4. DETERMINANTS

Determinant is number associated with every square matrix. Applications: volume of parallelopiped in n dimensions, general inverse of $n \times n$ matrix, scale factor for transformations specified by matrices (with - sign if reverses orientation), Jacobian for equivalent of substitution in multivariable integrals.

Permutations

Definition: A permutation of a set X is a bijection (1-1 correspondence) $\pi: X \rightarrow X$. Set of permutations of $\{1,2, \ldots, n\}$ is denoted S_{n}.
Example: $S_{5}=$ permutations of $\{1,2,3,4,5\}$: $\pi=[13452]$ denotes bijection with $\pi(1)=1, \pi(2)=3, \pi(3)=4, \pi(4)=5$ and $\pi(5)=2$.
Definition: Given a permutation $\pi=[\pi(1) \pi(2) \ldots \pi(n)] \in S_{n}$, it turns out that any sequence of transpositions (two-element swaps) reducing π to the identity permutation $e=\left[\begin{array}{lll}1 & 2 & \ldots\end{array}\right]$ always has length of the same parity. Proof not too hard: define a measure of how far permutation is from identity (inversion number), and show that it changes by odd amount for each transposition. So call a permutation even if length is always even, and odd if length is always odd.
Example: $[154326] \rightarrow[124356] \rightarrow[123456], 2$ transpositions (move 1 into place, then 2, then 3, ...);
$[154326] \rightarrow[145326] \rightarrow[143526] \rightarrow[134526] \rightarrow[134256] \rightarrow[132456] \rightarrow[123456], 6$ transpositions (each time fix earliest pair out of order).
Either way, [154326] is even in S_{6}.
Definition: The $\operatorname{sign} \operatorname{sgn}(\pi)$ of a permutation π is 1 for an even permutation, -1 for an odd permutation. Often write ' + ' for 1 and ' - ' for -1 .
Examples: For S_{2}, $\operatorname{sgn}[12]=1, \operatorname{sgn}[21]=-1$.
For $S_{3}, \operatorname{sgn}[123]=1, \operatorname{sgn}[132]=\operatorname{sgn}[213]=\operatorname{sgn}[321]=-1, \operatorname{sgn}[231]=\operatorname{sgn}[312]=1$.

Determinants and permutations

Have probably seen $2 \times 2,3 \times 3$ determinants before. Can explain them using permutations and signs.
2×2 determinants:

$$
\left|\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right|=A_{11} A_{22}-A_{12} A_{21}
$$

Each term has one entry from each row and one entry from each column: mapping rows \rightarrow columns is a permutation.

Perm.	Sign	Term	- so det $A=\sum_{\pi \in S_{2}} \operatorname{sgn}(\pi) A_{1, \pi(1)} A_{2, \pi(2)}$.
$[12]$	+	$+A_{11} A_{22}$	
$[21]$	-	$-A_{12} A_{21}$	

3×3 determinants: (plus forward cyclic diagonals minus backward cyclic diagonals)
$\left|\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{array}\right|=A_{11} A_{22} A_{33}+A_{12} A_{23} A_{31}+A_{13} A_{21} A_{32}-A_{11} A_{23} A_{32}-A_{12} A_{21} A_{33}-A_{13} A_{22} A_{31}$
Again, each term corresponds to a permutation mapping rows \rightarrow columns.

Perm.	Sign	Term	$-\operatorname{so} \operatorname{det} A=\sum_{\pi \in S_{3}} \operatorname{sgn}(\pi) A_{1, \pi(1)} A_{2, \pi(2)} A_{3, \pi(3)}$.
$[123]$	+	$+A_{11} A_{22} A_{33}$	
$[231]$	+	$+A_{12} A_{23} A_{31}$	
$[312]$	+	$+A_{13} A_{21} A_{32}$	
$[132]$	-	$-A_{11} A_{23} A_{32}$	
$[213]$	-	$-A_{12} A_{21} A_{33}$	
$[321]$	-	$-A_{13} A_{22} A_{31}$	

Definition: The determinant of an $n \times n$ matrix $A=\left[A_{i j}\right]$ is

$$
\begin{equation*}
\operatorname{det} A=|A|=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) A_{1, \pi(1)} A_{2, \pi(2)} A_{3, \pi(3)} \ldots A_{n, \pi(n)} \tag{*}
\end{equation*}
$$

Not very practical for computation: n ! terms. Will see we can use Gaussian elimination which needs around n^{3} operations.
Properties: (D1) Permutation π is bijection, has inverse π^{-1}. And transposition in π corresponds to transposition in π^{-1}, so $\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\pi^{-1}\right)$. E.g.

$$
\begin{aligned}
& {[634521]^{-1}=} {\left[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 3 & 4 & 5 & 2 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 5 & 2 & 3 & 4 & 1
\end{array}\right]=[652341] } \\
& \text { swap } 3 \text { and } 2 \\
& {\left[\begin{array}{cccccc}
1 & \frac{2}{2} & 3 & 4 & \frac{5}{3} & 6 \\
6 & \underline{4} & 4 & 5 & \underline{1} & 1
\end{array}\right]^{-1}=\left[\begin{array}{cccccc}
1 & \frac{2}{3} & \frac{3}{2} & 4 & 5 & 6 \\
6 & \underline{-} & - & 4 & 1
\end{array}\right] }
\end{aligned}
$$

Looking at determinant using map π^{-1} from columns to rows, get

$$
\begin{aligned}
\operatorname{det} A & =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) A_{\pi^{-1}(1), 1} A_{\pi^{-1}(2), 2} \ldots A_{\pi^{-1}(n), n} \\
& =\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) A_{\sigma(1), 1} A_{\sigma(2), 2} \ldots A_{\sigma(n), n} \quad\left(\sigma=\pi^{-1}\right) \text { ranges over } S_{n} \text { as } \pi \text { ranges over } S_{n} \\
& =\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) A_{1, \sigma(1)}^{\mathrm{T}} A_{2, \sigma(2)}^{\mathrm{T}} \ldots A_{n, \sigma(n)}^{\mathrm{T}}=\operatorname{det} A^{\mathrm{T}} .
\end{aligned}
$$

Definition: A matrix A is upper triangular if $A_{i j}=0$ whenever $j<i$ (all entries below main diagonal are zero) and lower triangular if $A_{i j}=0$ whenever $j>i$ (all entries above main diagonal are zero). E.g.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 4 & 0 \\
0 & 0 & 6
\end{array}\right] \text { - upper tri., } \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 0 & 0 \\
3 & 4 & 5
\end{array}\right] \text { - lower tri. }
$$

OK to have zeroes in other places.
(D2) If A is upper triangular then only permutation that avoids entries below diagonal is e (forced to have $\pi(n)=n$, then $\pi(n-1)=n-1$, etc.) so only nonzero term in determinant is one for e, giving $\operatorname{det} A=\operatorname{sgn}(e) A_{1, e(1)} A_{2, e(2)} \ldots A_{n, e(n)}=A_{11} A_{22} \ldots A_{n n}$ - product of main diagonal entries. By (D1), same is true when A is lower triangular. E.g.

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{array}\right|=1 \cdot 4 \cdot 6=24
$$

In particular, $\operatorname{det} I_{n}=1$ and $\operatorname{det} 0_{n \times n}=0$.
(D3) det is a multilinear function of the rows of a matrix: fix all rows but one (like partial derivatives), then det is linear function of varying row. E.g., for 3×3,

$$
\begin{aligned}
\operatorname{det} A= & \left(A_{13} A_{32}-A_{12} A_{33}\right) A_{21}+\left(A_{11} A_{33}-A_{13} A_{31}\right) A_{22} \\
& +\left(A_{12} A_{31}-A_{11} A_{32}\right) A_{23}=c_{21} A_{21}+c_{22} A_{22}+c_{23} A_{23}
\end{aligned}
$$

- linear in $A_{2 *}=\left(A_{21}, A_{22}, A_{23}\right)$, second row. By (D1), also multilinear in columns.

Think of $D:\left(F^{n}\right)^{n} \rightarrow F$ with

$$
D\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left|\begin{array}{r}
x_{1}^{\mathrm{T}} \\
x_{2}^{\mathrm{T}} \\
\vdots \\
x_{n}^{\mathrm{T}}
\end{array}\right|, \quad \text { also }=\left|x_{1} x_{2} \ldots x_{n}\right| \text { by (D1) } \quad\left(x_{1}, x_{2}, \ldots\right. \text { are vectors). }
$$

Then $D\left(x_{1}, \ldots, x_{i-1}, \alpha x_{i}+\beta y_{i}, x_{i+1}, \ldots, x_{n}\right)$ $=\alpha D\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)+\beta D\left(x_{1}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)$.
E.g. $(7,3)=3(1,1)+4(1,0) \quad$ so $\quad\left|\begin{array}{rr}15 & 8 \\ 7 & 3\end{array}\right|=3\left|\begin{array}{rr}15 & 8 \\ 1 & 1\end{array}\right|+4\left|\begin{array}{rr}15 & 8 \\ 1 & 0\end{array}\right|$.
(D4) If rows i and j in A are equal, then terms of $\left({ }^{*}\right)$ containing equal products $A_{i k} A_{j \ell}$ and $A_{i \ell} A_{j k}$ have opposite signs (permutations differ by one transposition $k \leftrightarrow \ell$) so cancel. Hence $\operatorname{det} A=0$. Can also argue using (DE1) below that $\operatorname{det} A=-\operatorname{det} A$ but does not give $\operatorname{det} A=0$ if char $F=2$.

By (D1), if two equal columns also get $\operatorname{det} A=0$.
(D5) If A has a row of zeroes then every product in $\left(^{*}\right)$ has a 0 , so $\operatorname{det} A=0$. By (D1), also $\operatorname{det} A=0$ if column of zeroes.
Now examine effect of elementary row operations.
(DE1) If we swap two rows of A to get A^{\prime}, amounts to changing all permutations by one transposition, so $\operatorname{det} A^{\prime}=-\operatorname{det} A$.
(DE2) If we multiply a row of A by constant α to get A^{\prime}, multilinearity gives $\operatorname{det} A^{\prime}=\alpha \operatorname{det} A$.
(DE3) If get A^{\prime} from A by adding α times row i to row j, then (taking $i<j$ without loss of generality)

$$
\begin{aligned}
\operatorname{det} A^{\prime} & =D\left(\ldots, A_{i *}, \ldots, \alpha A_{i *}+A_{j *}, \ldots\right) \\
& =\alpha D\left(\ldots, A_{i *}, \ldots, A_{i *}, \ldots\right)+D\left(\ldots, A_{i *}, \ldots, A_{j *}, \ldots\right) \quad \text { by multilinearity } \\
& =0+D\left(\ldots, A_{i *}, \ldots, A_{j *}, \ldots\right)=\operatorname{det} A \quad \text { by }(\mathrm{D} 4)
\end{aligned}
$$

- determinant does not change.

By (D1), similar conclusions hold for elementary column operations.
Using elementary row operations to reduce matrix to upper triangular form and (DE1)-(DE3), get efficient way to compute determinants for matrices in general.
Example: Compute determinant by reducing matrix to row-echelon form, upper triangular.

$$
\left|\begin{array}{rrrr}
0 & 1 & 4 & 5 \\
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 7 \\
-1 & 3 & 2 & 1
\end{array}\right|=-\left|\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
0 & 1 & 4 & 5 \\
5 & 6 & 7 & 7 \\
-1 & 3 & 2 & 1
\end{array}\right| \begin{aligned}
& R_{1}^{\prime}=R_{2} \\
& R_{2}^{\prime}=R_{1}
\end{aligned}=-\left|\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
0 & 1 & 4 & 5 \\
0 & -4 & -8 & -13 \\
0 & 5 & 5 & 5
\end{array}\right| \begin{aligned}
& \\
& R_{3}^{\prime}=R_{3}-5 R_{1} \\
& R_{4}^{\prime}=R_{4}+R_{1}
\end{aligned}
$$

$$
\begin{aligned}
& =-\left|\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
0 & 1 & 4 & 5 \\
0 & 0 & 8 & 7 \\
0 & 0 & -15 & -20
\end{array}\right| \begin{array}{l}
R_{3}^{\prime}=R_{3}+4 R_{2} \\
R_{4}^{\prime}=R_{4}-5 R_{2}
\end{array}=-8\left|\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
0 & 1 & 4 & 5 \\
0 & 0 & 1 & 7 / 8 \\
0 & 0 & -15 & -20
\end{array}\right| R_{3}^{\prime}=R_{3} / 8 \\
& =-8\left|\begin{array}{lllr}
1 & 2 & 3 & 4 \\
0 & 1 & 4 & 5 \\
0 & 0 & 1 & 7 / 8 \\
0 & 0 & 0 & -55 / 8
\end{array}\right| \quad \begin{array}{l}
R_{4}^{\prime}=R_{4}+15 R_{3}
\end{array} \\
& =-8 \cdot 1 \cdot 1 \cdot 1 \cdot(-55 / 8)=55 .
\end{aligned}
$$

Another example:

$$
\begin{aligned}
& \left|\begin{array}{rrrr}
3 & 1 & 5 & 2 \\
-4 & 2 & 0 & -6 \\
7 & 1 & 9 & 6 \\
8 & 5 & 18 & 3
\end{array}\right|=3\left|\begin{array}{rrrr}
1 & 1 / 3 & 5 / 3 & 2 / 3 \\
-4 & 2 & 0 & -6 \\
7 & 1 & 9 & 6 \\
8 & 5 & 18 & 3
\end{array}\right| \\
& =3\left|\begin{array}{rrrr}
1 & 1 / 3 & 5 / 3 & 2 / 3 \\
0 & 10 / 3 & 20 / 3 & -10 / 3 \\
0 & -4 / 3 & -8 / 3 & 4 / 3 \\
0 & 7 / 3 & 14 / 3 & -7 / 3
\end{array}\right| \begin{array}{l}
R_{2}^{\prime}=R_{2} / 3 \\
R_{3}^{\prime}=R_{2}+4 R_{1} \\
R_{4}^{\prime}=R_{3}-7 R_{1} \\
\end{array} \\
& =3(10 / 3)\left|\begin{array}{rrrr}
1 & 1 / 3 & 5 / 3 & 2 / 3 \\
0 & 1 & 2 & -1 \\
0 & -4 / 3 & -8 / 3 & 4 / 3 \\
0 & 7 / 3 & 14 / 3 & -7 / 3
\end{array}\right| R_{2}^{\prime}=(3 / 10) R_{2} \\
& \\
& =10\left|\begin{array}{rrrr}
1 & 1 / 3 & 5 / 3 & 2 / 3 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 \\
0 & 7 / 3 & 14 / 3 & -7 / 3
\end{array}\right|=10 \cdot 0=0 \quad \text { (zero row). }
\end{aligned}
$$

Elementary row operations also useful for theoretical results.
Representing each elementary row operation ε by an elementary matrix $E=\varepsilon(I)$, we can prove the following from (DE1)-(DE3):
Lemma DE: (i) An elementary matrix E of type 1 has $\operatorname{det} E=-1$, of type 2 has $\operatorname{det} E=\alpha$, and of type 3 has $\operatorname{det} E=1$.
(ii) If $E, B \in F^{n \times n}$ where E is an elementary matrix, then $\operatorname{det} E B=\operatorname{det} E \operatorname{det} B$.
(D6) Suppose we reduce $A \in F^{n \times n}$ to its reduced row echelon form R using elementary row operations. Each operation multiplies the determinant by a nonzero constant, so $\operatorname{det} A=c \operatorname{det} R$ where $c \neq 0$.

If A is invertible, then $R=I$ and hence $\operatorname{det} A=c \operatorname{det} I=c \neq 0$. If A is not invertible then R has a row of zeroes and hence $\operatorname{det} A=c \operatorname{det} R=c \cdot 0=0$.

Thus: $\operatorname{det} A \neq 0 \Leftrightarrow A$ is invertible
$\Leftrightarrow L_{A}$ (or any other $T \in L(V, W)$ with $[T]_{B}^{C}=A$) is an isomorphism
$\Leftrightarrow \operatorname{rank} A=n$
\Leftrightarrow rows of A are linearly independent
\Leftrightarrow rows of A are a basis of F^{n}
\Leftrightarrow rows of $A \operatorname{span} F^{n}$
\Leftrightarrow columns of A are linearly independent, etc.
Observation: For A, R as above, $R=E_{k} E_{k-1} \ldots E_{1} A$, or $A=E_{1}^{-1} E_{2}^{-1} \ldots E_{k}^{-1} I$ where E_{1}, \ldots, E_{k} and their inverses are elementary matrices.

Theorem: If $A, B \in F^{n \times n}$ then $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$.
Proof: Suppose $\operatorname{det} A=0$. Then the columns of A do not span F^{n}, so the columns of $A B$, which are linear combinations of the columns of A, do not span F^{n}, so $\operatorname{det} A B=0$.

So suppose $\operatorname{det} A \neq 0$. Then A is invertible so $A=E_{1}^{-1} E_{2}^{-1} \ldots E_{k}^{-1} I$ as above, and by Lemma DE (ii) $\operatorname{det} A=\operatorname{det}\left(E_{1}^{-1}\right) \operatorname{det}\left(E_{2}^{-1}\right) \ldots \operatorname{det}\left(E_{k}^{-1}\right) \operatorname{det} I=\operatorname{det}\left(E_{1}^{-1}\right) \ldots \operatorname{det}\left(E_{k}^{-1}\right)$. But $A B=$ $E_{1}^{-1} \ldots E_{k}^{-1} I B=E_{1}^{-1} \ldots E_{k}^{-1} B$ and hence by Lemma DE (ii) again, $\operatorname{det} A B=\operatorname{det} E_{1}^{-1} \ldots \operatorname{det} E_{k}^{-1}$ $\operatorname{det} B=\operatorname{det} A \operatorname{det} B$.

