Math 2600/5600 - Linear Algebra - Fall 2015

Assignment 2 Solutions

A2.1. (a) Let P denote the vector space of continuous real 2π-periodic functions, so that $f(x+2 \pi)=f(x)$ for every $f \in P$ and $x \in \mathbf{R}$. P is a vector space under pointwise addition and scalar multiplication. Let Q denote the set of real-valued infinite sequences $\left(s_{1}, s_{2}, s_{3}, \ldots\right) . Q$ is a vector space under entrywise addition and scalar multiplication.

For $f \in P$, the Fourier coefficients of f are the numbers

$$
a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos (n x) d x \quad \text { for } n=0,1,2, \ldots, \quad b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin (n x) d x \quad \text { for } n=1,2,3, \ldots
$$

(We don't need b_{0} because it would just be 0 .) Let $R: P \rightarrow Q$ map the function $f \in P$ to the sequence $\left(a_{0}, a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, \ldots\right) \in Q$ of Fourier coefficients of f. Prove that R is a linear transformation.
[Hint: to avoid dealing with cases you might just think of the trigonometric functions involved in computing the Fourier coefficients as $\left.h_{1}(x), h_{2}(x), h_{3}(x), \ldots.\right]$
(b) If $z=a+b i \in \mathbf{C}$ with $a, b \in \mathbf{R}$, the complex conjugate of z is $\bar{z}=a-b i$. Is $J: \mathbf{C} \rightarrow \mathbf{C}$ with $J(z)=\bar{z}$ a linear transformation of complex vector spaces? Prove your answer.

Solution: (a) Suppose $R f=\left(s_{1}, s_{2}, s_{3}, \ldots\right)$. Then each s_{i} can be written as $s_{i}=\int_{0}^{2 \pi} f(x) h_{i}(x) d x$ where $h_{1}(x)=\frac{1}{\pi} \cos (0 x)$ so that $s_{1}=a_{0}, h_{2}(x)=\frac{1}{\pi} \cos (1 x)$ so that $s_{2}=a_{1}, h_{3}(x)=\frac{1}{\pi} \sin (1 x)$ so that $s_{3}=b_{1}$, $h_{4}(x)=\frac{1}{\pi} \cos (2 x)$ so that $s_{4}=a_{2}, h_{5}(x)=\frac{1}{\pi} \sin (2 x)$ so that $s_{5}=b_{2}$, and so on. Thus,

$$
(R f)_{i}=\int_{0}^{2 \pi} f(x) h_{i}(x) d x
$$

Now we want to show that if $f, g \in P$ and $\alpha, \beta \in \mathbf{R}, R(\alpha f+\beta g)=\alpha R f+\beta R g$. To do this, we must show that the i th element of these two sequences are the same, for all $i=1,2,3, \ldots$. We have

$$
\begin{aligned}
(R(\alpha f+\beta g))_{i}= & \int_{0}^{2 \pi}(\alpha f+\beta g)(x) h_{i}(x) d x=\int_{0}^{2 \pi}[\alpha f(x)+\beta g(x)] h_{i}(x) d x \\
& \text { by definition of addition, scalar multiplication of functions } \\
= & \alpha \int_{0}^{2 \pi} f(x) h_{i}(x) d x+\beta \int_{0}^{2 \pi} g(x) h_{i}(x) d x \\
= & \alpha(R f)_{i}+\beta(R g)_{i}=(\alpha R f+\beta R g)_{i}
\end{aligned}
$$

by definition of addition, scalar multiplication of sequences.
Since this holds for all $i=1,2,3, \ldots, R(\alpha f+\beta g)=\alpha R f+\beta R g$, so R is a linear transformation.
(b) No, this is not a linear transformation because it does not preserve scalar multiplication by complex scalars. For example, $J(1)=1$, but $J(i \times 1)=J(i)=-i \neq i=i \times J(1)$.
[It is a linear transformation if we think of \mathbf{C} as a real vector space.]
A2.2. Find a basis for the nullspace and a basis for the range for the linear transformation $T: \mathbf{R}^{5} \rightarrow \mathbf{R}^{2 \times 2}$ by $T\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left[\begin{array}{rr}x_{1}+x_{4} & x_{2}-2 x_{1}-x_{5} \\ 0 & x_{2}+2 x_{4}-x_{5}\end{array}\right]$. In each case justify the fact that what you have found is a basis.

Solution: First, the nullspace:

$$
\begin{aligned}
N(T) & =\left\{x \in \mathbf{R}^{5} \mid T x=0\right\} \\
& =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbf{R}^{5} \left\lvert\,\left[\begin{array}{cc}
x_{1}+x_{4} & x_{2}-2 x_{1}-x_{5} \\
0 & x_{2}+2 x_{4}-x_{5}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]\right.\right\} \\
& =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbf{R}^{5} \mid x_{1}+x_{4}=0, x_{2}-2 x_{1}-x_{5}=0, x_{2}+2 x_{4}-x_{5}=0\right\} \\
& =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbf{R}^{5} \mid x_{1}=-x_{4}, x_{2}=2 x_{1}+x_{5}, x_{2}=-2 x_{4}+x_{5}\right\} \\
& =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbf{R}^{5} \mid x_{1}=-x_{4}, x_{2}=-2 x_{4}+x_{5}\left(\text { since } x_{1}=-x_{4}\right), x_{2}=-2 x_{4}+x_{5}\right\} \\
& =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbf{R}^{5} \mid x_{1}=-x_{4}, x_{2}=-2 x_{4}+x_{5}\right\} \\
& =\left\{\left(-x_{4},-2 x_{4}+x_{5}, x_{3}, x_{4}, x_{5}\right) \mid x_{3}, x_{4}, x_{5} \in \mathbf{R}\right\} \\
& =\left\{x_{3}(0,0,1,0,0)+x_{4}(-1,-2,0,1,0)+x_{5}(0,1,0,0,1) \mid x_{3}, x_{4}, x_{5} \in \mathbf{R}\right\} \\
& =\operatorname{span}\{(0,0,1,0,0),(-1,-2,0,1,0),(0,1,0,0,1)\}
\end{aligned}
$$

and so we claim that $B=\{(0,0,1,0,0),(-1,-2,0,1,0),(0,1,0,0,1)\}$ is a basis for $N(T)$. In addition to spanning $N(T)$, it is linearly independent because from above a typical linear combination with coefficients x_{3}, x_{4}, x_{5} is $\left(-x_{4},-2 x_{4}+x_{5}, x_{3}, x_{4}, x_{5}\right)$ which from the last three coordinates is only 0 if $x_{3}=x_{4}=x_{5}=0$.

Now the range. Using the standard basis $S=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ of \mathbf{R}^{5}, we have

$$
\begin{aligned}
& R(T)= \operatorname{span}\left\{T e_{1}=\left[\begin{array}{rr}
1 & -2 \\
0 & 0
\end{array}\right], T e_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right], T e_{3}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], T e_{4}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right], T e_{5}=\left[\begin{array}{ll}
0 & -1 \\
0 & -1
\end{array}\right]\right\} \\
&= \operatorname{span}\left\{T e_{1}=\left[\begin{array}{rr}
1 & -2 \\
0 & 0
\end{array}\right], T e_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right], T e_{4}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\right\} \\
& \quad \operatorname{discarding} T e_{3}=0 \text { and } T e_{5}=-T e_{2} \\
&= \operatorname{span}\left\{T e_{1}=\left[\begin{array}{rr}
1 & -2 \\
0 & 0
\end{array}\right], T e_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\right\} \\
& \quad \quad \operatorname{discarding} T e_{4}=T e_{1}+2 T e_{2}
\end{aligned}
$$

We know $\left\{T e_{1}, T e_{2}\right\}$ is a basis because $\operatorname{dim} R(T)=\operatorname{rank} T=\operatorname{dim} \mathbf{R}^{5}-\operatorname{null} T=5-3=2$, and this is a spanning set with 2 elements. (Or it is not hard to check directly that it is linearly independent.)

A2.3. All vector spaces in this problem are finite-dimensional vector spaces over the same field F.
(a) Suppose that $T \in L(V, W)$. Use the Rank-Nullity Theorem to prove that any two of the following three conditions imply the third.
(1) T is one-to-one.
(2) T is onto.
(3) $\operatorname{dim} V=\operatorname{dim} W$.
[It follows that T is an invertible, or an isomorphism, if any two of these three conditions hold.]
(b) Suppose that $T \in L(V, W)$ and $U \in L(W, X)$. Let $U T=U \circ T \in L(V, X)$ be the composition of T and U.
(i) Prove that $N(T) \subseteq N(U T)$, and use this to deduce that if $U T$ is one-to-one, so is T.
(ii) Prove that $R(U T) \subseteq R(U)$, and use this to deduce that if $U T$ is onto, so is U.
(iii) Use (a) and (i) and (ii) to show that if $\operatorname{dim} V=\operatorname{dim} W=\operatorname{dim} X=n$ (say) and $U T$ is invertible, then T and U are both invertible.

Solution: (a) Note that (1) is equivalent to $e_{1}=0$ where $e_{1}=$ null T, (2) is equivalent to $e_{2}=0$ where $e_{2}=\operatorname{rank} T-\operatorname{dim} W$, and (3) is equivalent to $e_{3}=0$, where $e_{3}=\operatorname{dim} V-\operatorname{dim} W$. By the Rank-Nullity Theorem, $e_{3}=\operatorname{dim} V-\operatorname{dim} W=\operatorname{rank} T+\operatorname{null} T-\operatorname{dim} W=\operatorname{null} T+(\operatorname{rank} T-\operatorname{dim} W)=e_{1}+e_{2}$. Since $e_{3}=e_{1}+e_{2}$, if two of these quantities are zero the third must also be zero. The result follows.
(b)(i) Suppose $v \in N(T)$. Then $T v=0$, so $U T v=U 0=0$. So $v \in N(U T)$. Thus, $N(T) \subseteq N(U T)$.

If $U T$ is $1-1$ then $N(U T)=\{0\}$. Then $\{0\} \subseteq N(T) \subseteq N(U T)=\{0\}$, so $N(T)=\{0\}$ and T is also $1-1$.
(ii) Suppose $x \in R(U T)$. Then $x=U T v$ for some $v \in V$. Thus, $x=U(T v)=U w$ where $w=T v \in W$. Hence $x \in R(U)$. Thus, $R(U T) \subseteq R(U)$. [Alternative proof: $R(U T)=(U T)(V)=U(T(V)) \subseteq U(W)=R(U)$ because $T(V)=R(T) \subseteq W$.]

If $U T$ is onto, then $R(U T)=X$. Hence $X=R(U T) \subseteq R(U) \subseteq X$, so $R(U)=X$, and U is also onto.
(iii) Suppose $U T$ is invertible.

Because $U T$ is $1-1, T$ is $1-1$ by (i), so (1) holds for T. Also, $\operatorname{dim} V=\operatorname{dim} W$, so (3) holds for T. Thus, T is invertible by (a).

Because $U T$ is onto, U is onto by (ii), so (2) holds for U. Also, $\operatorname{dim} W=\operatorname{dim} X$, so (3) holds for U. Thus, U is invertible by (a).
[General comment: the second part of (b)(i), and all of (b)(ii), are true for compositions of functions in general, not just linear transformations.]

A2.4. Suppose $A \in F^{m \times n}$ and $B \in F^{n \times p}$.
(a) Explain why $(A B)^{\mathrm{T}}$ and $B^{\mathrm{T}} A^{\mathrm{T}}$ both exist.
(b) Prove that $(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}$. (Use the definition of matrix multiplication given in class: $(A B)_{i j}=$ $\sum_{k=1}^{n} A_{i k} B_{k j}$. Show that the $i j$ entry of the first matrix is equal to the $i j$ entry of the second matrix, for all suitable i and j. You should verify that the suitable i 's and j 's are the same for both matrices.)

Solution: (a) Since A is $m \times n$ and B is $n \times p$ we can form $A B$, which is $m \times p$. We can transpose any matrix, so we can form $(A B)^{\mathrm{T}}$, which is $p \times m$.

Since B^{T} is $p \times n$ and A^{T} is $n \times m$, we can form $B^{\mathrm{T}} A^{\mathrm{T}}$, which is $p \times m$.
(b) From (a), both matrices are $p \times m$, so we can consider the $i j$ entry where $1 \leq i \leq p$ and $1 \leq j \leq m$. Then we have

$$
\left((A B)^{\mathrm{T}}\right)_{i j}=(A B)_{j i}=\sum_{k=1}^{n} A_{j k} B_{k i}=\sum_{k=1}^{n}\left(A^{\mathrm{T}}\right)_{k j}\left(B^{\mathrm{T}}\right)_{i k}=\sum_{k=1}^{n}\left(B^{\mathrm{T}}\right)_{i k}\left(A^{\mathrm{T}}\right)_{k j}=\left(B^{\mathrm{T}} A^{\mathrm{T}}\right)_{i j}
$$

and so $(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}$.

