
Math 2600/5600 - Linear Algebra - Fall 2015

Assignment 4 Solutions

A4.1. Use Gauss-Jordan elimination to find the inverse of the following matrix A, if it exists. Show all
elementary row operations. If the inverse does not exist, explain how you know that.

A =







5 −2 3 −4
0 1 −2 2
2 −5 3 1

−1 4 0 −4






.

Solution: We augment A with a 4× 4 identity matrix and apply Gauss-Jordan elimination:








5 −2 3 −4 1 0 0 0
0 1 −2 2 0 1 0 0
2 −5 3 1 0 0 1 0

−1 4 0 −4 0 0 0 1









→

R′

1
= R1/5









1 −2/5 3/5 −4/5 1/5 0 0 0
0 1 −2 2 0 1 0 0
2 −5 3 1 0 0 1 0

−1 4 0 −4 0 0 0 1









→
R′

3
= R3 − 2R1

R′

4
= R4 +R1









1 −2/5 3/5 −4/5 1/5 0 0 0
0 1 −2 2 0 1 0 0
0 −21/5 9/5 13/5 −2/5 0 1 0
0 18/5 3/5 −24/5 1/5 0 0 1









→

R′

1 = R1 + (2/5)R2

R′

3
= R3 + (21/5)R2

R′

4 = R4 − (18/5)R2









1 0 −1/5 0 1/5 2/5 0 0
0 1 −2 2 0 1 0 0
0 0 −33/5 11 −2/5 21/5 1 0
0 0 39/5 −12 1/5 −18/5 0 1









→
R′

3 = (−5/33)R3









1 0 −1/5 0 1/5 2/5 0 0
0 1 −2 2 0 1 0 0
0 0 1 −5/3 2/33 −7/11 −5/33 0
0 0 39/5 −12 1/5 −18/5 0 1









→

R′

1
= R1 + (1/5)R3

R′

2 = R2 + 2R3

R′

4 = R4 − (39/5)R3









1 0 0 −1/3 7/33 3/11 −1/33 0
0 1 0 −4/3 4/33 −3/11 −10/33 0
0 0 1 −5/3 2/33 −7/11 −5/33 0
0 0 0 1 −3/11 15/11 13/11 1









→

R′

1 = R1 + (1/3)R4

R′

2
= R2 + (4/3)R4

R′

3 = R3 + (5/3)R4









1 0 0 0 4/33 8/11 4/11 1/3
0 1 0 0 −8/33 17/11 14/11 4/3
0 0 1 0 −13/33 18/11 20/11 5/3
0 0 0 1 −3/11 15/11 13/11 1









.

Hence, we conclude that

A−1 =







4/33 8/11 4/11 1/3
−8/33 17/11 14/11 4/3

−13/33 18/11 20/11 5/3
−3/11 15/11 13/11 1






.
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A4.2. Use Gaussian elimination to solve the following system of equations in the field Z3. Show all
elementary row operations. Explicitly list all elements of your final solution set individually. Do not use any
minus signs in your final answer.

[Use LAM. Don’t forget to use the mo command to set the modulus for computations to 3.]

x2 + 2x3 + 2x4 + x5 = 1
x1 + 2x2 + 2x3 + 2x5 = 1
x1 + x3 + x4 + x5 = 2
x1 + x2 + 2x4 = 0

Solution: We form the augmented matrix and proceed with Gaussian elimination:

Forward pass:








0 1 2 2 1 1
1 2 2 0 2 1
1 0 1 1 1 2
1 1 0 2 0 0









→

R′

1 = R2

R′

2
= R1









1 2 2 0 2 1
0 1 2 2 1 1
1 0 1 1 1 2
1 1 0 2 0 0









→
R′

3 = R3 −R1

R′

4
= R4 −R1









1 2 2 0 2 1
0 1 2 2 1 1
0 1 2 1 2 1
0 2 1 2 1 2









→
R′

3 = R3 −R2

R′

4
= R4 − 2R2









1 2 2 0 2 1
0 1 2 2 1 1
0 0 0 2 1 0
0 0 0 1 2 0









→
R′

3
= R3/2









1 2 2 0 2 1
0 1 2 2 1 1
0 0 0 1 2 0
0 0 0 1 2 0









→

R′

4 = R4 −R3









1 2 2 0 2 1
0 1 2 2 1 1
0 0 0 1 2 0
0 0 0 0 0 0









and now backward pass:

→
R′

2
= R2 − 2R3









1 2 2 0 2 1
0 1 2 0 0 1
0 0 0 1 2 0
0 0 0 0 0 0









→

R′

1 = R1 − 2R2









1 0 1 0 2 2
0 1 2 0 0 1
0 0 0 1 2 0
0 0 0 0 0 0









which now has the LHS in reduced row echelon form. Converting back into a system and solving for the
leading variables, we get

x1 + x3 + 2x5 = 2
x2 + 2x3 = 1

x4 + 2x5 = 0
0 = 0

→
x1 = 2− x3 − 2x5 = 2 + 2x3 + x5

x2 = 1− 2x3 = 1 + x3

x4 = −2x5 = x5

Hence the solution set is

{(2 + 2x3 + x5,1 + x3, x3, x5, x5) | x3, x5 ∈ Z3}

= {(2, 1, 0, 0, 0), (0, 1, 0, 1, 1), (1, 1, 0, 2, 2), (1, 2, 1, 0, 0), (2, 2, 1, 1, 1),

(0, 2, 1, 2, 2), (0, 0, 2, 0, 0), (1, 0, 2, 1, 1), (2, 0, 2, 2, 2)}.

A4.3. The solution set of a system of linear equations in n variables is not always a vector subspace of Fn,
but here we show that it has a related property. If U is a subset of a vector space V over a field F then we
say that U is an affine subspace of V if for every x, y ∈ U and every α ∈ F we also have αx+ (1− α)y ∈ U .

Prove that the solution set S of a system of linear equations Ax = b, where A ∈ Fm×n and b ∈ Fm, is
an affine subspace of Fn.

2



Solution: We have that S = {x ∈ Fm | Ax = b}. Suppose that x, y ∈ S and α ∈ F . Then Ax = b and
Ay = b. Let z = αx+ (1 − α)y. Then

Az = A(αx + (1− α)y) = αAx+ (1 − α)Ay = αb+ (1 − α)b = (α+ (1− α)) b = b

and hence z ∈ S. Thus, we have shown that for every x, y ∈ S and α ∈ F we have z = αx + (1 − α)y ∈ S.
Hence, S is an affine subspace of Fn.

A4.4. One way to determine whether a collection of vectors v1, v2, . . . , vk is linearly independent is to
consider the equation a1v1 + a2v2 + . . . + avk = 0. Usually this can be expressed as a system of linear
equations in a1, a2, . . . , ak which we can solve to determine whether we have linear independence.

Use the approach in the previous paragraph to determine whether the collection of vectors 1 + 2x −
3x2 + x3 − x4, −1 + 7x2 − 5x3 + 3x4, 1 + x − x2 + 3x3, 3 + 2x + 3x2 + 11x3 + 3x4 in P4(R) is linearly
independent. If they are linearly dependent, provide a specific nontrivial linear combination that is equal to
the zero vector.

Solution: We set up the equation

a1(1+2x−3x2+x3−x4)+a2(−1+7x2−5x3+3x4)+a3(1+x−x2+3x3)+a4(3+2x+3x2+11x3+3x4) = 0.

We convert this to a system of linear equations by taking coefficients of powers of x, and set up the augmented
matrix.

[1] : a1 − a2 + a3 + 3a4 = 0
[x] : 2a1 + a3 + 2a4 = 0
[x2] : −3a1 + 7a2 − a3 + 3a4 = 0
[x3] : a1 − 5a2 + 3a3 + 11a4 = 0
[x4] : −a1 + 3a2 + 3a4 = 0

→













1 −1 1 3 0
2 0 1 2 0

−3 7 −1 3 0
1 −5 3 11 0

−1 3 0 3 0













.

Using gj in LA to get the reduced row echelon form, converting back into a system (ignoring zero rows), and
solving for leading variables we have













1 0 0 −3/2 0
0 1 0 1/2 0
0 0 1 5 0
0 0 0 0 0
0 0 0 0 0













→

a1 − 3

2
a4 = 0

a2 + 1

2
a4 = 0

a3 + 5a4 = 0

→
a1 = 3

2
a4

a2 = − 1

2
a4

a3 = −5a4

So the solution set is {(3
2
a4,−

1

2
a4,−5a4, a4) | a4 ∈ R}. In particular, taking a4 = 2 we get (3,−1,−10, 2)

and we have the nontrivial linear combination

3(1+ 2x− 3x2+ x3 − x4)− (−1+ 7x2− 5x3+3x4)− 10(1+ x− x2+3x3)+ 2(3+ 2x+3x2+11x3+3x4) = 0

so these vectors are not linearly independent.

A4.5. Another way to determine whether a collection of vectors v1, v2, . . . , vk is linearly independent is to
put the vectors themselves (if they belong to Fn) or their coordinate vectors with respect to a fixed basis B
(more generally) as the rows of a matrix, and see if the matrix has full row rank , i.e., if its rank is equal to
its number of rows. This can be done by reducing the matrix to row echelon (or reduced row echelon) form.

Working over the field Z7, use the approach in the previous paragraph to determine whether the col-
lection of vectors (2, 1, 4, 5, 3, 6), (2, 0, 4, 0, 1, 0), (3, 1, 4, 5, 2, 0), (0, 6, 6, 3, 2, 5) in Z6

7
is linearly

independent. What is the dimension of the subspace of Z6

7 spanned by these vectors?

Solution: Label the vectors as v1, v2, v3, v4 and let V = span {v1, v2, v3, v4}. Putting the vectors as rows of
a matrix A and reducing to reduced row echelon form R using gj in LAM gives

A =







2 1 4 5 3 6
2 0 4 0 1 0
3 1 4 5 2 0
0 6 6 3 2 5






→ R =







1 0 0 0 6 1
0 1 0 0 1 6
0 0 1 0 6 3
0 0 0 1 3 0







(You could also just reduce to row echelon form using ga in LAM.) Since elementary row operations preserve
the rowspace, rowsp R = rowsp A = V . Since R is in row echelon form, its rank is the number of nonzero
rows, which is 4: R has full row rank. Hence 4 = dim rowsp R = dim V . Our original set of vectors spans
V and there are 4 = dim V of them, so they are a basis for V and hence linearly independent.
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A4.6. To determine whether a vector w belongs to the span of a set of vectors {v1, v2, . . . , vk} we can try to
solve the equation a1v1 + a2v2 + . . . akvk = w. Usually this can be expressed as a system of linear equations
in a1, a2, . . . , ak.

Use the approach in the previous paragraph to determine whether the vector w = (2, 2, 1,−3) belongs
to span {(5, 2,−1, 5), (1, 1, 2,−3), (3, 0,−1, 3), (2, 2, 3,−4), (1, 1,−1, 3), (3, 0, 1,−1)}. If it does belong to
the span, give a specific linear combination of vectors in the set that equals w.

Solution: If w is in the span of the vectors then for some a1, a2, . . . , a6 we have

a1(5, 2,−1, 5) + a2(1, 1, 2,−3) + a3(3, 0,−1, 3) + a4(2, 2, 3,−4) + a5(1, 1,−1, 3) + a6(3, 0, 1,−1)

= (2, 2, 1,−3).

We convert this into a system of linear equations by examining each coordinate, and set up the augmented
matrix (notice that this has the vectors in our set as the columns on the left, and w as the extra column):

5a1 + a2 + 3a3 + 2a4 + a5 + 3a6 = 2
2a1 + a2 + 2a4 + a5 = 2
−a1 + 2a2 − a3 + 3a4 − a5 + a6 = 1
5a1 − 3a2 + 3a3 − 4a4 + 3a5 − a6 = −3

→









5 1 3 2 1 3 2
2 1 0 2 1 0 2

−1 2 −1 3 −1 1 1
5 −3 3 −4 3 −1 −3









We then reduce the augmented matrix to reduced row echelon form using gj in LA.








1 0 0 1/4 3/4 −1/2 0
0 1 0 3/2 −1/2 1 0
0 0 1 −1/4 −3/4 3/2 0
0 0 0 0 0 0 1









We see that the last row will give the impossible equation 0 = 1, so the system is inconsistent, and w does
not belong to the span of the given vectors.

A4.7. We know that when we multiply an m×n matrix A on the left by an invertible m×m matrix P , LP

gives an isomorphism from colsp PA to colsp A. Thus, if a set of columns of PA is a basis for the column
space of PA, then the corresponding columns in A (same column numbers) are a basis for the column space
of A. In particular, if R is a row echelon matrix obtained from A by doing elementary row operations, then
we know that R = PA for some invertible P . The columns of R corresponding to its leading entries form
an obvious basis for colsp R, so the corresponding columns of A form a basis for colsp A.

Working with the field Z2, use the approach in the previous paragraph to find a subset of S =
{(1, 1, 1, 1, 0), (0, 1, 1, 1, 1), (1, 0, 0, 0, 1), (1, 1, 0, 1, 1), (0, 0, 1, 0, 1), (1, 0, 1, 0, 0), (0, 1, 0, 1, 0), (1, 1, 0, 0, 0)}
that is a basis for span S in Z5

2
. What is the dimension of span S?

Solution: Putting the vectors of S as the columns of a matrix A, we have span S = colsp A. Reducing A
to its reduced row echelon form R using gj in LAM, we get

A =











1 0 1 1 0 1 0 1
1 1 0 1 0 0 1 1
1 1 0 0 1 1 0 0
1 1 0 1 0 0 1 0
0 1 1 1 1 0 0 0











→ R =











1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0
0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0











We know that if P is the matrix representing the elementary row operations that transformed A into R, then
LP is an isomorphism from span S = colsp A to colsp R. We see that R has four nonzero rows and hence
rank R = 4. The four columns of R corresponding to leading entries (columns 1, 2, 4, 8) are linearly indepen-
dent (they are standard basis vectors) and hence form a basis for colsp R. Hence, from the isomorphism,
a basis for span S is given by columns 1, 2, 4, 8 of A, so a basis is {(1, 1, 1, 1, 0), (0, 1, 1, 1, 1), (1, 1, 0, 1, 1),
(1, 1, 0, 0, 0)}, so that dim span S = 4.
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