Math 2600/5600 - Linear Algebra - Fall 2015

Assignment 2 Solutions

A2.1. (a) Let P denote the vector space of continuous real 27-periodic functions, so that f(z + 27) = f(x)
for every f € P and z € R. P is a vector space under pointwise addition and scalar multiplication. Let Q
denote the set of real-valued infinite sequences (s1, s2, s3,...). @ is a vector space under entrywise addition
and scalar multiplication.

For f € P, the Fourier coefficients of f are the numbers

1 27 1 27
an = — (x) cos(nz) de forn=0,1,2,..., by, = = (x)sin(nz) de forn=1,2,3,....
0 0

(We don’t need by because it would just be 0.) Let R : P — @ map the function f € P to the sequence
(ao,a1,b1,a2,be,as,bs,...) € Q of Fourier coefficients of f. Prove that R is a linear transformation.

[Hint: to avoid dealing with cases you might just think of the trigonometric functions involved in
computing the Fourier coefficients as hq(z), ha(z), hs(x), ...
(b) If z = a + bi € C with a,b € R, the complex conjugate of zis Z=a —bi. Is J: C — C with J(z) =Z a
linear transformation of complex vector spaces? Prove your answer.

Solution: (a) Suppose Rf = (s1, s2,S3,...). Then each s; can be written as s, = fo% f(z)h;(x) dx where
hi(z) = X cos(0x) so that s; = ag, ha(x) = L cos(1z) so that so = a1, hz(z) = Lsin(lz) so that s3 = by,

s U

)

hy(z) = + cos(2z) so that sy = az, hs(z) = L sin(2z) so that s5 = by, and so on. Thus,
27
(Rf)i = ; f(x)hi(z) da.
Now we want to show that if f,g € P and «, 8 € R, R(af + Bg) = aRf + BRg. To do this, we must
show that the ith element of these two sequences are the same, for all : =1,2,3,.... We have
2 2
(Blaf +89)i= [ (af + Bg)@hi(o) do = [ [af(@) + Bg(o)lhi(a) dz
0 0

by definition of addition, scalar multiplication of functions

2 2
=« f(@)hi(x) do + B/ g(x)hi(z) dx
0

0
= a(Rf)i + B(Rg)i = (aRf + BRg);
by definition of addition, scalar multiplication of sequences.

Since this holds for all i = 1,2,3,..., R(af + Bg) = aRf + SRy, so R is a linear transformation.

(b) No, this is not a linear transformation because it does not preserve scalar multiplication by complex
scalars. For example, J(1) =1, but J(i x 1) = J(i) = —i # i =14 x J(1).
[It is a linear transformation if we think of C as a real vector space.]

A2.2. Find a basis for the nullspace and a basis for the range for the linear transformation 7 : R> — R?*?
by T(x1, 2,23, T4,25) = T1+ T4 Ty =281 = Ts . In each case justify the fact that what you have
0 To + 224 — 5

found is a basis.



Solution: First, the nullspace:
N(T)={z € R° | Tx =0}

= {(21, 22, 73,74, 25) € R® | T1+ 24 T2 — 211 —555} _ [O O}}

0 To + 224 — 5 0 0

= {(21, 22,73, 24,25) ER® | 21 + 14 =0, 29 — 227 — 25 = 0, T3 + 224 — x5 = 0}

= {(21, 22,73, 24,25) € R’ | &1 = —x4, T3 = 201 + x5, T2 = —24 + =5}

= {(z1, 22, T3, 24,25) € R® | z1 = —x4, xa = =224 + x5 (since x1 = —x4), T2 = —2x4 + x5}
= {(x1, 29, 23,24, 75) € R® | 1 = —x4, T = —224 + 5}

= {(—x4, 224 + x5, 23,4, 75) | T3, 24,25 € R}

= {23(0,0,1,0,0) + 24(—1,-2,0,1,0) + 25(0,1,0,0,1) | x5, 24,25 € R}

= Span {(07 Oa 17 Oa 0)7 (_17 _27 Oa 17 O)a (07 17 Oa Oa 1)}

and so we claim that B = {(0,0,1,0,0),(-1,-2,0,1,0),(0,1,0,0,1)} is a basis for N(7T'). In addition to

spanning N (T), it is linearly independent because from above a typical linear combination with coefficients

x3,%4, %5 18 (—x4, —2x4 + x5, 3, T4, x5) which from the last three coordinates is only 0 if 3 = x4 = x5 = 0.
Now the range. Using the standard basis S = {e1, ez, €3, €4, 5} of R5, we have

1 —2] 0 00 1 0 0 -1
TR T B O P
1 0
o “ofma=[o i re[o 3}
discarding T'e3 = 0 and Tes = —Teq
= span {Telz (1) _(2) ,Teg = 8 1}

discarding T(::4 = Tel_ + 2T ey

We know {T'e1,Tes} is a basis because dim R(T) = rank T = dim R® — null T = 5 — 3 = 2, and this is a
spanning set with 2 elements. (Or it is not hard to check directly that it is linearly independent.)

R(T) = span {Tel =

(1 —2] [0

1
L 1_

1
= span {Tel— 0 0 ,Tey = 0 1

A2.3. All vector spaces in this problem are finite-dimensional vector spaces over the same field F'.

(a) Suppose that T € L(V,W). Use the Rank-Nullity Theorem to prove that any two of the following three
conditions imply the third.

(1) T is one-to-one.

(2) T is onto.

(3) dim V = dim W.
[It follows that T is an invertible, or an isomorphism, if any two of these three conditions hold.]
(b) Suppose that T € L(V,W) and U € L(W, X). Let UT = U o T € L(V, X) be the composition of T and
U.

i

(i) Prove that N(T) C N(UT), and use this to deduce that if UT is one-to-one, so is 7.
(ii) Prove that R(UT) C R(U), and use this to deduce that if UT is onto, so is U.

(iil) Use (a) and (i) and (ii) to show that if dim V = dim W = dim X = n (say) and UT is invertible, then
T and U are both invertible.

Solution: (a) Note that (1) is equivalent to e; = 0 where e; = null T, (2) is equivalent to ez = 0 where
e2 = rank T' — dim W, and (3) is equivalent to e3 = 0, where e3 = dim V' — dim W. By the Rank-Nullity
Theorem, e3 = dim V — dim W =rank T + null T — dim W = null T + (rank 7' — dim W) = e; + es. Since
e3 = e1 + eq, if two of these quantities are zero the third must also be zero. The result follows.
(b)(i) Suppose v € N(T'). Then Tv =0, so UTv =U0=0. Sov € N(UT). Thus, N(T) C N(UT).

If UT is 1 — 1 then N(UT) = {0}. Then {0} C N(T) C N(UT) = {0}, so N(T') = {0} and T is also
1-1.



(ii) Suppose x € R(UT'). Then x = UTv for somev € V. Thus, x = U(Tv) = Uw where w = Tv € W. Hence
x € R(U). Thus, R(UT) C R(U). [Alternative proof: R(UT) = (UT)(V) = U(T(V)) CUW) = R(U)
because T(V) = R(T) C W]

If UT is onto, then R(UT) = X. Hence X = R(UT) C R(U) C X, so R(U) = X, and U is also onto.
(iii) Suppose UT is invertible.

Because UT is 1 — 1, T'is 1 — 1 by (i), so (1) holds for T. Also, dim V' = dim W, so (3) holds for T.
Thus, T is invertible by (a).

Because UT is onto, U is onto by (ii), so (2) holds for U. Also, dim W = dim X, so (3) holds for U.
Thus, U is invertible by (a).

[General comment: the second part of (b)(i), and all of (b)(ii), are true for compositions of functions in
general, not just linear transformations.]

A2.4. Suppose A € F™*™ and B € F"*P,
(a) Explain why (AB)T and BTAT both exist.
(b) Prove that (AB)T = BTAT. (Use the definition of matrix multiplication given in class: (AB);; =

>or_; AixBr;. Show that the ij entry of the first matrix is equal to the ij entry of the second matrix, for
all suitable ¢ and j. You should verify that the suitable i’s and j’s are the same for both matrices.)

Solution: (a) Since A is m x n and B is n X p we can form AB, which is m x p. We can transpose any
matrix, so we can form (AB)"T, which is p x m.
Since BT is p x n and AT is n x m, we can form BTAT, which is p x m.

(b) From (a), both matrices are p x m, so we can consider the ij entry where 1 <i <pand 1 < j < m.
Then we have

((AB))yj = (AB)j; = iAjkBki = zn:(AT)kj(BT)ik = i(BT)z‘k(AT)kj = (BTAT),;

k=1 k=1 k=1

and so (AB)T = BTAT.



