Math 2600/5600 - Linear Algebra - Fall 2015 Assignment 2 Solutions

A2.1. (a) Let P denote the vector space of continuous real 2π -periodic functions, so that $f(x + 2\pi) = f(x)$ for every $f \in P$ and $x \in \mathbf{R}$. P is a vector space under pointwise addition and scalar multiplication. Let Q denote the set of real-valued infinite sequences (s_1, s_2, s_3, \ldots) . Q is a vector space under entrywise addition and scalar multiplication.

For $f \in P$, the Fourier coefficients of f are the numbers

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) \, dx \quad \text{for } n = 0, 1, 2, \dots, \qquad b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) \, dx \quad \text{for } n = 1, 2, 3, \dots$$

(We don't need b_0 because it would just be 0.) Let $R : P \to Q$ map the function $f \in P$ to the sequence $(a_0, a_1, b_1, a_2, b_2, a_3, b_3, \ldots) \in Q$ of Fourier coefficients of f. Prove that R is a linear transformation.

[Hint: to avoid dealing with cases you might just think of the trigonometric functions involved in computing the Fourier coefficients as $h_1(x)$, $h_2(x)$, $h_3(x)$,]

(b) If $z = a + bi \in \mathbf{C}$ with $a, b \in \mathbf{R}$, the complex conjugate of z is $\overline{z} = a - bi$. Is $J : \mathbf{C} \to \mathbf{C}$ with $J(z) = \overline{z}$ a linear transformation of complex vector spaces? Prove your answer.

Solution: (a) Suppose $Rf = (s_1, s_2, s_3, ...)$. Then each s_i can be written as $s_i = \int_0^{2\pi} f(x)h_i(x) dx$ where $h_1(x) = \frac{1}{\pi}\cos(0x)$ so that $s_1 = a_0, h_2(x) = \frac{1}{\pi}\cos(1x)$ so that $s_2 = a_1, h_3(x) = \frac{1}{\pi}\sin(1x)$ so that $s_3 = b_1, h_4(x) = \frac{1}{\pi}\cos(2x)$ so that $s_4 = a_2, h_5(x) = \frac{1}{\pi}\sin(2x)$ so that $s_5 = b_2$, and so on. Thus,

$$(Rf)_i = \int_0^{2\pi} f(x)h_i(x) \, dx.$$

Now we want to show that if $f, g \in P$ and $\alpha, \beta \in \mathbf{R}$, $R(\alpha f + \beta g) = \alpha Rf + \beta Rg$. To do this, we must show that the *i*th element of these two sequences are the same, for all $i = 1, 2, 3, \ldots$ We have

$$(R(\alpha f + \beta g))_i = \int_0^{2\pi} (\alpha f + \beta g)(x)h_i(x) \, dx = \int_0^{2\pi} [\alpha f(x) + \beta g(x)]h_i(x) \, dx$$

by definition of addition, scalar multiplication of functions
$$= \alpha \int_0^{2\pi} f(x)h_i(x) \, dx + \beta \int_0^{2\pi} g(x)h_i(x) \, dx$$

$$= \alpha (Rf)_i + \beta (Rg)_i = (\alpha Rf + \beta Rg)_i$$

by definition of addition, scalar multiplication of sequences.

by demittion of addition, scalar multiplication of sequences.

Since this holds for all $i = 1, 2, 3, ..., R(\alpha f + \beta g) = \alpha Rf + \beta Rg$, so R is a linear transformation. (b) No, this is not a linear transformation because it does not preserve scalar multiplication by complex scalars. For example, J(1) = 1, but $J(i \times 1) = J(i) = -i \neq i = i \times J(1)$.

[It is a linear transformation if we think of \mathbf{C} as a real vector space.]

A2.2. Find a basis for the nullspace and a basis for the range for the linear transformation $T : \mathbf{R}^5 \to \mathbf{R}^{2 \times 2}$ by $T(x_1, x_2, x_3, x_4, x_5) = \begin{bmatrix} x_1 + x_4 & x_2 - 2x_1 - x_5 \\ 0 & x_2 + 2x_4 - x_5 \end{bmatrix}$. In each case justify the fact that what you have found is a basis.

Solution: First, the nullspace:

$$\begin{split} N(T) &= \{x \in \mathbf{R}^5 \mid Tx = 0\} \\ &= \{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{R}^5 \mid \begin{bmatrix} x_1 + x_4 & x_2 - 2x_1 - x_5 \\ 0 & x_2 + 2x_4 - x_5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \} \\ &= \{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{R}^5 \mid x_1 + x_4 = 0, \ x_2 - 2x_1 - x_5 = 0, \ x_2 + 2x_4 - x_5 = 0\} \\ &= \{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{R}^5 \mid x_1 = -x_4, \ x_2 = 2x_1 + x_5, \ x_2 = -2x_4 + x_5\} \\ &= \{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{R}^5 \mid x_1 = -x_4, \ x_2 = -2x_4 + x_5 \ (\text{since } x_1 = -x_4), \ x_2 = -2x_4 + x_5\} \\ &= \{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{R}^5 \mid x_1 = -x_4, \ x_2 = -2x_4 + x_5\} \\ &= \{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{R}^5 \mid x_1 = -x_4, \ x_2 = -2x_4 + x_5\} \\ &= \{(x_1, -2x_4 + x_5, x_3, x_4, x_5) \mid x_3, x_4, x_5 \in \mathbf{R}\} \\ &= \{x_3(0, 0, 1, 0, 0) + x_4(-1, -2, 0, 1, 0) + x_5(0, 1, 0, 0, 1) \mid x_3, x_4, x_5 \in \mathbf{R}\} \\ &= \text{span } \{(0, 0, 1, 0, 0), (-1, -2, 0, 1, 0), (0, 1, 0, 0, 1)\} \end{split}$$

and so we claim that $B = \{(0, 0, 1, 0, 0), (-1, -2, 0, 1, 0), (0, 1, 0, 0, 1)\}$ is a basis for N(T). In addition to spanning N(T), it is linearly independent because from above a typical linear combination with coefficients x_3, x_4, x_5 is $(-x_4, -2x_4 + x_5, x_3, x_4, x_5)$ which from the last three coordinates is only 0 if $x_3 = x_4 = x_5 = 0$.

Now the range. Using the standard basis $S = \{e_1, e_2, e_3, e_4, e_5\}$ of \mathbb{R}^5 , we have

$$R(T) = \operatorname{span} \left\{ Te_1 = \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}, Te_2 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, Te_3 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, Te_4 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, Te_5 = \begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix} \right\}$$
$$= \operatorname{span} \left\{ Te_1 = \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}, Te_2 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, Te_4 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \right\}$$
$$\operatorname{discarding} Te_3 = 0 \text{ and } Te_5 = -Te_2$$
$$= \operatorname{span} \left\{ Te_1 = \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}, Te_2 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right\}$$
$$\operatorname{discarding} Te_4 = Te_1 + 2Te_2$$

We know $\{Te_1, Te_2\}$ is a basis because dim $R(T) = \operatorname{rank} T = \operatorname{dim} \mathbf{R}^5 - \operatorname{null} T = 5 - 3 = 2$, and this is a spanning set with 2 elements. (Or it is not hard to check directly that it is linearly independent.)

A2.3. All vector spaces in this problem are finite-dimensional vector spaces over the same field F.

(a) Suppose that $T \in L(V, W)$. Use the Rank-Nullity Theorem to prove that any two of the following three conditions imply the third.

(1) T is one-to-one.

(2) T is onto.

(3) dim $V = \dim W$.

[It follows that T is an invertible, or an isomorphism, if any two of these three conditions hold.]

(b) Suppose that $T \in L(V, W)$ and $U \in L(W, X)$. Let $UT = U \circ T \in L(V, X)$ be the composition of T and U.

(i) Prove that $N(T) \subseteq N(UT)$, and use this to deduce that if UT is one-to-one, so is T.

(ii) Prove that $R(UT) \subseteq R(U)$, and use this to deduce that if UT is onto, so is U.

(iii) Use (a) and (i) and (ii) to show that if dim $V = \dim W = \dim X = n$ (say) and UT is invertible, then T and U are both invertible.

Solution: (a) Note that (1) is equivalent to $e_1 = 0$ where $e_1 = \text{null } T$, (2) is equivalent to $e_2 = 0$ where $e_2 = \operatorname{rank} T - \dim W$, and (3) is equivalent to $e_3 = 0$, where $e_3 = \dim V - \dim W$. By the Rank-Nullity Theorem, $e_3 = \dim V - \dim W = \operatorname{rank} T + \operatorname{null} T - \dim W = \operatorname{null} T + (\operatorname{rank} T - \dim W) = e_1 + e_2$. Since $e_3 = e_1 + e_2$, if two of these quantities are zero the third must also be zero. The result follows.

(b)(i) Suppose $v \in N(T)$. Then Tv = 0, so UTv = U0 = 0. So $v \in N(UT)$. Thus, $N(T) \subseteq N(UT)$.

If UT is 1-1 then $N(UT) = \{0\}$. Then $\{0\} \subseteq N(T) \subseteq N(UT) = \{0\}$, so $N(T) = \{0\}$ and T is also 1 - 1.

(ii) Suppose $x \in R(UT)$. Then x = UTv for some $v \in V$. Thus, x = U(Tv) = Uw where $w = Tv \in W$. Hence $x \in R(U)$. Thus, $R(UT) \subseteq R(U)$. [Alternative proof: $R(UT) = (UT)(V) = U(T(V)) \subseteq U(W) = R(U)$ because $T(V) = R(T) \subseteq W$.]

If UT is onto, then R(UT) = X. Hence $X = R(UT) \subseteq R(U) \subseteq X$, so R(U) = X, and U is also onto. (iii) Suppose UT is invertible.

Because UT is 1-1, T is 1-1 by (i), so (1) holds for T. Also, dim $V = \dim W$, so (3) holds for T. Thus, T is invertible by (a).

Because UT is onto, U is onto by (ii), so (2) holds for U. Also, dim $W = \dim X$, so (3) holds for U. Thus, U is invertible by (a).

[General comment: the second part of (b)(i), and all of (b)(ii), are true for compositions of functions in general, not just linear transformations.]

A2.4. Suppose $A \in F^{m \times n}$ and $B \in F^{n \times p}$.

(a) Explain why $(AB)^{\mathrm{T}}$ and $B^{\mathrm{T}}A^{\mathrm{T}}$ both exist.

(b) Prove that $(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$. (Use the definition of matrix multiplication given in class: $(AB)_{ij} =$ $\sum_{k=1}^{n} A_{ik} B_{kj}$. Show that the *ij* entry of the first matrix is equal to the *ij* entry of the second matrix, for all suitable i and j. You should verify that the suitable i's and j's are the same for both matrices.)

Solution: (a) Since A is $m \times n$ and B is $n \times p$ we can form AB, which is $m \times p$. We can transpose any matrix, so we can form $(AB)^{\mathrm{T}}$, which is $p \times m$. Since B^{T} is $p \times n$ and A^{T} is $n \times m$, we can form $B^{\mathrm{T}}A^{\mathrm{T}}$, which is $p \times m$.

(b) From (a), both matrices are $p \times m$, so we can consider the *ij* entry where $1 \le i \le p$ and $1 \le j \le m$. Then we have

$$((AB)^{\mathrm{T}})_{ij} = (AB)_{ji} = \sum_{k=1}^{n} A_{jk} B_{ki} = \sum_{k=1}^{n} (A^{\mathrm{T}})_{kj} (B^{\mathrm{T}})_{ik} = \sum_{k=1}^{n} (B^{\mathrm{T}})_{ik} (A^{\mathrm{T}})_{kj} = (B^{\mathrm{T}} A^{\mathrm{T}})_{ij}$$

and so $(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$.