
Math 2600/5600 - Linear Algebra - Fall 2015

Assignment 2 Solutions

A2.1. (a) Let P denote the vector space of continuous real 2π-periodic functions, so that f(x+ 2π) = f(x)
for every f ∈ P and x ∈ R. P is a vector space under pointwise addition and scalar multiplication. Let Q
denote the set of real-valued infinite sequences (s1, s2, s3, . . .). Q is a vector space under entrywise addition
and scalar multiplication.

For f ∈ P , the Fourier coefficients of f are the numbers

an =
1

π

∫

2π

0

f(x) cos(nx) dx for n = 0, 1, 2, . . ., bn =
1

π

∫

2π

0

f(x) sin(nx) dx for n = 1, 2, 3, . . ..

(We don’t need b0 because it would just be 0.) Let R : P → Q map the function f ∈ P to the sequence
(a0, a1, b1, a2, b2, a3, b3, . . .) ∈ Q of Fourier coefficients of f . Prove that R is a linear transformation.

[Hint: to avoid dealing with cases you might just think of the trigonometric functions involved in
computing the Fourier coefficients as h1(x), h2(x), h3(x), . . ..]

(b) If z = a+ bi ∈ C with a, b ∈ R, the complex conjugate of z is z = a− bi. Is J : C → C with J(z) = z a
linear transformation of complex vector spaces? Prove your answer.

Solution: (a) Suppose Rf = (s1, s2, s3, . . .). Then each si can be written as si =
∫

2π

0
f(x)hi(x) dx where

h1(x) =
1

π
cos(0x) so that s1 = a0, h2(x) =

1

π
cos(1x) so that s2 = a1, h3(x) = 1

π
sin(1x) so that s3 = b1,

h4(x) =
1

π
cos(2x) so that s4 = a2, h5(x) =

1

π
sin(2x) so that s5 = b2, and so on. Thus,

(Rf)i =

∫ 2π

0

f(x)hi(x) dx.

Now we want to show that if f, g ∈ P and α, β ∈ R, R(αf + βg) = αRf + βRg. To do this, we must
show that the ith element of these two sequences are the same, for all i = 1, 2, 3, . . .. We have

(R(αf + βg))i =

∫

2π

0

(αf + βg)(x)hi(x) dx =

∫

2π

0

[αf(x) + βg(x)]hi(x) dx

by definition of addition, scalar multiplication of functions

= α

∫

2π

0

f(x)hi(x) dx+ β

∫

2π

0

g(x)hi(x) dx

= α(Rf)i + β(Rg)i = (αRf + βRg)i

by definition of addition, scalar multiplication of sequences.

Since this holds for all i = 1, 2, 3, . . ., R(αf + βg) = αRf + βRg, so R is a linear transformation.

(b) No, this is not a linear transformation because it does not preserve scalar multiplication by complex
scalars. For example, J(1) = 1, but J(i × 1) = J(i) = −i 6= i = i× J(1).

[It is a linear transformation if we think of C as a real vector space.]

A2.2. Find a basis for the nullspace and a basis for the range for the linear transformation T : R5 → R2×2

by T (x1, x2, x3, x4, x5) =

[

x1 + x4 x2 − 2x1 − x5

0 x2 + 2x4 − x5

]

. In each case justify the fact that what you have

found is a basis.
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Solution: First, the nullspace:

N(T ) = {x ∈ R5 | Tx = 0}

= {(x1, x2, x3, x4, x5) ∈ R5 |

[

x1 + x4 x2 − 2x1 − x5

0 x2 + 2x4 − x5

]

=

[

0 0
0 0

]

}

= {(x1, x2, x3, x4, x5) ∈ R5 | x1 + x4 = 0, x2 − 2x1 − x5 = 0, x2 + 2x4 − x5 = 0}

= {(x1, x2, x3, x4, x5) ∈ R5 | x1 = −x4, x2 = 2x1 + x5, x2 = −2x4 + x5}

= {(x1, x2, x3, x4, x5) ∈ R5 | x1 = −x4, x2 = −2x4 + x5 (since x1 = −x4), x2 = −2x4 + x5}

= {(x1, x2, x3, x4, x5) ∈ R5 | x1 = −x4, x2 = −2x4 + x5}

= {(−x4,−2x4 + x5, x3, x4, x5) | x3, x4, x5 ∈ R}

= {x3(0, 0, 1, 0, 0) + x4(−1,−2, 0, 1, 0)+ x5(0, 1, 0, 0, 1) | x3, x4, x5 ∈ R}

= span {(0, 0, 1, 0, 0), (−1,−2, 0, 1, 0), (0, 1, 0, 0, 1)}

and so we claim that B = {(0, 0, 1, 0, 0), (−1,−2, 0, 1, 0), (0, 1, 0, 0, 1)} is a basis for N(T ). In addition to
spanning N(T ), it is linearly independent because from above a typical linear combination with coefficients
x3, x4, x5 is (−x4,−2x4 + x5, x3, x4, x5) which from the last three coordinates is only 0 if x3 = x4 = x5 = 0.

Now the range. Using the standard basis S = {e1, e2, e3, e4, e5} of R5, we have

R(T ) = span

{

Te1 =

[

1 −2
0 0

]

, T e2 =

[

0 1
0 1

]

, T e3 =

[

0 0
0 0

]

, T e4 =

[

1 0
0 2

]

, T e5 =

[

0 −1
0 −1

]}

= span

{

Te1 =

[

1 −2
0 0

]

, T e2 =

[

0 1
0 1

]

, T e4 =

[

1 0
0 2

]}

discarding Te3 = 0 and Te5 = −Te2

= span

{

Te1 =

[

1 −2
0 0

]

, T e2 =

[

0 1
0 1

]}

discarding Te4 = Te1 + 2Te2

We know {Te1, T e2} is a basis because dim R(T ) = rank T = dim R5 − null T = 5 − 3 = 2, and this is a
spanning set with 2 elements. (Or it is not hard to check directly that it is linearly independent.)

A2.3. All vector spaces in this problem are finite-dimensional vector spaces over the same field F .

(a) Suppose that T ∈ L(V,W ). Use the Rank-Nullity Theorem to prove that any two of the following three
conditions imply the third.

(1) T is one-to-one.
(2) T is onto.
(3) dim V = dim W .

[It follows that T is an invertible, or an isomorphism, if any two of these three conditions hold.]

(b) Suppose that T ∈ L(V,W ) and U ∈ L(W,X). Let UT = U ◦ T ∈ L(V,X) be the composition of T and
U .

(i) Prove that N(T ) ⊆ N(UT ), and use this to deduce that if UT is one-to-one, so is T .

(ii) Prove that R(UT ) ⊆ R(U), and use this to deduce that if UT is onto, so is U .

(iii) Use (a) and (i) and (ii) to show that if dim V = dim W = dim X = n (say) and UT is invertible, then
T and U are both invertible.

Solution: (a) Note that (1) is equivalent to e1 = 0 where e1 = null T , (2) is equivalent to e2 = 0 where
e2 = rank T − dim W , and (3) is equivalent to e3 = 0, where e3 = dim V − dim W . By the Rank-Nullity
Theorem, e3 = dim V − dim W = rank T + null T − dim W = null T + (rank T − dim W ) = e1 + e2. Since
e3 = e1 + e2, if two of these quantities are zero the third must also be zero. The result follows.

(b)(i) Suppose v ∈ N(T ). Then Tv = 0, so UTv = U0 = 0. So v ∈ N(UT ). Thus, N(T ) ⊆ N(UT ).
If UT is 1 − 1 then N(UT ) = {0}. Then {0} ⊆ N(T ) ⊆ N(UT ) = {0}, so N(T ) = {0} and T is also

1− 1.
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(ii) Suppose x ∈ R(UT ). Then x = UTv for some v ∈ V . Thus, x = U(Tv) = Uw where w = Tv ∈ W . Hence
x ∈ R(U). Thus, R(UT ) ⊆ R(U). [Alternative proof: R(UT ) = (UT )(V ) = U(T (V )) ⊆ U(W ) = R(U)
because T (V ) = R(T ) ⊆ W .]

If UT is onto, then R(UT ) = X . Hence X = R(UT ) ⊆ R(U) ⊆ X , so R(U) = X , and U is also onto.

(iii) Suppose UT is invertible.
Because UT is 1 − 1, T is 1 − 1 by (i), so (1) holds for T . Also, dim V = dim W , so (3) holds for T .

Thus, T is invertible by (a).
Because UT is onto, U is onto by (ii), so (2) holds for U . Also, dim W = dim X , so (3) holds for U .

Thus, U is invertible by (a).

[General comment: the second part of (b)(i), and all of (b)(ii), are true for compositions of functions in
general, not just linear transformations.]

A2.4. Suppose A ∈ Fm×n and B ∈ Fn×p.

(a) Explain why (AB)T and BTAT both exist.

(b) Prove that (AB)T = BTAT. (Use the definition of matrix multiplication given in class: (AB)ij =
∑n

k=1
AikBkj . Show that the ij entry of the first matrix is equal to the ij entry of the second matrix, for

all suitable i and j. You should verify that the suitable i’s and j’s are the same for both matrices.)

Solution: (a) Since A is m × n and B is n × p we can form AB, which is m × p. We can transpose any
matrix, so we can form (AB)T, which is p×m.

Since BT is p× n and AT is n×m, we can form BTAT, which is p×m.

(b) From (a), both matrices are p × m, so we can consider the ij entry where 1 ≤ i ≤ p and 1 ≤ j ≤ m.
Then we have

((AB)T)ij = (AB)ji =
n
∑

k=1

AjkBki =
n
∑

k=1

(AT)kj(B
T)ik =

n
∑

k=1

(BT)ik(A
T)kj = (BTAT)ij

and so (AB)T = BTAT.
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