VECTOR SPACES

Loose definition: A *field* F is a set of numbers (scalars) with $+, -, \times, \div$ behaving similarly to the way they do with real numbers. Examples: **R**, **Q** (rationals, = fractions), **C** (complex numbers). But NOT **Z** (integers): e.g., $2 \div 3 \notin \mathbf{Z}$, cannot divide and stay in **Z**.

Definition: A vector space (or linear space) over a field F consists of a set V with operations of addition and scalar multiplication satisfying these rules:

V is an *abelian group* under +:

(V1) u + v exists in V for all $u, v \in V$ (closed).

(V2) u + v = v + u for all $u, v \in V$ (commutative).

(V3) u + (v + w) = (u + v) + w for all $u, v, w \in V$ (associative).

(V4) There exists $0 \in V$ so that v + 0 = 0 + v = v for all $v \in V$ (identity).

(V5) For every $v \in V$ there exists $-v \in V$ such that v + (-v) = (-v) + v = 0 (inverses). Scalar multiplication properties:

(V6) αv exists in V for all $\alpha \in F, v \in V$.

(V7) 1v = v for all $v \in V$.

(V8) $\alpha(\beta v) = (\alpha \beta)v$ for all $\alpha, \beta \in F, v \in V$.

Distributive laws:

(V9) $(\alpha + \beta)v = \alpha v + \beta v$ for all $\alpha, \beta \in F, v \in V$ (scalar multiplication distributes over scalar addn).

(V10) $\alpha(u+v) = \alpha u + \alpha v$ for all $\alpha \in F, u, v \in V$ (scalar multiplication distributes over vector addn). These ten rules are the vector space axioms.

FIELDS

So what is a field? We want operations of addition and multiplication, and also their inverse operations of subtraction and division, that behave similarly to the way they do in the real numbers.

Definition: A *field* consists of a set F with two binary operations + and \times satisfying the following rules.

F is an *abelian group* under +:

(F1) $\alpha + \beta$ exists in F for all $\alpha, \beta \in F$ (closed).

(F2) $\alpha + \beta = \beta + \alpha$ for all $\alpha, \beta \in F$ (commutative).

(F3) $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$ for all $\alpha, \beta, \gamma \in F$ (associative).

(F4) There exists $0 \in F$ so that $\alpha + 0 = 0 + \alpha = \alpha$ for all $\alpha \in F$ (identity).

(F5) For every $\alpha \in F$ there exists $-\alpha \in F$ such that $\alpha + (-\alpha) = (-\alpha) + \alpha = 0$ (inverses).

F is almost an abelian group under \times :

(F6) $\alpha\beta = \alpha \times \beta$ exists in F for all $\alpha, \beta \in F$ (closed).

(F7) $\alpha\beta = \beta\alpha$ for all $\alpha, \beta \in F$ (commutative).

(F8) $\alpha(\beta\gamma) = (\alpha\beta)\gamma$ for all $\alpha, \beta, \gamma \in F$ (associative).

- (F9) There exists $1 \in F$, $1 \neq 0$, so that $\alpha \times 1 = 1 \times \alpha = \alpha$ for all $\alpha \in F$ (identity).
- (F10) For every $\alpha \in F \{0\}$ there exists $\alpha^{-1} \in F$ such that $\alpha \alpha^{-1} = \alpha^{-1} \alpha = 1$ (inverses for NONZERO elements).

Distributive law:

(F11) $(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$ for all $\alpha, \beta, \gamma \in F$. These eleven rules are the *field axioms*.

Notes: (1) F is not an abelian group under \times . But if we exclude 0 and let $F^* = F - \{0\}$ (this is common notation) then F^* is actually an abelian group under \times , called the *multiplicative group of* F.

(2) The restriction $1 \neq 0$ excludes a trivial field with exactly one element.

Mark Ellingham

(3) We can define subtraction by $\alpha - \beta = \alpha + (-\beta)$, and division by $\alpha \div \beta = \alpha \beta^{-1} \ (\beta \neq 0)$.

Infinite fields: The fields we are already familiar with are infinite: **R** (obviously), **Q** (rationals, i.e., fractions p/q, p, q integer, $q \neq 0$), **C** (complex numbers, i.e. a + ib, $i^2 = -1$, $a, b \in \mathbf{R}$). Notice **Q** is *subfield* of **R**, **C** is *extension* of **R**.

Other examples: (1) $\mathbf{Q}(\sqrt{2})$, which consists of all numbers of the form $a + b\sqrt{2}$ where $a, b \in \mathbf{Q}$.

(2) $\mathbf{Q}(i)$, the complex (or Gaussian) rational numbers, which consists of all numbers of the form a + bi where $a, b \in \mathbf{Q}$.

Finite fields: For any integer $n \ge 1$ we can define $\mathbf{Z}_n = \{0, 1, 2, ..., n-1\}$, with addition and multiplication done *modulo* n. Modulo n means do operation normally, then take remainder after dividing by n. If p is a prime, \mathbf{Z}_p is a field.

Examples: (1) In \mathbb{Z}_7 , 4 + 4 = 1, $4 \times 5 = 6$, 6 + 1 = 0 so -1 = 6, $2 \times 4 = 1$ so $4^{-1} = 2$.

		+	0	1	2	3	4	×	0	1	2	3	4
		0	0	1	2	3	4	0	0	0	0	0	0
(2) Complete ener	\mathbf{r}	1	1	2	3	4	0	1	0	1	2	3	4
(2) Complete oper	cation tables in \mathbf{Z}_5 :	2	2	3	4	0	1 '	2	0	2	4	1	3 .
		3	3	4	0	1	2	3	0	3	1	4	2
		4	4	0	1	2	3	4	0	4	3	2	1
	+ 0 1 >	× 0	1										
(3) And in \mathbf{Z}_2 :	0 0 1 ,	0 0	0.										
	1 1 0	1 0	1										

Here + is logical XOR (exclusive or) operation, and \times is logical AND operation.

General finite fields: It turns out there is a finite field with q elements precisely when q is a prime power. So there are fields of order 2, 3, 4, 5, 7, 8, 9 but not of order 6 or 10. When q is a prime power, the field of order q is denote GF(q).

When p is a prime, GF(p) just means \mathbf{Z}_p . But when q is not a prime, GF(q) is not the same as \mathbf{Z}_q . When $q = p^k$, p prime, we can construct GF(q) by adding an extra number satisfying a particular type of polynomial equation to \mathbf{Z}_p , like adding i satisfying $i^2 = -1$ to **R** to get **C**.

Example: (4) We can think of GF(4) as obtained from \mathbb{Z}_2 by throwing in x with $x^2 = x + 1$. Then $GF(4) = \{0, 1, x, x + 1\}$ with addition and multiplication as follows:

	+	0	1	x	x + 1		\times	0	1	x	x + 1
	0	0	1	x	x+1	-	0	0	0	0	0
	1	1	0	x + 1	x,		1	0	1	x	x+1 .
	x	x	x + 1	0	1		x	0	x	x + 1	1
л					0			0	x + 1	1	x

Fields $GF(2^k)$ are particularly important; vector spaces over these fields are often used to construct error-correcting codes.

Subfields

To prove that something is a subfield, we have a theorem very similar to the Subspace Theorem for vector spaces.

Subfield Theorem: Suppose F is a field and $E \subseteq F$. Then E is a subfield of F (a field using the operations of addition and multiplication inherited from F) if and only if the following five conditions hold.

(SF1) $0 \in E$.

Mark Ellingham

Linear Algebra

- (SF2) $1, -1 \in E$.
- (SF3) E is closed under addition: if $\alpha, \beta \in E$, then $\alpha + \beta \in E$.
- (SF4) E is closed under multiplication: if $\alpha, \beta \in E$, then $\alpha\beta \in E$.
- (SF5) E is closed under taking reciprocals (multiplicative inverses) of nonzero elements: if $\alpha \in E \{0\}$, then $\alpha^{-1} \in E$.

Characteristic of a field: If it is possible to add up a finite positive number of 1's to get 0 in F, the minimum number of 1's needed to get 0 is the *characteristic* char F of the field. For example, char $\mathbf{Z}_2 = 2$, char GF(4) = 2, char $\mathbf{Z}_5 = 5$. In general, char $GF(p^k) = p$ for p prime.

If we cannot get 0 by adding up a finite positive number of 1's then we say char F = 0. So **R**, **Q**, **C** all have characteristic 0. (But there exist infinite fields with nonzero characteristic.)

Some results fail for fields of nonzero characteristic, or for fields of characteristic 2 in particular. Characteristic 2 is peculiar because in those fields addition is the same thing as subtraction.

Practice Problems

X2. Use the Subfield Theorem to show that $\mathbf{Q}(\sqrt{2})$ is a subfield of **R**. (Hint: you should know how to rationalize a denominator.)

- X3. Show that $\mathbf{Q}(i)$ is a subfield of \mathbf{C} .
- X4. (a) Construct the addition and multiplication tables for \mathbf{Z}_7 .
- (b) Using these tables, write down a two-column table with α and $-\alpha$ for each $\alpha \in \mathbb{Z}_7$, and another two-column table with α and α^{-1} for $\alpha \in \mathbb{Z}_7 \{0\}$.
- (c) What are 4-6 and $4\div 3$ in \mathbb{Z}_7 ?

X5. We can define $\mathbf{Z}_n = \{0, 1, 2, ..., n-1\}$ with addition and multiplication modulo n even if n is not a prime. But when n is not a prime, this is not a field.

- (a) Construct the multiplication table for \mathbf{Z}_6 , and use it to explain why \mathbf{Z}_6 is not a field.
- (b) Generalize your answer to (a) to explain why \mathbf{Z}_n is not a field when $n \ge 4$ is not prime.