Math 2600/5600-Linear Algebra - Fall 2015

Assignment 1 Solutions

A1.1. Suppose V is a vector space, and W, X are two subspaces of V. Then the set $Y=W+X=$ $\{w+x \mid w \in W, x \in X\}$ (every element of Y is the sum of an element of W and an element of X) is also a subspace of V. (This can be shown using the Subspace Theorem, but you do not have to do that.)

If W and X are subspaces, $Y=W+X$, and $W \cap X=\{0\}$, then we say that Y is the direct sum of W and X. Prove that if Y is the direct sum of W and X then every $y \in Y$ can be written as $y=w+x$ with $w \in W, x \in X$ in exactly one way.

Solution: [8] Suppose Y is the direct sum of W and X, so that $Y=W+X$, where W and X are subspaces of V, and $W \cap X=\{0\}$.

First, since $Y=W+X$, every $y \in Y$ can be written in at least one way as $y=w+x$ with $w \in W$, $x \in X$.

Second, suppose that $y \in Y$ can be written as both $y=w+x$ and $y=w^{\prime}+x^{\prime}$, where $w, w^{\prime} \in W$ and $x, x^{\prime} \in X^{\prime}$. We will show that these ways of writing y must be the same, i.e., that $w^{\prime}=w$ and $x^{\prime}=x$. We have $w+x=y=w^{\prime}+x^{\prime}$, so $w-w^{\prime}=x^{\prime}-x$. Since W is a subspace, $w-w^{\prime} \in W$, because subspaces are closed under subtraction. (This follows either from closure under addition and scalar multiplication, $w-w^{\prime}=w+(-1) w^{\prime}$, or from closure under addition and additive inverse (because a subspace is a vector space in its own right), $w-w^{\prime}=w+\left(-w^{\prime}\right)$.) Similarly, $x^{\prime}-x \in X$ because X is a subspace. So $w-w^{\prime}=x^{\prime}-x \in W \cap X=\{0\}$, hence $w-w^{\prime}=x^{\prime}-x=0$, and thus $w=w^{\prime}$ and $x=x^{\prime}$. Therefore, any two ways of writing y as $y=w+x$ with $w \in W$ and $x \in X$ are the same: y cannot be written like this in two different ways.

Since every $y \in Y$ can be written as $w+x$ with $w \in W$ and $x \in X$ in at least one way and not in two different ways, y can be written like this in exactly one way.

A1.2. The set $C(\mathbf{R})$ of continuous real-valued functions on the real numbers is a vector space under pointwise addition and scalar multiplication of functions. Let T be the set

$$
T=\left\{f \in C(\mathbf{R}) \mid \int_{1}^{3} f(x) d x=f(4)\right\}
$$

For example, the function $f(x)=x$ belongs to T. Prove that T is a subspace of $C(\mathbf{R})$.
Solution: We check the conditions of the Subspace Theorem.
(SS1) We must show that the function that is zero everywhere, which is the zero vector of $C(\mathbf{R})$, belongs to T. Suppose $z(x)=0$ for every x. We have

$$
\int_{1}^{3} z(x) d x=\int_{1}^{3} 0 d x=0, \quad \text { and } \quad z(4)=0
$$

which are equal, and therefore $z \in T$ and (SS1) holds.
(SS2) Suppose that $f, g \in T$. Then we know that

$$
\int_{1}^{3} f(x) d x=f(4), \quad \text { and } \quad \int_{1}^{3} g(x) d x=g(4)
$$

We must show that $f+g \in T$. We have

$$
\begin{aligned}
\int_{1}^{3}(f+g)(x) d x & =\int_{1}^{3}(f(x)+g(x)) d x \\
& =\int_{1}^{3} f(x) d x+\int_{1}^{3} g(x) d x \\
& =f(4)+g(4)=(f+g)(4)
\end{aligned}
$$

and therefore $f+g \in T$, and (SS2) holds.
(SS3) Suppose that $f \in T$ and $\alpha \in \mathbf{R}$. Then we know that

$$
\int_{1}^{3} f(x) d x=f(4)
$$

We must show that $\alpha f \in T$. We have

$$
\begin{aligned}
\int_{1}^{3}(\alpha f)(x) d x & =\int_{1}^{3} \alpha f(x) d x \\
& =\alpha \int_{1}^{3} f(x) d x \\
& =\alpha f(4)=(\alpha f)(4)
\end{aligned}
$$

and therefore $\alpha f \in T$, and (SS3) holds.
Since (SS1)-(SS3) hold, T is a subspace of $C(\mathbf{R})$ by the Subspace Theorem.
A1.3. (a) Compute $17+15$ and 17×15 in \mathbf{Z}_{19}.
(b) Suppose F is a field, and $E \subseteq F$ satisfies the following four conditions:
(i) E is closed under subtraction: $\alpha-\beta \in E$ for all $\alpha, \beta \in E$.
(ii) E is closed under multiplication: $\alpha \beta \in E$ for all $\alpha, \beta \in E$.
(iii) If $\alpha \in E-\{0\}$ then $\alpha^{-1} \in E$.
(iv) $E-\{0\} \neq \emptyset$.

Prove that E is a subfield of F. (You may use the Subfield Theorem given on the handout. Make sure you use the correct version, not the incorrect version given out initially.)

Solution: (a) $17+15=32=1 \times 19+13$ in \mathbf{R}, so $17+15=13$ in \mathbf{Z}_{19}.
$17 \times 15=255=190+65=247+8=13 \times 19+8$ in \mathbf{R}, so $17 \times 15=8$ in \mathbf{Z}_{19}.
(b) Suppose E satisfies (i)-(iv). We check the conditions of the Subfield Theorem.
(SF1) By (iv), $E-\{0\} \neq \emptyset$, so there is $\alpha \in E-\{0\}$. By (i), E is closed under subtraction, so $\alpha-\alpha=0 \in E$, and (SF1) holds.
(SF2) As in (SF1), we have some $\alpha \in E-\{0\}$. By (iii), $\alpha^{-1} \in E$. By (ii), E is closed under multiplication, so $\alpha \alpha^{-1}=1 \in E$. Since we know that $0,1 \in E$ and by (i) E is closed under subtraction, $0-1=-1 \in E$ also. So (SF2) holds.
(SF3) Suppose $\alpha, \beta \in E$. We have already shown that $-1 \in E$, and by (ii) E is closed under multiplication, so (-1) $\beta=-\beta \in E$. By (i) E is closed under subtraction, so $\alpha-(-\beta)=\alpha+\beta \in E$. Hence, (SF3) holds.
(SF4) is just (ii), so (SF4) holds.
(SF5) is just (iii), so (SF5) holds.
Since (SF1)-(SF5) hold, E is a subfield of F by the Subfield Theorem.
A1.4. For both parts of this question we are working in the real vector space $C(\mathbf{R})$ as defined in A1.2 above. (a) Suppose $f(x)=\sin x, g(x)=\cos x$, and $h(x)=5 \cos \left(x-\frac{\pi}{7}\right)$. Prove that $h \in \operatorname{span}\{f, g\}$.
(b) Consider the functions $f_{1}(x)=\cos x, f_{2}(x)=\cos (2 x)$, and $f_{3}(x)=\cos (3 x)$. Prove that f_{1}, f_{2}, f_{3} is a linearly independent collection of functions in $C(\mathbf{R})$ by setting a linear combination of these three functions equal to 0 , and then substituting in the particular values $x=0, \frac{\pi}{4}$ and $\frac{\pi}{2}$. (You will need to solve a system of linear equations, but it is quite simple.)

Solution: (a) We must prove that h is a linear combination of f and g, i.e., that there are scalars a and b so that $h=\alpha f+\beta g$, which means (since operations are defined pointwise) that $h(x)=\alpha f(x)+\beta g(x)$ for all $x \in \mathbf{R}$. We use the trigonometric identity $\cos (A-B)=\cos A \cos B+\sin A \sin B$:

$$
\begin{aligned}
h(x) & =5 \cos \left(x-\frac{\pi}{7}\right)=5\left(\cos x \cos \frac{\pi}{7}+\sin x \sin \frac{\pi}{7}\right) \\
& =5 \sin \frac{\pi}{7} \sin x+5 \cos \frac{\pi}{7} \cos x=5 \sin \frac{\pi}{7} f(x)+5 \cos \frac{\pi}{7} g(x) \quad \forall x \in \mathbf{R}
\end{aligned}
$$

Hence, $h=\left(5 \sin \frac{\pi}{7}\right) f+\left(5 \cos \frac{\pi}{7}\right) g \in \operatorname{span}\{f, g\}$, as required. (Note that we do not care what the values of $\sin \frac{\pi}{7}, \cos \frac{\pi}{7}$ are: all that matters is that they are scalars, i.e., real numbers.)
(b) To prove linear independence, we need to suppose that there are scalars α, β, γ such that $\alpha f_{1}+\beta f_{2}+\gamma f_{3}=$ 0,

$$
\begin{array}{ll}
\text { i.e., } & \alpha f_{1}(x)+\beta f_{2}(x)+\gamma f_{3}(x)=0 \\
\text { i.e., } & \alpha \cos x+\beta \cos (2 x)+\gamma \cos (3 x)=0
\end{array} \quad \forall x \in \mathbf{R} .
$$

We must show that $\alpha=\beta=\gamma=0$. One way to get information about α, β, γ is by substituting some particular values for x :

$$
\begin{array}{rrrr}
x=0: & \alpha \cos 0+\beta \cos 0+\gamma \cos 0=0 & \text { i.e. } & \alpha+\beta+\gamma=0 \\
x=\frac{\pi}{4}: & \alpha \cos \frac{\pi}{4}+\beta \cos \frac{\pi}{2}+\gamma \cos \frac{3 \pi}{4}=0 & \frac{\sqrt{2}}{2} \alpha+0 \beta-\frac{\sqrt{2}}{2} \gamma=0 \\
x=\frac{\pi}{2}: & \alpha \cos \frac{\pi}{2}+\beta \cos \pi+\gamma \cos \frac{3 \pi}{2}=0 & 0 \alpha-\beta+0 \gamma=0 \tag{3}
\end{array}
$$

Dividing (2) by $\frac{\sqrt{2}}{2}$, we get the system

$$
\begin{align*}
\alpha+\beta+\gamma & =0 \tag{1}\\
\alpha-\gamma & =0 \tag{4}\\
-\beta & =0 \tag{3}
\end{align*}
$$

This is such a simple system that we can solve it without using our heavy machinery: from (3), $\beta=0$, so that (1) becomes $\alpha+\gamma=0$. However, (4) says that $\alpha-\gamma=0$ and adding we get $2 \alpha=0$ so that $\alpha=0$, and then $\gamma=0$.

Since the only possible scalars are $\alpha=\beta=\gamma=0$, we conclude that the functions f_{1}, f_{2} and f_{3} are linearly independent, as required.

