
Math 2600/5600 - Linear Algebra - Fall 2015

Assignment 1 Solutions

A1.1. Suppose V is a vector space, and W,X are two subspaces of V . Then the set Y = W + X =
{w + x | w ∈ W,x ∈ X} (every element of Y is the sum of an element of W and an element of X) is also a
subspace of V . (This can be shown using the Subspace Theorem, but you do not have to do that.)

If W and X are subspaces, Y = W +X , and W ∩X = {0}, then we say that Y is the direct sum of W
and X . Prove that if Y is the direct sum of W and X then every y ∈ Y can be written as y = w + x with
w ∈ W , x ∈ X in exactly one way.

Solution: [8] Suppose Y is the direct sum of W and X , so that Y = W +X , where W and X are subspaces
of V , and W ∩X = {0}.

First, since Y = W + X , every y ∈ Y can be written in at least one way as y = w + x with w ∈ W ,
x ∈ X .

Second, suppose that y ∈ Y can be written as both y = w + x and y = w′ + x′, where w,w′ ∈ W and
x, x′ ∈ X ′. We will show that these ways of writing y must be the same, i.e., that w′ = w and x′ = x. We have
w+x = y = w′+x′, so w−w′ = x′−x. SinceW is a subspace, w−w′ ∈ W , because subspaces are closed under
subtraction. (This follows either from closure under addition and scalar multiplication, w−w′ = w+(−1)w′,
or from closure under addition and additive inverse (because a subspace is a vector space in its own right),
w − w′ = w + (−w′).) Similarly, x′ − x ∈ X because X is a subspace. So w − w′ = x′ − x ∈ W ∩X = {0},
hence w−w′ = x′ − x = 0, and thus w = w′ and x = x′. Therefore, any two ways of writing y as y = w+ x

with w ∈ W and x ∈ X are the same: y cannot be written like this in two different ways.
Since every y ∈ Y can be written as w + x with w ∈ W and x ∈ X in at least one way and not in two

different ways, y can be written like this in exactly one way.

A1.2. The set C(R) of continuous real-valued functions on the real numbers is a vector space under pointwise
addition and scalar multiplication of functions. Let T be the set

T = {f ∈ C(R) |

∫

3

1

f(x) dx = f(4)}.

For example, the function f(x) = x belongs to T . Prove that T is a subspace of C(R).

Solution: We check the conditions of the Subspace Theorem.

(SS1) We must show that the function that is zero everywhere, which is the zero vector of C(R), belongs to
T . Suppose z(x) = 0 for every x. We have

∫ 3

1

z(x) dx =

∫ 3

1

0 dx = 0, and z(4) = 0,

which are equal, and therefore z ∈ T and (SS1) holds.

(SS2) Suppose that f, g ∈ T . Then we know that
∫

3

1

f(x) dx = f(4), and

∫

3

1

g(x) dx = g(4).

We must show that f + g ∈ T . We have
∫ 3

1

(f + g)(x) dx =

∫ 3

1

(f(x) + g(x)) dx

=

∫ 3

1

f(x) dx+

∫ 3

1

g(x) dx

= f(4) + g(4) = (f + g)(4)

and therefore f + g ∈ T , and (SS2) holds.
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(SS3) Suppose that f ∈ T and α ∈ R. Then we know that
∫ 3

1

f(x) dx = f(4).

We must show that αf ∈ T . We have
∫

3

1

(αf)(x) dx =

∫

3

1

αf(x) dx

= α

∫

3

1

f(x) dx

= αf(4) = (αf)(4)

and therefore αf ∈ T , and (SS3) holds.

Since (SS1)–(SS3) hold, T is a subspace of C(R) by the Subspace Theorem.

A1.3. (a) Compute 17 + 15 and 17× 15 in Z19.

(b) Suppose F is a field, and E ⊆ F satisfies the following four conditions:
(i) E is closed under subtraction: α− β ∈ E for all α, β ∈ E.
(ii) E is closed under multiplication: αβ ∈ E for all α, β ∈ E.
(iii) If α ∈ E − {0} then α−1 ∈ E.
(iv) E − {0} 6= ∅.

Prove that E is a subfield of F . (You may use the Subfield Theorem given on the handout. Make sure you
use the correct version, not the incorrect version given out initially.)

Solution: (a) 17 + 15 = 32 = 1× 19 + 13 in R, so 17 + 15 = 13 in Z19.
17× 15 = 255 = 190 + 65 = 247 + 8 = 13× 19 + 8 in R, so 17× 15 = 8 in Z19.

(b) Suppose E satisfies (i)–(iv). We check the conditions of the Subfield Theorem.

(SF1) By (iv), E−{0} 6= ∅, so there is α ∈ E−{0}. By (i), E is closed under subtraction, so α−α = 0 ∈ E,
and (SF1) holds.

(SF2) As in (SF1), we have some α ∈ E − {0}. By (iii), α−1 ∈ E. By (ii), E is closed under multiplication,
so αα−1 = 1 ∈ E. Since we know that 0, 1 ∈ E and by (i) E is closed under subtraction, 0 − 1 = −1 ∈ E

also. So (SF2) holds.

(SF3) Suppose α, β ∈ E. We have already shown that −1 ∈ E, and by (ii) E is closed under multiplication,
so (−1)β = −β ∈ E. By (i) E is closed under subtraction, so α− (−β) = α+ β ∈ E. Hence, (SF3) holds.

(SF4) is just (ii), so (SF4) holds.

(SF5) is just (iii), so (SF5) holds.

Since (SF1)–(SF5) hold, E is a subfield of F by the Subfield Theorem.

A1.4. For both parts of this question we are working in the real vector space C(R) as defined in A1.2 above.

(a) Suppose f(x) = sinx, g(x) = cosx, and h(x) = 5 cos(x− π

7
). Prove that h ∈ span {f, g}.

(b) Consider the functions f1(x) = cosx, f2(x) = cos(2x), and f3(x) = cos(3x). Prove that f1, f2, f3 is a
linearly independent collection of functions in C(R) by setting a linear combination of these three functions
equal to 0, and then substituting in the particular values x = 0, π

4
and π

2
. (You will need to solve a system

of linear equations, but it is quite simple.)
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Solution: (a) We must prove that h is a linear combination of f and g, i.e., that there are scalars a and b

so that h = αf + βg, which means (since operations are defined pointwise) that h(x) = αf(x) + βg(x) for
all x ∈ R. We use the trigonometric identity cos(A−B) = cosA cosB + sinA sinB:

h(x) = 5 cos(x−
π

7
) = 5

(

cosx cos
π

7
+ sinx sin

π

7

)

= 5 sin
π

7
sinx+ 5 cos

π

7
cosx = 5 sin

π

7
f(x) + 5 cos

π

7
g(x) ∀ x ∈ R.

Hence, h = (5 sin π

7
)f + (5 cos π

7
)g ∈ span {f, g}, as required. (Note that we do not care what the values of

sin π

7
, cos π

7
are: all that matters is that they are scalars, i.e., real numbers.)

(b) To prove linear independence, we need to suppose that there are scalars α, β, γ such that αf1+βf2+γf3 =
0,

i.e., αf1(x) + βf2(x) + γf3(x) = 0 ∀ x ∈ R,

i.e., α cosx + β cos(2x) + γ cos(3x) = 0 ∀ x ∈ R.

We must show that α = β = γ = 0. One way to get information about α, β, γ is by substituting some
particular values for x:

x = 0 : α cos 0 + β cos 0 + γ cos 0 = 0 i.e. α + β + γ = 0 (1)

x = π

4
: α cos π

4
+ β cos π

2
+ γ cos 3π

4
= 0

√
2

2
α + 0β −

√
2

2
γ = 0 (2)

x = π

2
: α cos π

2
+ β cosπ + γ cos 3π

2
= 0 0α − β + 0γ = 0 (3)

Dividing (2) by
√
2

2
, we get the system

α + β + γ = 0 (1)
α − γ = 0 (4)

− β = 0 (3)

This is such a simple system that we can solve it without using our heavy machinery: from (3), β = 0, so
that (1) becomes α+ γ = 0. However, (4) says that α− γ = 0 and adding we get 2α = 0 so that α = 0, and
then γ = 0.

Since the only possible scalars are α = β = γ = 0, we conclude that the functions f1, f2 and f3 are
linearly independent, as required.
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