Math 2600/5600 - Linear Algebra - Fall 2015

Assignment 2, due in class, Friday, 9th October

Remember:

- Solutions to problems should be fully explained, using clear English sentences where necessary.
- Solutions should be written (or typed) neatly on one side only of clean paper with straight (not ragged) edges.
- Multiple pages should be stapled (not clipped or folded) together.

A2.1. (a) Let P denote the vector space of continuous real 2π-periodic functions, so that $f(x+2 \pi)=f(x)$ for every $f \in P$ and $x \in \mathbf{R} . P$ is a vector space under pointwise addition and scalar multiplication. Let Q denote the set of real-valued infinite sequences $\left(s_{1}, s_{2}, s_{3}, \ldots\right) . Q$ is a vector space under entrywise addition and scalar multiplication.

For $f \in P$, the Fourier coefficients of f are the numbers

$$
a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos (n x) d x \quad \text { for } n=0,1,2, \ldots, \quad b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin (n x) d x \quad \text { for } n=1,2,3, \ldots
$$

(We don't need b_{0} because it would just be 0 .) Let $R: P \rightarrow Q$ map the function $f \in P$ to the sequence $\left(a_{0}, a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, \ldots\right) \in Q$ of Fourier coefficients of f. Prove that R is a linear transformation.
[Hint: to avoid dealing with cases you might just think of the trigonometric functions involved in computing the Fourier coefficients as $\left.h_{1}(x), h_{2}(x), h_{3}(x), \ldots.\right]$
(b) If $z=a+b i \in \mathbf{C}$ with $a, b \in \mathbf{R}$, the complex conjugate of z is $\bar{z}=a-b i$. Is $J: \mathbf{C} \rightarrow \mathbf{C}$ with $J(z)=\bar{z}$ a linear transformation of complex vector spaces? Prove your answer.

A2.2. Find a basis for the nullspace and a basis for the range for the linear transformation $T: \mathbf{R}^{5} \rightarrow \mathbf{R}^{2 \times 2}$ by $T\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left[\begin{array}{rr}x_{1}+x_{4} & x_{2}-2 x_{1}-x_{5} \\ 0 & x_{2}+2 x_{4}-x_{5}\end{array}\right]$. In each case justify the fact that what you have found is a basis.

A2.3. All vector spaces in this problem are finite-dimensional vector spaces over the same field F.
(a) Suppose that $T \in L(V, W)$. Use the Rank-Nullity Theorem to prove that any two of the following three conditions imply the third.
(1) T is one-to-one.
(2) T is onto.
(3) $\operatorname{dim} V=\operatorname{dim} W$.
[It follows that T is an invertible, or an isomorphism, if any two of these three conditions hold.]
(b) Suppose that $T \in L(V, W)$ and $U \in L(W, X)$. Let $U T=U \circ T \in L(V, X)$ be the composition of T and U.
(i) Prove that $N(T) \subseteq N(U T)$, and use this to deduce that if $U T$ is one-to-one, so is T.
(ii) Prove that $R(U T) \subseteq R(U)$, and use this to deduce that if $U T$ is onto, so is U.
(iii) Use (a) and (i) and (ii) to show that if $\operatorname{dim} V=\operatorname{dim} W=\operatorname{dim} X=n$ (say) and $U T$ is invertible, then T and U are both invertible.

A2.4. Suppose $A \in F^{m \times n}$ and $B \in F^{n \times p}$.
(a) Explain why $(A B)^{\mathrm{T}}$ and $B^{\mathrm{T}} A^{\mathrm{T}}$ both exist.
(b) Prove that $(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}$. (Use the definition of matrix multiplication given in class: $(A B)_{i j}=$ $\sum_{k=1}^{n} A_{i k} B_{k j}$. Show that the $i j$ entry of the first matrix is equal to the $i j$ entry of the second matrix, for all suitable i and j. You should verify that the suitable i 's and j 's are the same for both matrices.)

