

If we cannot get 0 by adding up a finite positive number of 1’s then we say charF = 0. So R,
Q, C all have characteristic 0. (But there exist infinite fields with nonzero characteristic.)

Some results fail for fields of nonzero characteristic, or for fields of characteristic 2 in particular.
Characteristic 2 is peculiar because in those fields addition is the same thing as subtraction.

Practice Problems

X2. Use the Subfield Theorem to show that Q(
√
2) is a subfield of R. (Hint: you should know how

to rationalize a denominator.)

X3. Show that Q(i) is a subfield of C.

X4. (a) Construct the addition and multiplication tables for Z7.
(b) Using these tables, write down a two-column table with α and −α for each α ∈ Z7, and another

two-column table with α and α−1 for α ∈ Z7 − {0}.
(c) What are 4− 6 and 4÷ 3 in Z7?

X5. We can define Zn = {0, 1, 2, . . . , n− 1} with addition and multiplication modulo n even if n is
not a prime. But when n is not a prime, this is not a field.
(a) Construct the multiplication table for Z6, and use it to explain why Z6 is not a field.
(b) Generalize your answer to (a) to explain why Zn is not a field when n ≥ 4 is not prime.
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