Math 2600/5600-Linear Algebra - Fall 2015

Assignment 3 Solutions

A3.1. Suppose we are working with the ordered basis

$$
A=\left(x^{4}+x^{3}+x^{2}+x+1, x^{3}+x^{2}+x+1, x^{2}+x+1, x+1,1\right)
$$

of $P_{4}(\mathbf{R})$.
(a) If $[p(x)]_{A}=(5,-3,0,4,0)$, what is $p(x)$?
(b) What is $\left[1-7 x+5 x^{2}-2 x^{3}+4 x^{4}\right]_{A}$? (You can do this without using any matrices.)

Solution:] (a) $p(x)=5\left(x^{4}+x^{3}+x^{2}+x+1\right)-3\left(x^{3}+x^{2}+x+1\right)+4(x+1)=5 x^{4}+(5-3) x^{3}+(5-$ 3) $x^{2}+(5-3+4) x+(5-3+4)=5 x^{4}+2 x^{3}+2 x^{2}+6 x+6$.
(b) If the coordinates are $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ then we have

$$
\begin{aligned}
a_{1}\left(x^{4}+x^{3}+x^{2}+x+1\right) & +a_{2}\left(x^{3}+x^{2}+x+1\right)+a_{3}\left(x^{2}+x+1\right)+a_{4}(x+1)+a_{5}(1) \\
& =1-7 x+5 x^{2}-2 x^{3}+4 x^{4}
\end{aligned}
$$

from which, taking coefficients of powers of x, we get equations

$$
\begin{array}{llrl}
{\left[x^{4}\right]} & a_{1} & =4 & (1) \\
{\left[x^{3}\right]} & a_{1}+a_{2} & =-2 & (2) \\
{\left[x^{2}\right]} & a_{1}+a_{2}+a_{3} & =5 & (3) . \\
{\left[x^{1}\right]} & a_{1}+a_{2}+a_{3}+a_{4} & =-7 \\
{\left[x^{0}\right]} & a_{1}+a_{2}+a_{3}+a_{4}+a_{5} & =1 & (5)
\end{array}
$$

Subtracting the previous equation from each equation except the first, we get

a_{1}				$=4$
			(1)	
	a_{2}			$(2)-(1)$
				-6
	a_{3}		(2)	
			$(3)-(2)$	
		a_{4}		-12
		$(4)-(3)$		
		a_{5}	$=8$	$(5)-(4)$

and so $\left[1-7 x+5 x^{2}-2 x^{3}+4 x^{4}\right]_{A}=(4,-6,7,-12,8)$.
A3.2. Find the standard matrix of the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{4}$ by $T(a, b, c)=(a+b, c-2 a, 5 c-b-a, b+7 c)$.

Solution:

$$
[T]=\left[\begin{array}{lll}
T e_{1} & T e_{2} & T e_{3}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-2 & 0 & 1 \\
-1 & -1 & 5 \\
0 & 1 & 7
\end{array}\right]
$$

A3.3. Find the matrix $[A]_{C}^{B}$ of the linear transformation $A: P_{3}(\mathbf{R}) \rightarrow \mathbf{R}^{4}$ by
$A(p(x))=\left(p(0), p^{\prime}(1), p^{\prime \prime}(2), p^{\prime \prime \prime}(3)\right) \quad\left(p^{\prime}, p^{\prime \prime}, p^{\prime \prime \prime}\right.$ indicate first, second, third derivatives of $\left.p\right)$ where $C=\left(1,1+x, x+x^{2}, x^{2}+x^{3}\right)$ and B is the standard ordered basis in \mathbf{R}^{4}.

Solution: If we write $C=\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$ then we have

$$
\begin{aligned}
{[A]_{C}^{B} } & =\left[\begin{array}{lrrr}
{\left[A c_{1}\right]_{B}} & {\left[A c_{2}\right]_{B}} & {\left[A c_{3}\right]_{B}} & \left.\left[A c_{4}\right]_{B}\right]=[(A(1)
\end{array}\right] A(1+x) \\
& =\left[\begin{array}{rrrr}
\left.1\right|_{x=0} & 1+\left.x\right|_{x=0} & x+\left.x^{2}\right|_{x=0} & x^{2}+\left.x^{3}\right|_{x=0} \\
\left.0\right|_{x=1} & \left.1\right|_{x=1} & 1+\left.2 x\right|_{x=1} & 2 x+\left.3 x^{2}\right|_{x=1} \\
\left.0\right|_{x=2} & \left.0\right|_{x=2} & \left.2\right|_{x=2} & 2+\left.6 x\right|_{x=2} \\
\left.0\right|_{x=3} & \left.0\right|_{x=3} & \left.0\right|_{x=3} & \left.6\right|_{x=3}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
0 & 1 & 3 & 5 \\
0 & 0 & 2 & 14 \\
0 & 0 & 0 & 6
\end{array}\right] .
\end{aligned}
$$

A3.4. One application of alternative coordinate systems is that sometimes it is easy to compute the matrix of a linear transformation in a special coordinate system; then we can find the standard matrix using our conversion formulae.

Consider the linear operator R_{π} on \mathbf{R}^{3} which reflects points in the plane π with equation $2 x+3 y+4 z=0$.
(a) Find the matrix $\left[R_{\pi}\right]_{C}$ with respect to the ordered basis $C=((2,3,4),(3,-2,0),(2,0,-1))$. (From the way we set up the equation of a plane, we know the first vector in C is normal to π. Show that the other two vectors in C lie in π. Then use these facts to find the matrix.)
(b) Use your answer to (a) to find the standard matrix of R_{π}.
(c) What is $R_{\pi}(7,1,2)$?
(d) Give a general formula for $R_{\pi}(x, y, z)$.

Solution: Let B be the standard ordered basis $B=\left(e_{1}, e_{2}, e_{3}\right)$ and write $C=\left(f_{1}, f_{2}, f_{3}\right)$.
(a) For $f_{2}, 2 x+3 y+4 z=2(3)+3(-2)+4(0)=6-6+0=0$, so $f_{2} \in \pi$. For $f_{3}, 2 x+3 y+4 z=$ $2(2)+3(0)+4(-1)=4+0-4=0$, so $f_{3} \in \pi$.

Now since f_{1} is normal to $\pi, R_{\pi} f_{1}=-f_{1}$. Since f_{2} and f_{3} lie in $\pi, R_{\pi} f_{2}=f_{2}$ and $R_{\pi} f_{3}=f_{3}$. Therefore,

$$
\left[R_{\pi}\right]_{C}=\left[R_{\pi}\right]_{C}^{C}=\left[\begin{array}{lll}
{\left[R_{\pi} f_{1}\right]_{C}} & {\left[R_{\pi} f_{2}\right]_{C}} & {\left[R_{\pi} f_{3}\right]_{C}}
\end{array}\right]=\left[\begin{array}{ll}
{\left[-f_{1}\right]_{C}} & {\left[f_{2}\right]_{C}}
\end{array} \quad\left[f_{3}\right]_{C}\right]=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(b) We will use

$$
\left[R_{\pi}\right]=\left[R_{\pi}\right]_{B}=\left[R_{\pi}\right]_{B}^{B}=\left[I R_{\pi} I\right]_{B}^{B}=[I]_{C}^{B}\left[R_{\pi}\right]_{C}^{C}[I]_{B}^{C}
$$

We have

$$
P=[I]_{C}^{B}=\left[\left[I f_{1}\right]_{B} \quad\left[\begin{array}{lll}
\left.I f_{2}\right]_{B} & {\left[I f_{3}\right]_{B}}
\end{array}\right]=\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3}
\end{array}\right]=\left[\begin{array}{rrr}
2 & 3 & 2 \\
3 & -2 & 0 \\
4 & 0 & -1
\end{array}\right]\right.
$$

and therefore, using LA,

$$
[I]_{B}^{C}=P^{-1}=\left[\begin{array}{rrr}
2 / 29 & 3 / 29 & 4 / 29 \\
3 / 29 & -10 / 29 & 6 / 29 \\
8 / 29 & 12 / 29 & -13 / 29
\end{array}\right]
$$

So we compute

$$
\begin{aligned}
{\left[R_{\pi}\right] } & =P\left[R_{\pi}\right]_{C} P^{-1}=\left[\begin{array}{rrr}
2 & 3 & 2 \\
3 & -2 & 0 \\
4 & 0 & -1
\end{array}\right]\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
2 / 29 & 3 / 29 & 4 / 29 \\
3 / 29 & -10 / 29 & 6 / 29 \\
8 / 29 & 12 / 29 & -13 / 29
\end{array}\right] \\
& =\left[\begin{array}{rrr}
21 / 29 & -12 / 29 & -16 / 29 \\
-12 / 29 & 11 / 29 & -24 / 29 \\
-16 / 29 & -24 / 29 & -3 / 29
\end{array}\right] .
\end{aligned}
$$

(c) We have that

$$
R_{\pi}(7,1,2)=\left[R_{\pi}\right]\left[\begin{array}{l}
7 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{rrr}
21 / 29 & -12 / 29 & -16 / 29 \\
-12 / 29 & 11 / 29 & -24 / 29 \\
-16 / 29 & -24 / 29 & -3 / 29
\end{array}\right]\left[\begin{array}{l}
7 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{r}
103 / 29 \\
-121 / 29 \\
-142 / 29
\end{array}\right]
$$

Hence, $R_{\pi}(7,1,2)=\left(\frac{103}{29},-\frac{121}{29},-\frac{142}{29}\right)$.
(d) In general,

$$
R_{\pi}(x, y, z)=\left[R_{\pi}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{rrr}
21 / 29 & -12 / 29 & -16 / 29 \\
-12 / 29 & 11 / 29 & -24 / 29 \\
-16 / 29 & -24 / 29 & -3 / 29
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{29}\left[\begin{array}{r}
21 x-12 y-16 z \\
-12 x+11 y-24 z \\
-16 x-24 y-3 z
\end{array}\right]
$$

Hence, $R_{\pi}(x, y, z)=\frac{1}{29}(21 x-12 y-16 z,-12 x+11 y-24 z,-16 x-24 y-3 z)$.

A3.5. Find a single 3×3 (real) matrix F so that left-multiplying a $3 \times n$ matrix A by F, forming $F A$, gives the same result as applying all four of the following elementary row operations, in the given order, to A.
(1) Add 2 times row 1 to row 3.
(2) Exchange rows 1 and 2.
(3) Add 4 times row 1 to row 3.
(4) Exchange rows 2 and 3.

Solution: Let ε_{i} represent the elementary row operation for step (i) above, then what we want is $F A=$ $\varepsilon_{4}\left(\varepsilon_{3}\left(\varepsilon_{2}\left(\varepsilon_{1}(A)\right)\right)\right)$. But we know that for any $3 \times n$ matrix $B, \varepsilon_{i}(B)=E_{i} B$ where $E_{i}=\varepsilon_{i}\left(I_{3}\right)$ is the elementary matrix for ε_{i}. So we have

$$
\left.\varepsilon_{4}\left(\varepsilon_{3}\left(\varepsilon_{2}\left(\varepsilon_{1}(A)\right)\right)\right)=E_{4}\left(E_{3}\left(E_{2}\left(E_{1} A\right)\right)\right)\right)=\left(E_{4} E_{3} E_{2} E_{1}\right) A
$$

So we want $F=E_{4} E_{3} E_{2} E_{1}$. There are two ways to compute F.
First, we could just multiply the matrices:

$$
\begin{aligned}
F=E_{4} E_{3} E_{2} E_{1} & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
4 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
2 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
2 & 4 & 1 \\
1 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Alternatively, $F=E_{4} E_{3} E_{2} E_{1}=E_{4} E_{3} E_{2} E_{1} I_{3}=\varepsilon_{4}\left(\varepsilon_{3}\left(\varepsilon_{2}\left(\varepsilon_{1}\left(I_{3}\right)\right)\right)\right)$: just apply the elementary row operations in the given order to I_{3} :

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\varepsilon_{1} \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]-\varepsilon_{2} \rightarrow\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
2 & 0 & 1
\end{array}\right]-\varepsilon_{3} \rightarrow\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
2 & 4 & 1
\end{array}\right]-\varepsilon_{4} \rightarrow\left[\begin{array}{lll}
0 & 1 & 0 \\
2 & 4 & 1 \\
1 & 0 & 0
\end{array}\right]=F .
$$

