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6. INNER PRODUCT SPACES

To define lengths, angles want to generalize idea of dot product. FIS does real, complex cases
together. I will do real case first, complex case later if time.

Definition: A real inner product space is a real vector space V with a real inner product giving
〈x, y〉 ∈ R for all x, y ∈ V that is

(RIP1) symmetric/commutative: 〈x, y〉 = 〈y, x〉 ∀ x, y ∈ V ;
(RIP2) linear in x: 〈α1x1 + α2x2, y〉 = α1〈x1, y〉+ α2〈x2, y〉 ∀ α1, α2 ∈ R, x1, x2, y ∈ V ; and
(RIP3) positive definite: 〈x, x〉 > 0 ∀ x ∈ V , x 6= 0.

Examples: (1) Usual dot product on R2 or R3 or Rn: 〈x, y〉 = x · y = x1y1 + . . .+ xnyn.

(2) On C[a, b] = {real-valued continuous functions on [a, b]} can take

〈f, g〉 =
∫ b

a
f(x)g(x) dx or some multiple of this, e.g. 1

b−a
times.

In general, positive multiple of inner product is inner product.

(3) On Rn×n take 〈A,B〉 = tr BTA =
∑n

i=1

∑n

j=1 AijBij . Like dot product, multiply correspond-
ing elements and add.

Notes: (RIP4) By (RIP1) and (RIP2), 〈x, y〉 is also linear in y, so bilinear . ‘Positive definite
symmetric bilinear form’ on real V = inner product.

(RIP5) Bilinearity implies 〈0, 0〉 = 〈x, 0〉 = 〈0, y〉 = 0 ∀ x, y ∈ V .

Definition: Length or magnitude of x ∈ V is ‖x‖ =
√

〈x, x〉. Generalizes length in Rn.

Unit vector in direction of x is
x

‖x‖ .

Example: (3 ctd) If A =

[

1 2
3 4

]

then ‖A‖ =
√
1 + 4 + 9 + 16 =

√
30, and unit vector in direction

of A is
1√
30

[

1 2
3 4

]

.

Need following result to sensibly define angles.
(RIP6) Cauchy-Schwartz Inequality: |〈x, y〉| ≤ ‖x‖ ‖y‖.
Proof: True if x = 0 or y = 0. If x 6= 0 and y 6= 0,

0 ≤
〈

x

‖x‖ − y

‖y‖ ,
x

‖x‖ − y

‖y‖

〉

=

〈

x

‖x‖ ,
x

‖x‖

〉

− 2

〈

x

‖x‖ ,
y

‖y‖

〉

+

〈

y

‖y‖ ,
y

‖y‖

〉

since commutative

=
〈x, x〉
‖x‖2 (= 1)− 2

〈x, y〉
‖x‖ ‖y‖ +

〈y, y〉
‖y‖2 (= 1) = 2− 2

〈x, y〉
‖x‖‖y‖ ,

from which 〈x, y〉 ≤ ‖x‖ ‖y‖. Also −〈x, y〉 = 〈−x, y〉 ≤ ‖ − x‖‖y‖ = ‖x‖ ‖y‖. Result follows.

(RIP7) So can define angle θ between nonzero x and y: θ = cos−1 〈x, y〉
‖x‖ ‖y‖ . Generalizes result from

Rn.

Definition: x and y are orthogonal or perpendicular , x ⊥ y, if 〈x, y〉 = 0. 0 is orthogonal to
everything. Means angle is 90◦ if vectors nonzero.

(RIP8) Definition of length also has natural properties. ‖x‖ =
√

〈x, x〉 is a norm:

(N1) ‖x‖ ≥ 0, and if x 6= 0 then ‖x‖ > 0, ∀ x ∈ V ;
(N2) ‖αx‖ = |α| ‖x‖ ∀ α ∈ R, x ∈ V ; and
(N3) triangle inequality : ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀ x, y ∈ V . x

y

x+ y

‘Norm’ is a general idea, need not come from inner product, e.g. in Rn, ‖x‖1 = |x1|+ . . .+ |xn|.
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Proof of (N3): ‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y} = ‖x‖2 + 2〈x, y〉 + ‖y‖2
≤ ‖x‖2 + 2‖x‖ ‖y‖ + ‖y‖2 by Cauchy-Schwartz

= (‖x‖ + ‖y‖)2.

Definition: Orthogonal set of vectors: pairwise orthogonal. Orthonormal set: orthogonal and all
length 1 (unit vectors).

Lemma: If S = {v1, v2, . . . , vk} is an orthogonal set of nonzero vectors, and y ∈ span S, then y has
a unique representation y = α1v1 + α2v2 + . . .+ αkvk given by αi = 〈y, vi〉/‖vi‖2 = 〈y, vi〉/〈vi, vi〉.
Proof: We know y = α1v1 + . . .+ αkvk for some α1, . . . , αk. Take any i, 1 ≤ i ≤ k. We have

〈y, vi〉 = 〈α1v1 + . . .+ αivi + . . .+ αkvk, vi〉
= α1〈v1, vi〉+ . . .+ αi〈vi, vi〉+ . . .+ αk〈vk, vi〉
= αi〈vi, vi〉 since all other terms are 0.

Thus αi = 〈y, vi〉/〈vi, vi〉.
Consequences: (1) If S is an orthogonal set of nonzero vectors, then S is linearly independent.
S can be infinite here, but linear independence just looks at finite subsets of S.

Proof: By the lemma, the unique way to represent 0 as a linear combination of (finitely many)
v1, v2, . . . , vk ∈ S is with zero coefficients.

(2) If S is a finite orthogonal, or (even better) orthonormal set, then (a) S is a basis of V = span S
and (b) it is easy to find coordinates in V relative to S (formula for αi above).

So want to find orthogonal, or orthonormal bases.

Definition: Given x, y ∈ V with x 6= 0, the orthogonal projection of y onto x, projxy, is the unique
vector parallel to (multiple of) x so that y − projxy is orthogonal to x.

projxy = (‖y‖ cos θ) x

‖x‖ =
〈y, x〉
‖x‖2 x =

〈y, x〉
〈x, x〉 x.

x

y

Gram-Schmidt Orthogonalization Algorithm: Given linearly independent w1, w2, . . . , wm,
constructs orthogonal v1, v2, . . . , vm so that span {v1, v2, . . . , vk} = span {w1, w2, . . . , wk} for all k,
0 ≤ k ≤ m:

v1 = w1;
v2 = w2 − projv1w2;
v3 = w3 − projv1w3 − projv2w3;

...

vk = wk −
k−1
∑

j=1

projvjwk = wk −
k−1
∑

j=1

〈wk, vj〉
〈vj , vj〉

vj for 1 ≤ k ≤ m.

Example: Find orthonormal basis for V = span {(1, 2, 0, 0), (4, 3, 1, 0), (1,−3,−1, 1)} ⊆ R4.

First apply Gram-Schmidt:
v1 = w1 = (1, 2, 0, 0); 〈v1, v1〉 = v1 · v1 = 5.

v2 = w2 − 〈w2, v1〉
〈v1, v1〉

v1 = (4, 3, 1, 0) − (4, 3, 1, 0) · (1, 2, 0, 0)
5

(1, 2, 0, 0) = (4, 3, 1, 0)− 10
5
(1, 2, 0, 0)

= (4, 3, 1, 0) − (2, 4, 0, 0) = (2,−1, 1, 0); 〈v2, v2〉 = v2 · v2 = 6.

Mark Ellingham 2 Vanderbilt University



Math 2600 Linear Algebra Fall 2015

v3 = w3 − 〈w3, v1〉
〈v1, v1〉

v1 − 〈w3, v2〉
〈v2, v2〉

v2 = (1,−3,−1, 1)

− (1,−3,−1, 1) · (1, 2, 0, 0)
5

(1, 2, 0, 0) − (1,−3,−1, 1) · (2,−1, 1, 0)

6
(2,−1, 1, 0)

= (1,−3,−1, 1) − −5
5
(1, 2, 0, 0) − 4

6
(2,−1, 1, 0) = (1,−3,−1, 1) + (1, 2, 0, 0) − (4

3
,− 2

3
, 2
3
, 0)

= (4
3
,− 1

3
,− 5

3
, 1);

can replace by v′3 = 3v3 = (2,−1,−5, 3); 〈v′3, v′3〉 = v′3 · v′3 = 39.

So {v1, v2, v′3} is orthogonal basis. For orthonormal basis, normalize each vector (divide by length):

{u1 =
1√
5
(1, 2, 0, 0), u2 =

1√
6
(2,−1, 1, 0), u3 =

1√
39

(2,−1,−5, 3)}.

Terminology: (FIS) For ordered orthonormal basis B = (u1, u2, . . . , um), numbers 〈y, ui〉 are
Fourier coefficients of y with respect to B. Just coordinates, but computed very easily.

Definition: Given any S ⊆ V , the orthogonal complement of S, S⊥ is {v ∈ V | 〈v, s〉 = 0 ∀ s ∈ S}.
Examples: If S = {(1, 2, 3)} ⊆ R3, S⊥ is plane x + 2y + 3z = 0. Also true if S is whole line
{t(1, 2, 3) | t ∈ R}.
Properties: (OC1) S⊥ is a subspace of V for any S ⊆ V .

(OC2) ∅⊥ = {0}⊥ = V .

(OC3) S⊥ = (span S)⊥ ∀ S ⊆ V .

(OC4) Suppose W is a finite-dimensional subspace of V with orthonormal basis {v1, v2, . . . , vk}.
(a) Every y ∈ V can be written uniquely as y = w + z where w ∈ W , z ∈ W⊥ and w =
∑k

i=1〈y, vi〉vi. We write w = projW y (the orthogonal projection of y onto W ). The function
projW : V → W is a linear transformation.

(b) projW y is the unique closest point (minimum distance) on W to y.

(OC5) Suppose V is finite-dimensional and W is a subspace of V .

(a) Suppose we take a basis {v1, v2, . . . , vk} for W , extend it to a basis {v1, v2, . . . , vn} for
V , and apply Gram-Schmidt to get {w1, w2, . . . , wn}. Then {w1, w2, . . . , wk} is an orthogonal
basis for W , and {wk+1, wk+2, . . . , wn} is an orthogonal basis for W⊥.

Consequently dim W + dim W⊥ = dim V .

(b) (W⊥)⊥ = W (duality result).

Example: W is the line {t(1, 2, 3) | t ∈ R}, W⊥ is x+ 2y + 3z = 0, (W⊥)⊥ is just line again.

Definition: A complex inner product space is a complex vector space V with a complex inner

product giving 〈x, y〉 ∈ C for all x, y ∈ V that is
(CIP1) conjugate symmetric: 〈x, y〉 = 〈y, x〉 ∀ x, y ∈ V ;
(CIP2) linear in x: 〈α1x1 + α2x2, y〉 = α1〈x1, y〉+ α2〈x2, y〉 ∀ α1, α2 ∈ R, x1, x2, y ∈ V ; and
(CIP3) positive definite: 〈x, x〉 > 0 (means it’s real) ∀ x ∈ V , x 6= 0.

Together (CIP1) and (CIP2) mean 〈x, y〉 is conjugate linear in y: 〈x, β1y1 + β2y2〉 = β1〈x, y1〉 +
β2〈x, y2〉. Altogether 〈x, y〉 is sesquilinear .
Example: Standard inner product on Cn is 〈x, y〉 = x1y1 + x2y2 + . . .+ xnyn.

Complex inner products important for example in quantum mechanics.
Many properties (e.g., Cauchy-Schwartz, length is norm) same as for real inner products although

proofs may need modifying.
Some results about real matrices proved most easily by using complex arguments, e.g. every real

symmetric matrix is diagonalizable.
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