Math 2600/5600-Linear Algebra - Fall 2015

Assignment 5 Solutions

A5.1. The determinant is a multilinear alternating function. In this question we look at some other functions with similar properties.

If V, W are vector spaces over a field F, then we can consider maps $f: V \times V \rightarrow W$, which take an ordered pair (u, v) with $u, v \in V$ and give a vector $f(u, v) \in W$. Such a map f is called bilinear (a special case of multilinear) if it is linear in each of u and v separately, with the other one held fixed. This means that $f\left(\alpha u_{1}+\beta u_{2}, v\right)=\alpha f\left(u_{1}, v\right)+\beta f\left(u_{2}, v\right)$ and $f\left(u, \alpha v_{1}+\beta v_{2}\right)=\alpha f\left(u, v_{1}\right)+\beta f\left(u, v_{2}\right)$ for all $\alpha, \beta \in F$ and $u, u_{1}, u_{2}, v, v_{1}, v_{2} \in V$.
(a) If $A \in F^{n \times n}$ then we can define $f_{A}: F^{n} \times F^{n} \rightarrow F$ by $f_{A}(x, y)=x^{T} A y$. (As usual, vectors in F^{n} are considered to be column vectors.)
(i) Find $f_{A}(x, y)$ if $F=\mathbf{R}, n=3, x=(1,2,3), y=(-1,0,1)$ and $A=\left[\begin{array}{rrr}2 & -1 & 7 \\ 0 & 4 & -3 \\ 5 & 1 & -4\end{array}\right]$.
(ii) Show that any f_{A} as described above ($n o t$ the specific f_{A} from (i)) is bilinear.
(b) A bilinear map $f: V \times V \rightarrow W$ is called alternating if $f(v, v)=0$ for all $v \in V$, and antisymmetric if $f(u, v)=-f(v, u)$ for all $u, v \in V$.
(i) Prove that if a bilinear map is alternating then it is also antisymmetric. [Hint: look at $f(u+v, u+v)$.]
(ii) Prove that if a bilinear map is antisymmetric then it is also alternating, provided the characteristic of the field we are working in is not equal to 2 . Make it clear where you use the hypothesis about the characteristic of the field.
(c) (i) Use (a)(ii) to show that the ordinary dot product $d: F^{n} \times F^{n} \rightarrow F$ by $d(x, y)=x^{\mathrm{T}} y$ is bilinear.
(ii) Prove that if $F=\mathbf{Z}_{2}$ and $n \geq 1$ then the dot product $d: \mathbf{Z}_{2}^{n} \times \mathbf{Z}_{2}^{n} \rightarrow \mathbf{Z}_{2}$ is antisymmetric but not alternating. [This shows that (b)(ii) definitely does not work if F has characteristic 2.]

Solution: (a)(i) We have

$$
f_{A}(x, y)=x^{\mathrm{T}} A y=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{rrr}
2 & -1 & 7 \\
0 & 4 & -3 \\
5 & 1 & -4
\end{array}\right]\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{lll}
17 & 10 & -11
\end{array}\right]\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]=-28
$$

(ii) Suppose $\alpha, \beta \in F$ and $x, x_{1}, x_{2}, y, y_{1}, y_{2} \in F$. We have

$$
f_{A}\left(\alpha x_{1}+\beta x_{2}, y\right)=\left(\alpha x_{1}+\beta x_{2}\right)^{\mathrm{T}} A y=\left(\alpha x_{1}^{\mathrm{T}}+\beta x_{2}^{\mathrm{T}}\right) A y(\text { by linearity of transpose })=\left(\alpha x_{1}^{\mathrm{T}}\right) A y+
$$

$$
\left(\beta x_{2}\right)^{\mathrm{T}} A y=\alpha\left(x_{1}^{\mathrm{T}} A y\right)+\beta\left(x_{2}^{\mathrm{T}} A y\right)=\alpha f_{A}\left(x_{1}, y\right)+\beta f_{A}\left(x_{2}, y\right)
$$

Similarly,
$f_{A}\left(x, \alpha y_{1}+\beta y_{2}\right)=x^{\mathrm{T}} A\left(\alpha y_{1}+\beta y_{2}\right)=x^{\mathrm{T}} A\left(\alpha y_{1}\right)+x^{\mathrm{T}} A\left(\beta y_{2}\right)=\alpha\left(x^{\mathrm{T}} A y_{1}\right)+\beta\left(x^{\mathrm{T}} A y_{2}\right)=\alpha f\left(x, y_{1}\right)+$ $\beta f\left(x, y_{2}\right)$.
Hence f_{A} is bilinear.
(b)(i) Suppose f is alternating. Then $0=f(u+v, u+v)$ (since f is alternating) $=f(u, u+v)+f(v, u+v)$ (by linearity in first position) $=f(u, u)+f(u, v)+f(v, u)+f(v, v)$ (by linearity in second position) $=$ $0+f(u, v)+f(v, u)+0$ (since f is alternating). Hence, $f(u, v)=-f(v, u)$ and so f is antisymmetric.
(ii) Suppose f is antisymmetric. Then $f(v, v)=-f(v, v)$ and hence, adding $f(v, v)$ to both sides, $2 f(v, v)=$ 0 . Since we are in a field whose characteristic is not $2,2 \neq 0$, so we can divide by 2 to get $f(v, v)=0$. Hence, f is alternating.
(c)(i) If we let $A=I \in F^{n \times n}$, the $n \times n$ identity matrix, then $d(x, y)=x^{\mathrm{T}} y=x^{\mathrm{T}} I y=f_{I}(x, y)$, which we know is bilinear by (a)(ii) with $A=I$.
(ii) Working with field \mathbf{Z}_{2} we know $1=-1$. So we have $d(x, y)=x^{\mathrm{T}} y=x_{1} y_{1}+\ldots+x_{n} y_{n}=y^{\mathrm{T}} x=$ $d(y, x)=-d(y, x)$ and hence d is antisymmetric (and symmetric at the same time!). But if we take $x=$ $(1,0,0, \ldots, 0) \in \mathbf{Z}_{2}^{n}$ then $d(x, x)=1 \neq 0$, so d is not alternating.

A5.2. (a) Compute the determinant $|A|$ below using elementary row operations. Describe each individual elementary row operation you use.

$$
|A|=\left|\begin{array}{rrrr}
5 & 2 & -1 & 3 \\
4 & 1 & 0 & -4 \\
-2 & 1 & 3 & 5 \\
6 & 7 & 2 & 2
\end{array}\right| \quad|B|=\left|\begin{array}{rrrr}
1 & x^{2} & 1 & x \\
x^{2} & 0 & x & 0 \\
x & 1 & x & x \\
1 & x & x^{3} & 1
\end{array}\right|
$$

(b) Compute the determinant $|B|$ above first using a cofactor expansion and then using the quick method for 3×3 determinants (forwards/backwards diagonals). Simplify your answer as much as possible.
(c) Compute the following determinant $|C|$ as efficiently as you can, showing details. Show all elementary row or column operations used, or explicitly describe all cofactor expansions used, and describe other rules you use.

$$
|C|=\left|\begin{array}{rrrrrrrrrr}
2 & 2 & 1 & 5 & 3 & 1 & 4 & 2 & 3 & 5 \\
2 & 3 & 4 & 5 & 3 & 5 & 1 & 2 & 1 & 0 \\
1 & 0 & 3 & 2 & 4 & 5 & 2 & 2 & 1 & 0 \\
4 & 0 & 3 & 2 & 5 & 3 & 4 & 0 & 1 & 0 \\
5 & 0 & 3 & 4 & 2 & 3 & 0 & 0 & 1 & 0 \\
7 & 0 & 1 & 4 & 7 & 0 & 0 & 0 & 3 & 0 \\
2 & 0 & 1 & 6 & 0 & 0 & 0 & 0 & 3 & 0 \\
5 & 0 & 5 & 0 & 0 & 0 & 0 & 0 & 92 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right|
$$

Solution: (a) Using elementary row operations to reduce to an upper triangular matrix,

$$
\begin{aligned}
& |A|=\left|\begin{array}{rrrr}
5 & 2 & -1 & 3 \\
4 & 1 & 0 & -4 \\
-2 & 1 & 3 & 5 \\
6 & 7 & 2 & 2
\end{array}\right|=5\left|\begin{array}{rrrr}
1 & 2 / 5 & -1 / 5 & 3 / 5 \\
4 & 1 & 0 & -4 \\
-2 & 1 & 3 & 5 \\
6 & 7 & 2 & 2
\end{array}\right| \quad R_{1}^{\prime}=R_{1} / 5 \\
& =5\left|\begin{array}{rrrr}
1 & 2 / 5 & -1 / 5 & 3 / 5 \\
0 & -3 / 5 & 4 / 5 & -32 / 5 \\
0 & 9 / 5 & 13 / 5 & 31 / 5 \\
0 & 23 / 5 & 16 / 5 & -8 / 5
\end{array}\right| \begin{array}{l}
R_{2}^{\prime}=R_{2}-4 R_{1} \\
R_{3}^{\prime}=R_{3}+2 R_{1} \\
R_{4}^{\prime}=R_{4}-6 R_{1}
\end{array}=(-3 / 5) 5\left|\begin{array}{rrrr}
1 & 2 / 5 & -1 / 5 & 3 / 5 \\
0 & 1 & -4 / 3 & 32 / 3 \\
0 & 9 / 5 & 13 / 5 & 31 / 5 \\
0 & 23 / 5 & 16 / 5 & -8 / 5
\end{array}\right| \quad R_{2}^{\prime}=(-5 / 3) R_{2} \\
& =-3\left|\begin{array}{rrrr}
1 & 2 / 5 & -1 / 5 & 3 / 5 \\
0 & 1 & -4 / 3 & 32 / 3 \\
0 & 0 & 5 & -13 \\
0 & 0 & 28 / 3 & -152 / 3
\end{array}\right| \begin{array}{|c}
R_{3}^{\prime}=R_{3}-(9 / 5) R_{2} \\
R_{4}^{\prime}=R_{4}-(23 / 5) R_{2}
\end{array}=-3(5)\left|\begin{array}{rrrr}
1 & 2 / 5 & -1 / 5 & 3 / 5 \\
0 & 1 & -4 / 3 & 32 / 3 \\
0 & 0 & 1 & -13 / 5 \\
0 & 0 & 28 / 3 & -152 / 3
\end{array}\right| \quad R_{3}^{\prime}=R_{3} / 5 \\
& =-15\left|\begin{array}{rrrr}
1 & 2 / 5 & -1 / 5 & 3 / 5 \\
0 & 1 & -4 / 3 & 32 / 3 \\
0 & 0 & 1 & -13 / 5 \\
0 & 0 & 0 & -132 / 5
\end{array}\right| \quad R_{4}^{\prime}=R_{4}-(28 / 3) R_{3} \quad=-15(-132 / 5)=396
\end{aligned}
$$

since the determinant of an upper triangular matrix is the product of the main diagonal entries.
(b) Expanding first across row 2 we get

$$
\begin{aligned}
|B| & =\left|\begin{array}{rrrr}
1 & x^{2} & 1 & x \\
x^{2} & 0 & x & 0 \\
x & 1 & x & x \\
1 & x & x^{3} & 1
\end{array}\right|=(-1)^{2+1} x^{2}\left|\begin{array}{rrr}
x^{2} & 1 & x \\
1 & x & x \\
x & x^{3} & 1
\end{array}\right|+0+(-1)^{2+3} x\left|\begin{array}{ccc}
1 & x^{2} & x \\
x & 1 & x \\
1 & x & 1
\end{array}\right|+0 \\
& =-x^{2}\left(x^{3}+x^{2}+x^{4}-x^{6}-1-x^{3}\right)-x\left(1+x^{3}+x^{3}-x^{2}-x^{3}-x\right) \\
& \quad \text { using quick } 3 \times 3 \text { determinants } \\
& =-x^{2}\left(x^{2}+x^{4}-x^{6}-1\right)-x\left(1+x^{3}-x^{2}-x\right)=-x^{4}-x^{6}+x^{8}+x^{2}-x-x^{4}+x^{3}+x^{2} \\
& =x^{8}-x^{6}-2 x^{4}+x^{3}+2 x^{2}-x .
\end{aligned}
$$

(c) The most efficient way is to observe that we can obtain an upper triangular matrix by 4 independent column swaps: $C_{1} \leftrightarrow C_{10}, C_{3} \leftrightarrow C_{8}, C_{4} \leftrightarrow C_{7}$ and $C_{5} \leftrightarrow C_{6}$. Each column swap changes the sign. Therefore,

$$
\begin{aligned}
|C| & =\left|\begin{array}{llllllllll}
2 & 2 & 1 & 5 & 3 & 1 & 4 & 2 & 3 & 5 \\
2 & 3 & 4 & 5 & 3 & 5 & 1 & 2 & 1 & 0 \\
1 & 0 & 3 & 2 & 4 & 5 & 2 & 2 & 1 & 0 \\
4 & 0 & 3 & 2 & 5 & 3 & 4 & 0 & 1 & 0 \\
5 & 0 & 3 & 4 & 2 & 3 & 0 & 0 & 1 & 0 \\
7 & 0 & 1 & 4 & 7 & 0 & 0 & 0 & 3 & 0 \\
2 & 0 & 1 & 6 & 0 & 0 & 0 & 0 & 3 & 0 \\
5 & 0 & 5 & 0 & 0 & 0 & 0 & 0 & 92 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right|=(-1)^{4}\left|\begin{array}{llllllllll}
5 & 2 & 2 & 4 & 1 & 3 & 5 & 1 & 3 & 2 \\
0 & 3 & 2 & 1 & 5 & 3 & 5 & 4 & 1 & 2 \\
0 & 0 & 2 & 2 & 5 & 4 & 2 & 3 & 1 & 1 \\
0 & 0 & 0 & 4 & 3 & 5 & 2 & 3 & 1 & 4 \\
0 & 0 & 0 & 0 & 3 & 2 & 4 & 3 & 1 & 5 \\
0 & 0 & 0 & 0 & 0 & 7 & 4 & 1 & 3 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 6 & 1 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 & 92 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right| \\
& =5 \cdot 3 \cdot 2 \cdot 4 \cdot 3 \cdot 7 \cdot 6 \cdot 5 \cdot 2 \cdot 1=2^{5} 3^{3} 5^{2} 7=100 \cdot 8 \cdot 27 \cdot 7=151,200
\end{aligned}
$$

again using the fact that the determinant of an upper triangular matrix is the product of the main diagonal entries. Cofactor expansion is also a reasonable approach, but requires ten steps and careful attention to signs.

A5.3. Determinant of a block upper triangular matrix. Recall the determinant formulae for $A \in$ $F^{n \times n}$,

$$
\operatorname{det} A=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) A_{1, \pi(1)} A_{2, \pi(2)} \ldots A_{n, \pi(n)} \quad(*)
$$

or the more general formula

$$
\begin{equation*}
\operatorname{det} A=\sum_{\pi \in S(R, C)} \operatorname{sgn}(\pi) \prod_{r \in R} A_{r, \pi(r)} \tag{**}
\end{equation*}
$$

if the rows of A are labelled by R and C, respectively, in order, and $S(R, C)$ is the set of bijections from R to C.

Suppose that $A \in F^{n \times n}$ has block form $A=\left[\begin{array}{rr}B & D \\ 0 & G\end{array}\right]$ where $B \in F^{k \times k}$ and $G \in F^{(n-k) \times(n-k)}$ for some k with $1 \leq k \leq n-1$. Let $N=\{1,2, \ldots, n\}$, let $K=\{1,2, \ldots, k\}$ (which labels the rows and columns of B), and let $L=N-K=\{k+1, k+2, \ldots, n\}$ (which labels the rows and columns of G).
(a) Considering the expansion in $(*)$, show that $A_{1, \pi(1)} A_{2, \pi(2)} \ldots A_{n, \pi(n)}$ can only be nonzero if the permutation $\pi \in S_{n}$ has $\pi(K)=K$ and $\pi(L)=L$.
(b) If $\pi \in S_{n}$ has $\pi(K)=K$ and $\pi(L)=L$, show that $\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\pi_{K}\right) \operatorname{sgn}\left(\pi_{L}\right)$, where $\pi_{K} \in S(K, K)$ is the restriction of π to domain and codomain K, and $\pi_{L} \in S(L, L)$ is defined similarly. [Something that may help: if a bijection π can be put into order-preserving form using t transpositions then sgn $(\pi)=(-1)^{t}$.]
(c) Show that $\operatorname{det} A=\operatorname{det} B \operatorname{det} G$ by starting with (*), using (a) to discard some zero terms, splitting the sum over π into a double sum over π_{K} and π_{L}, and then using (b) and finally ($* *$). Remember that $A_{i j}=B_{i j}$ when $i, j \in K$ and $A_{i j}=G_{i j}$ when $i, j \in L$. Explain each step you take.

Solution: (a) Take $\pi \in S_{n}$. Suppose that for some $i \in L$ we have $\pi(i) \notin L$. Then the product $A_{1, \pi(1)} \ldots A_{n, \pi(n)}$ contains $A_{i, \pi(i)}$ which is 0 because $A_{i j}=0$ if $i \in L$ and $j \notin L$. Therefore if π gives a nonzero product, for every $i \in L$ we have $\pi(i) \in L$; in other words, $\pi(L) \subseteq L$. Since π is a bijection L and $\pi(L)$ are the same finite size, so $\pi(L)=L$. Since π is a bijection we also have $\pi(K)=\pi(N-L)=\pi(N)-\pi(L)=N-L=K$.
(b) If we want to reorder $\pi=[\pi(1) \pi(2) \ldots \pi(n)]$ to be the identity permutation using transpositions, we can do that independently on the first k entries (since $\pi(K)=K$) and the last $n-k$ entries (since $\pi(L)=L)$. Therefore, if we can reduce π_{K} to $e_{K, K}$ with t transpositions and we can reduce π_{L} to $e_{L, L}$ with u transpositions, we can reduce π to $e \in S_{n}$ using $t+u$ transpositions. Hence $\operatorname{sgn}(\pi)=(-1)^{t+u}=$ $(-1)^{t}(-1)^{u}=\operatorname{sgn}\left(\pi_{K}\right) \operatorname{sgn}\left(\pi_{L}\right)$.
(c) We have

$$
\begin{aligned}
& \operatorname{det} A=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) A_{1, \pi(1)} A_{2, \pi(2)} \ldots A_{n, \pi(n)} \\
& =\sum_{\pi \in S_{n}, \pi(K)=K \text { and } \pi(L)=L} \operatorname{sgn}(\pi) A_{1, \pi(1)} A_{2, \pi(2)} \ldots A_{n, \pi(n)} \quad \text { by (a), since other terms zero } \\
& =\sum_{\pi \in S_{n}, \pi(K)=K \text { and } \pi(L)=L} \operatorname{sgn}(\pi) A_{1, \pi_{K}(1)} \ldots A_{k, \pi_{K}(k)} A_{k+1, \pi_{L}(k+1)} \ldots A_{n, \pi_{L}(n)} \\
& \text { since } \pi(i)=\pi_{K}(i) \text { for } i \leq k \text {, and } \pi(i)=\pi_{L}(i) \text { for } i \geq k+1 \\
& =\sum_{\pi_{K} \in S(K, K)} \sum_{\pi_{L} \in S(L, L)} \operatorname{sgn}\left(\pi_{K}\right) \operatorname{sgn}\left(\pi_{L}\right) A_{1, \pi_{K}(1)} \ldots A_{k, \pi_{K}(k)} A_{k+1, \pi_{L}(k+1)} \ldots A_{n, \pi_{L}(n)} \\
& \text { because each } \pi \text { with } \pi(K)=K \text { and } \pi(L)=L \text { corresponds to } \\
& \text { a unique pair } \pi_{K} \text { and } \pi_{L} \text {, and using (b) } \\
& =\sum_{\pi_{K} \in S(K, K)}\left(\operatorname{sgn}\left(\pi_{K}\right) A_{1, \pi_{K}(1)} \ldots A_{k, \pi_{K}(k)} \sum_{\pi_{L} \in S(L, L)} \operatorname{sgn}\left(\pi_{L}\right) A_{k+1, \pi_{L}(k+1)} \ldots A_{n, \pi_{L}(n)}\right) \\
& \text { pulling things that do not depend on } \pi_{L} \text { outside the second sum } \\
& =\left(\sum_{\pi_{K} \in S(K, K)} \operatorname{sgn}\left(\pi_{K}\right) A_{1, \pi_{K}(1)} \ldots A_{k, \pi_{K}(k)}\right)\left(\sum_{\pi_{L} \in S(L, L)} \operatorname{sgn}\left(\pi_{L}\right) A_{k+1, \pi_{L}(k+1)} \ldots A_{n, \pi_{L}(n)}\right) \\
& \text { pulling second sum out on right, since it does not depend on } \pi_{K} \\
& =\left(\sum_{\pi_{K} \in S(K, K)} \operatorname{sgn}\left(\pi_{K}\right) B_{1, \pi_{K}(1)} \ldots B_{k, \pi_{K}(k)}\right)\left(\sum_{\pi_{L} \in S(L, L)} \operatorname{sgn}\left(\pi_{L}\right) G_{k+1, \pi_{L}(k+1)} \ldots G_{n, \pi_{L}(n)}\right) \\
& \text { since } A_{i j}=B_{i j} \text { for } i, j \in K \text { and } A_{i j}=G_{i j} \text { for } i, j \in L \\
& =\left(\sum_{\pi_{K} \in S(K, K)} \operatorname{sgn}\left(\pi_{K}\right) \prod_{r \in K} B_{r, \pi_{K}(r)}\right)\left(\sum_{\pi_{L} \in S(L, L)} \operatorname{sgn}\left(\pi_{L}\right) \prod_{r \in L} G_{r, \pi_{L}(r)}\right)=\operatorname{det} B \operatorname{det} G \quad \text { by }(* *) \text {. }
\end{aligned}
$$

