
STRATIFIED PATH SPACES AND FIBRATIONS

Bruce Hughes

Abstract. The main objects of study are the homotopically stratified metric spaces
introduced by Quinn. Closed unions of strata are shown to be stratified forward tame.
Stratified fibrations between spaces with stratifications are introduced. Paths which
lie in a single stratum except possibly at their initial points form a space with a
natural stratification, and the evaluation map from that space of paths is shown to
be a stratified fibration. Applications to mapping cylinders and to the geometry of
manifold stratified spaces are expected in future papers.

1. Introduction

Spaces with stratifications are decomposed into disjoint subspaces called strata.
Two strata are adjacent if one of them (the lower stratum) is contained in the
closure of the other. Quinn [14] defines homotopically stratified spaces in terms of
homotopy theoretical properties of pairs of adjacent strata, the defining conditions
essentially implying that there is a good homotopy theoretical model for a normal
fibration of one strata in the other. In addition to conditions on pairs of adjacent
strata, it is desirable to have an understanding of the nature of the embedding of
a stratum (or a closed union of strata) in the entire space. For example, instead
of just knowing that the local homotopy type of a pair of adjacent strata is locally
constant along the lower stratum, one would like to know that the stratified local
homotopy of the space is locally constant along any stratum. The main object of
this paper is to develop such a global understanding.

The paper [6] announces a generalized Tubular Neighborhood Theorem for ho-
motopically stratified spaces with manifold strata. For spaces with only two strata
a complete proof was given in [9]. The present paper is the first in a series (culmi-
nating in [7]) which will provide a proof of the general case.

To motivate the main results, consider a locally finite simplicial complex X. Such
a space is an example of the type of stratified space of interest here: the strata
are the open simplices. If Y is a subcomplex of X, then Y is a closed union of
strata. The classical Homotopy Extension Property implies that any deformation
f : Y × I → Y (i.e., a self-homotopy with h0 = idY ) extends to a deformation
f̃ : X × I → X. In general, the extension f̃ cannot be required to preserve the
complement of Y (i.e., one cannot require f̃((X \Y )× I) ⊂ X \Y ). This is because
the local homotopy type of the complement might not be locally constant along Y .
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(For example, if X is the union of three 1-simplices with a single common vertex v
and Y is the union of two of the 1-simplices, then a deformation of Y which moves
v cannot be extended to a complement preserving homotopy of X.) However, if
f is a stratum preserving deformation (i.e., for each y ∈ Y , f({y} × I) lies in the
same open simplex of Y as y), then the extension f̃ can be required to preserve the
complement of Y ; in fact, f̃ can be required to be stratum preserving.

This stratum preserving deformation extension property is easily verified for
simplicial complexes by extending the deformation over one simplex at a time.
As an application of our main results we will verify the extension property for a
homotopically stratified metric space (with finitely many strata) with Y ⊆ X a
closed union of strata. The crux of the problem is to extend the stratum preserving
deformation f : Y × I → Y to a neighborhood U of Y in X. The first step for
this (and the first part of the main theorem below) is to prove that Y is stratified
forward tame in X: there exists a neighborhood U for which there is a deformation
h : U × I → X of U to Y in X rel Y which is nearly stratum preserving in the
sense that h is stratum preserving except at time t = 1 when h1(U) = Y .

The second step is to notice that the deformation f and the nearly stratum
preserving deformation h combine to give a homotopy lifting problem into the
space Pnsp(X, Y ) of nearly stratum preserving paths in X with end point in Y .
Pnsp(X,Y ) maps to Y by evaluation. A stratum preserving solution solves the
extension problem (for more details see §6). Such a solution exists by the second
part of the main theorem.

We now state the main theorem and the corollary regarding stratum preserving
deformation extension, referring to the body of the paper for more complete defi-
nitions. The two parts in the theorem are global versions of the Forward Tameness
and Normal Fibrations conditions in Definition 3.3 below.

Main Theorem. Let X be a homotopically stratified metric space with a finite
number of strata and let Y ⊆ X be a closed union of some of the strata of X. Then

(1) Y is stratified forward tame in X, and
(2) the evaluation map q : Pnsp(X, Y ) → Y is a stratified fibration.

Corollary (Stratum Preserving Deformation Extension Property). Let
X be a homotopically stratified metric space with a finite number of strata and let
Y ⊆ X be a closed union of some of the strata of X. If f : Y × I → Y is a
stratum preserving deformation, then there exists a stratum preserving deformation
f̃ : X × I → X extending f .

One purpose of this paper is to provide some foundational material on stratified
fibrations and stratified approximate fibrations. Quinn [13] has previously consid-
ered stratified systems of fibrations in which the range of a map is stratified and over
each stratum there is an ordinary fibration (with a mild compatibility condition).
For stratified fibrations, both domain and range are stratified and the homotopy
lifting problem and solution are required to respect these stratifications.

Here is one way the homotopy theoretical results of this paper will be used.
Limits of certain stratum preserving geometric constructions will be taken in [7].
The stratum preserving property will be lost in the limit because of collapsing of
strata phenomena. The fact that q : Pnsp(X, Y ) → Y is a stratified fibration will
be used to lift the collapse and recover stratum preservation.
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In addition, we plan to use the results of this paper to verify that mapping
cylinders of certain maps between manifold stratified spaces are themselves manifold
stratified spaces. This line of research is related to the work of Cappell and Shaneson
[3].

These results are closely related to those of Quinn [14, 3.2]. However, the proofs
given here are independent of [14], and correct certain technical deficiencies in [14].
For more information see §10.

2. Background on spaces with stratifications

This section contains the basic definitions from the theory of stratifications to-
gether with a few observations which are well-known to the experts. For other
treatments of this foundational material, consult Akbulut and King [1], Dovermann
and Schultz [4], Goresky and MacPherson [5], Verona [17], and Mather [11],[12].

Definition 2.1. A partition of a space X consists of an index set I and a collection
{Xi}i∈I of pairwise disjoint subspaces of X such that X = ∪i∈IXi. For i ∈ I, Xi

is called the i–stratum.

Definition 2.2. A stratification of a space X consists of an index set I and a
locally finite partition {Xi}i∈I of locally closed subspaces of X. For i ∈ I, Xi is
called the i–stratum and

Xi = ∪{Xk | Xk ∩ cl(Xi) 6= ∅}
is called the i–skeleton. In this case, X is a space with a stratification.

Note that the skeleta are closed subspaces of X. For if x ∈ X \Xi, then x ∈ Xk

for some k 6= i and Xk ∩ cl(Xi) = ∅ so x /∈ cl(Xi).
For a space X with a stratification {Xi}i∈I , define a relation ≤ on the index set

I by
i ≤ j if and only if Xi ⊆ cl(Xj).

The stratification satisfies the Frontier Condition if for every i, j ∈ I,

Xi ∩ cl(Xj) 6= ∅ implies Xi ⊆ cl(Xj).

Proposition 2.3. If a stratification {Xi}i∈I of X satisfies the Frontier Condition,
then

(1) ≤ is a partial ordering of I,
(2) for every i, j ∈ I, Xi ⊆ Xj if and only if i ≤ j,
(3) for each i ∈ I, Xi = cl(Xi).

Proof. (1) The reflexive and transitive properties are clear. To establish anti-
symmetry, assume Xi ⊆ cl(Xj) and Xj ⊆ cl(Xi) and show that Xi = Xj . Since Xi

is locally closed, given x ∈ Xi there exists an open neighborhood U of x in X such
that U ∩Xi is closed in U . Note that U ∩Xi = U ∩ cl(Xi). Since x ∈ cl(Xj) there
exists y ∈ U ∩Xj ⊆ U ∩ cl(Xi) = U ∩Xi. Thus Xi ∩Xj 6= ∅ and so Xi = Xj .

(2) Suppose first that Xi ⊆ Xj . Since Xi ⊆ Xi ⊆ Xj , it follows that Xi ∩
cl(Xj) 6= ∅. The Frontier Condition implies that Xi ⊆ cl(Xj) so i ≤ j. Conversely,
suppose i ≤ j so that Xi ⊆ cl(Xj). If Xk ∩ cl(Xi) 6= ∅, then Xk ∩ cl(Xj) 6= ∅, so
Xi ⊆ Xj .

(3) Since Xi ⊆ Xi and skeleta are closed, cl(Xi) ⊆ Xi. If Xk ∩ cl(Xi) 6= ∅, then
the Frontier Condition implies that Xk ⊆ cl(Xi), so Xi ⊆ cl(Xi). ¤
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Corollary 2.4. If {Xi}i∈I is a stratification of X, then the Frontier Condition
holds if and only if ≤ is a partial ordering of I and for each i ∈ I, Xi = cl(Xi).

Proof. If the Frontier Condition holds, use Proposition 2.3. Conversely, to verify the
Frontier Condition assuming the sufficient conditions, assume that Xi∩cl(Xj) 6= ∅.
Since Xj = cl(Xj) by assumption and Xi ⊆ Xj , it follows that Xi ⊆ cl(Xj). ¤
Remark. In the terminology of Goresky and MacPherson [5, p.36] a stratification
{Xi}i∈I of a space X satisfying the Frontier Condition is an I–decomposition of X
and the strata Xi are called pieces.

Definition 2.5. A filtration of a space X consists of a partially ordered index set
(I,≤) and a collection {Xi}i∈I of subspaces of X such that for every i, j ∈ I,
Xi ⊆ Xj if and only if i ≤ j. For i ∈ I, Xi is called the i–skeleton and

Xi = Xi \
⋃
{Xj | j < i}

is called the i–stratum. In this case, X is a filtered space.

Note that a minimal element −∞ and a maximal element ∞ may be adjoined
to I so that X−∞ = ∅ and X∞ = X.

If X has a filtration, then it is often the case that the associated strata define
a stratification of X. For example, this happens if the skeleta in the filtration are
closed in X, the strata are pairwise disjoint and the index set is finite. Conversely,
it follows from Proposition 2.3 above that the skeleta induced by a stratification
satisfying the Frontier Condition forms a filtration.

3. Quinn’s theory of stratified spaces

Some definitions from Quinn [14] are recalled (see also [6], [8], [9]).

Definition 3.1. A subset Y ⊆ X is forward tame in X if there exist a neighbor-
hood U of Y in X and a homotopy h : U×I → X such that h0 = inclusion : U → X,
ht|Y = inclusion : Y → X for each t ∈ I, h1(U) = Y , and h((U \Y )×[0, 1)) ⊆ X\Y.

Definition 3.2. For Y ⊆ X the homotopy link of Y in X by

holink(X, Y ) = {ω ∈ XI | ω(t) ∈ Y if and only if t = 0}.
Evaluation at 0 defines a map q : holink(X, Y ) → Y called holink evaluation.

Definition 3.3. A space X with a stratification satisfying the Frontier Condition
is a homotopically stratified space if the following two conditions are satisfied:

(i) Forward Tameness. For each k > i, the stratum Xi is forward tame in
Xi ∪Xk.

(ii) Normal Fibrations. For each k > i, the holink evaluation

q : holink(Xi ∪Xk, Xi) → Xi

is a fibration.

If X is a space with a partition, then a map f : Z×A → X is stratum preserving
along A if for each z ∈ Z, f({z} × A) lies in a single stratum of X. In particular,
a map f : Z × I → X is a stratum preserving homotopy if f is stratum preserving
along I.
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Definition 3.4. A subset Y ⊆ X of a space with a stratification is stratified
forward tame in X if there exist a neighborhood U of Y in X and a homotopy
h : U × I → X such that h0 = inclusion : U → X, ht|Y = inclusion : Y → X for
each t ∈ I, h1(U) = Y , h((U \ Y ) × [0, 1)) ⊆ X \ Y, and h is stratum preserving
along [0, 1).

Note that the homotopy h need not be stratum preserving, but it is nearly
stratum preserving.

4. Stratified path spaces

Let X be a space with a stratification {Xi}i∈I satisfying the Frontier Condition
so that ≤ is a partial order on I. All spaces of paths are given the compact-open
topology.

If Y ⊆ X, then the stratified homotopy link of Y in X, denoted holinks(X,Y ),
consists of all ω in holink(X, Y ) such that ω((0, 1]) lies in a single stratum of X:

holinks(X,Y ) = {ω ∈ holink(X, Y ) | for some i, ω(t) ⊆ Xi for all t ∈ I}.
The stratified homotopy link has a natural filtration with i–skeleton

holinks(X, Y )i = {ω | ω(1) ∈ Xi}.
The holink evaluation (at 0) restricts to a map q : holinks(X, Y ) → Y .

Let Pnsp(X) be the space of nearly stratum preserving paths in X; that is, those
paths ω : I → Y such that ω((0, 1]) lies in a single stratum of X. Thus,

Pnsp(X) = {ω ∈ XI | ω((0, 1]) ⊆ Xi for some i ∈ I}.
Define q : Pnsp(X) → X to be evaluation at 0, q(ω) = ω(0).

There is a natural partition of Pnsp(X) into disjoint subspaces

Pnsp(X)i = {ω ∈ Pnsp(X) | ω(1) ∈ Xi}.
Throughout the rest of the paper, we will assume that Pnsp(X) is endowed with
this natural partition.

Define the total homotopy link of X to be

holink(X) =
⋃

i∈I
holinks(X, Xi) ⊆ XI

with evaluation q : holink(X) → X. Naturally partition the total homotopy link
by setting

holink(X)i = Pnsp(X)i ∩ holink(X)

for i ∈ I.
If Y ⊆ X is a union of strata of X, define

Pnsp(X,Y ) = holinks(X,Y ) ∪ Pnsp(Y )

with evaluation q : Pnsp(X, Y ) → Y . Again the partition of Pnsp(X) induces a
partition of Pnsp(X,Y ).

Finally, define the space of stratum preserving paths in X to be

Psp(X) = {ω ∈ XI | ω(I) ⊆ Xi for some i ∈ I}.
Thus, Pnsp(X) = holink(X) ∪ Psp(X) and holink(X) ∩ Psp(X) = ∅.
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5. Stratified fibrations

Let X and Y be spaces with partitions {Xi}i∈I and {Yj}j∈J , respectively.

Definition 5.1. A map p : X → Y is a stratified fibration provided given any
space Z and any commuting diagram

Z
f−−−−→ X

×0

y
yp

Z × I
F−−−−→ Y

with F a stratum preserving homotopy, there exists a stratified solution; i.e., a
stratified homotopy F̃ : Z × I → X such that F̃ (z, 0) = f(z) for each z ∈ Z and
pF̃ = F . The diagram above is a stratified homotopy lifting problem.

As an example, consider the evaluation q : Psp(X) → X. The standard proof
that the evaluation XI → X is a fibration shows that q is a stratified fibration.

Another example occurs when a group G acts discontinuously on a space X such
that the orbit space X/G is homotopically stratified by the orbit type stratification.
Then Beshears [2] has shown that under mild hypothesis, the orbit map X → X/G
is a stratified fibration. Such actions include locally linear actions of finite groups
on manifolds. The proof in [2] relies on some of the results in this paper.

In the usual theory of fibrations certain partial solutions can be extended [18,
p. 35]. We will need a stratified version. For notation let Z be a metric space
with a closed subspace A ⊆ Z such that the inclusion A → Z is a cofibration.
Thus (Z, A) is an NDR-pair and so Z ×{0}∪A× I is a strong deformation retract
of Z × I [18, p. 22]. Let K : Z × I × I → Z × I be such a strong deformation
retraction so that K0 = idZ×I , Kt|(Z × {0} ∪ A × I) is the inclusion for all t ∈ I
and K1(Z × I) = Z × {0} ∪A× I.

Lemma 5.2 Stratified Relative Lifting. Suppose p : X → Y is a stratified
fibration and there is a commuting diagram

Z × {0} ∪A× I
f−−−−→ X

inclusion

y
yp

Z × I
F−−−−→ Y

with f and F stratum preserving along I; that is, a stratified relative lifting problem.
If (Z,A) is a metric NDR-pair and K : Z × I × I → Z × I is a strong deformation
retraction as above with the additional properties:

(1) FK : Z × I × I → Y is stratum preserving along the second I factor,
(2) fK1 : Z × I → X is stratum preserving along I,

then there is a stratified solution extending f ; that is, a stratum preserving homotopy
F̃ : Z × I → X such that pF̃ = F and F̃ |(Z × {0} ∪A× I) = f .

Proof. Let ϕ : Z × I → I be a map such that ϕ−1(0) = Z ×{0} ∪A× I and define
H : Z × I × I → Z × I by

H(z, s, t) =

{
K(z, s, 1− t

ϕ(z,s) ), if t < ϕ(z, s)

K(z, s, 0), if t ≥ ϕ(z, s).
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Now
Z × I × {0} fK1−−−−→ X

y
yp

Z × I × I
FH−−−−→ Y

is a stratified lifting problem (that FH is stratum preserving along the second I
factor follows from condition (1) on FK above) so there is a stratified solution
G : Z × I × I → X. One checks that the homotopy F̃ : Z × I → X defined by
F̃ (z, s) = G(z, s, ϕ(z, s)) is a stratified solution of the original problem extending
f (that F̃ is stratum preserving follows from the fact that G is and condition (2)
on fK1 above). ¤

Lemma 5.3. Suppose p : X → Y is a stratified fibration and there is a stratified
lifting problem

Z
f−−−−→ X

×0

y
yp

Z × I
F−−−−→ Y

with two solutions G,H : Z × I → X. Then there exists a homotopy J : G ' H
rel Z × {0} such that

(1) pJ = F × idI , and
(2) J is stratum preserving along I × I.

Proof. The usual proof (e.g. [15, pp. 100–101]) in the unstratified case works here.
Alternatively, if one is willing to assume that Z is metric, then Lemma 5.2 can be
applied. ¤

Definition 5.4. A map p : X → Y is a stratified approximate fibration provided
given any space Z and any commuting diagram

Z
f−−−−→ X

×0

y
yp

Z × I
F−−−−→ Y

with F is a stratum preserving homotopy, there exists a stratified controlled solution;
i.e., a map F̃ : Z × I × [0, 1) → X which is stratum preserving along I × [0, 1) such
that F̃ (z, 0, t) = f(z) for each (z, t) ∈ Z× [0, 1) and the function F̄ : Z× I× I → Y

defined by F̄ |Z × I × [0, 1) = pF̃ and F̄ |Z × I × {1} = F × id{1} is continuous and
stratum preserving along I × I.

Note that the partitions of X and Y need not be stratifications and the map p
need not be stratified.

Remarks 5.5.
(1) If K ⊆ X is a union of a subcollection of {Xi}i∈I and p : X → Y is a

stratified fibration (or stratified approximate fibration), then so is p| : K →
Y .
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(2) If X and Y are metric spaces, then in the definition of a stratified fibration
or stratified approximate fibration p : X → Y there is no loss of generality
in assuming that the spaces Z in the homotopy lifting problems are metric
spaces. This is because there is an universal lifting problem whose solution
implies that any other problem can be solved. For the universal problem
the space Z is a subspace of Y I ×X and, hence, is metric (cf. [9,§12]).

The following lemma shows that we can relax the requirement in the definition
of stratified approximate fibrations that stratified controlled solutions agree at all
times with the given initial lift.

Lemma 5.6. Suppose
Z

f−−−−→ X

×0

y
yp

Z × I
F−−−−→ Y

is a stratified lifting problem (i.e., the diagram commutes and F is a stratum pre-
serving homotopy) and g : Z × (I × [0, 1) ∪ {0} × I) → X is a map such that

(1) g is stratum preserving along I × [0, 1) ∪ {0} × I,
(2) g(z, 0, 1) = f(z) for each z ∈ Z, and
(3) the function g : Z × I × I → Y defined by

g(z, s, t) =
{

pg(z, s, t), if t < 1 or s = 0
F (z, s), if t = 1

is continuous and stratum preserving along I × I.
Then there exists a stratified controlled solution F̃ : Z × I × [0, 1) → X of the given
problem.

Proof. Define F̃ by F̃ (z, s, t) = g(x, s, (1− s)(1− t) + t). ¤

6. Statements of the main results

In this section we state the main results and formulate inductive statements from
which the main results will follow. After more background work in §§7,8, the proofs
of the main results are completed in §9.

Theorem 6.1. If X is a homotopically stratified metric space with a finite number
of strata and Y ⊆ X is a closed union of strata, then the evaluation map

q : Pnsp(X, Y ) → Y

is a stratified fibration.

As pointed out below after Theorem 6.8, Theorem 6.1 will follow from Theorem
6.7. The proof of Theorem 6.7 will be completed in §9.

Corollary 6.2. If X is a homotopically stratified metric space with a finite number
of strata, Y ⊆ X is a closed union of strata and Xi ⊆ X is a stratum, then each of
the following evaluation maps is a stratified fibration:

(1) q : Pnsp(X) → X,
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(2) q : holinks(X, Y ) → Y ,
(3) q : holink(X) → X,
(4) q : Pnsp(X, Xi) → Xi,
(5) q : holinks(X, Xi) → Xi.

Proof. (1) follows from Theorem 6.1 and the equality Pnsp(X) = Pnsp(X,X).
(2) follows from Theorem 6.1 and the fact that holinks(X, Y ) is a union of strata

of Pnsp(X, Y ) (see Remark 5.5(1)).
For (3), let

Z
f−−−−→ holink(X) ⊆−−−−→ Pnsp(X)

×0

y
yq

Z × I
F−−−−→ X

be a stratified lifting problem. From (1), there is a stratified solution in Pnsp(X),
F̃ : Z × I → Pnsp(X). However, the image of F̃ is actually in holink(X). For if
(z, s) ∈ Z × I, let Xi be the stratum of X containing F ({z}× I) and let Xj be the
stratum containing f(z)(0). Then i 6= j and f(z) ∈ holink(X)j . Since F̃ is stratum
preserving, F̃ (z, s) ∈ holink(X)j for all s ∈ I. Thus, F̃ (z, s)(t) ∈ Xj for all t > 0
and F̃ (z, s)(0) = qF̃ (z, s) = F (z, s) ∈ Xi. It follows that F̃ (z, s) ∈ holink(X).

Finally, note that Xi is a closed union of strata in (X \Xi) ∪Xi and

holinks(X,Xi) = holinks((X \Xi) ∪Xi, Xi),

Pnsp(X,Xi) = Pnsp((X \Xi) ∪Xi, Xi).

Thus, (4) and (5) follow from Theorem 6.1 and (2), respectively. ¤

Theorem 6.3. If X is a homotopically stratified metric space with a finite number
of strata and Y ⊆ X is a closed union of strata, then Y is stratified forward tame
in X.

As pointed out below after Theorem 6.8, Theorem 6.3 will follow from Theorem
6.7. The proof of Theorem 6.7 will be completed in §9.

We now restate and prove the Stratum Preserving Deformation Extension Prop-
erty from the introduction.

Corollary 6.4. Let X be a homotopically stratified metric space with a finite num-
ber of strata and let Y ⊆ X be a closed union of some of the strata of X. If
f : Y × I → Y is a stratum preserving deformation, then there exists a stratum
preserving deformation f̃ : X × I → X extending f .

Proof. Let U be a neighborhood of Y in X for which there is a nearly stratum
preserving deformation h : U × I → X of U to Y in X rel Y (by Theorem 6.3).
Define a stratum preserving lifting problem

U
g−−−−→ Pnsp(X,Y )

×0

y
yq

U × I
G−−−−→ Y
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by g(x)(t) = h(x, 1 − t) and G(x, t) = f(h(x, 1), t). By Theorem 6.1 there is a
stratified solution G̃ : U × I → Pnsp(X,Y ). Let ρ : X → I be a map such that
ρ−1(0) = Y and ρ−1(1) = X \ U . Define f̃ : X × I → X by

f̃(x, t) =





f(x, t), if ρ(x) = 0

G̃(x, s)(ρ(x)(1−s)
1−ρ(x) ), if 0 < ρ(x) < 1 and ρ(x) ≤ s ≤ 1

G̃(x, s)( (ρ(x)−1)s+ρ(x)
ρ(x) ), if 0 < ρ(x) < 1 and 0 ≤ s ≤ ρ(x)

x, if ρ(x) = 1

where s = t(1− ρ(x)). ¤
We now formulate the statements which will be proven inductively in later sec-

tions in order to deduce Theorems 6.1 and 6.3. Let k ≥ 0 and l ≥ 1 be integers.

Statement Sk,l. If X is a homotopically stratified metric space, Y ⊆ X is a closed
union of strata, X \ Y has at most k strata and Y has at most l strata, then the
evaluation map q : Pnsp(X, Y ) → Y is a stratified fibration.

Statement Tk,l. If X is a homotopically stratified metric space, Y ⊆ X is a closed
union of strata, X \ Y has at most k strata and Y has at most l strata, then Y is
stratified forward tame in X.

Remark 6.5.
(1) S0,1 holds. For if X has a single stratum, then Pnsp(X, X) = XI and

evaluation at 0 XI → X is a fibration.
(2) T0,l holds for all l ≥ 1 vacuously.
(3) T1,1 holds by the Forward Tameness condition (Definition 3.3(i)).
The induction gets started in the following Proposition whose proof relies on the

work of [9] on stratified spaces with two strata.

Proposition 6.6. S1,1 holds.

Proof. Let X be a homotopically stratified metric space, let Y ⊆ X be a closed
union of strata and assume that X \ Y and Y are each a single stratum. In the
terminology of [9] (X,Y ) is a homotopically stratified pair. According to [9, Thm.
4.2] there exist a neighborhood U of Y in X and a retraction r : U → Y such that
(X,Y ) has the W (r)-lifting property. We now recall this property. Let

W (r) = {(x, ω) ∈ U × Y I | r(x) = ω(1)}.
The W (r)-lifting property asserts the existence of a map α : W (r) → XI such that

(1) α(x, ω)(0) = ω(0) for each (x, ω) ∈ W (r),
(2) α(x, ω)(1) = x for each (x, ω) ∈ W (r),
(3) if x ∈ Y , then α(x, ω) = ω,
(4) if x ∈ U \ Y , then α(x, ω) ∈ holink(X, Y ).

Now consider a lifting problem

Z
f−−−−→ Pnsp(X,Y )

×0

y
yq

Z × I
F−−−−→ Y
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According to Remark 5.5 we may assume that Z is metric. Using a partition of
unity one can construct a map

ε : Z → (0, 1]

such that for every z ∈ Z and 0 ≤ t ≤ ε(z), we have f(z)(t) ∈ U . Define a map
ω : Z × I → Y I by

ω(z, t)(s) =
{

F (z, t− 2ts), if 0 ≤ s ≤ 1/2
r(f(z)(ε(z)(2ts− t))), if 1/2 ≤ s ≤ 1.

Note that ω(z, 0)(s) = F (z, 0) = f(z)(0) for all z ∈ Z and s ∈ I. Now define

δ : Z × I → XI by δ(z, t) = α(f(z)(ε(z)t), ω(z, t))

and note that
(1) δ(z, 0)(s) = F (z, 0),
(2) δ(z, t)(1) = f(z)(ε(z)t),
(3) δ(z, t)(0) = F (z, t).
(4) if f(z) ∈ Y I , then δ(z, t) ∈ Y I .

Finally, define a stratified solution F̃ : Z × I → Pnsp(X,Y ) of the lifting problem
by

F̃ (z, t)(s) =
{

δ(z, t) (s/ε(z)t) , if 0 ≤ s < ε(z)t
f(z)(s), if ε(z)t ≤ s ≤ 1. ¤

Theorem 6.7. Let k ≥ 0 and l ≥ 0 be integers.
(1) Tl−1,1, Tk,1, Tk,l−1 and Sk,l−1 imply Tk,l if l > 1.
(2) Tk−1,1 and Sk−1,1 imply Sk,1 if k > 1.
(3) Tk−1,1 and Sk−1,1 imply Tk,1 if k > 1.
(4) Tk+l,1 Sk+l,1 and Sk,l imply Sk,l+1.

Theorem 6.8. If Theorem 6.7 holds, then Statements Sk,l and Tk,l hold whenever
k, l ≥ 0 and k + l ≥ 1.

Proof. The proof is by induction on k + l. Assume k + l = 1 and note that S0,1

and T0,1 hold by Remark 6.5. Since S1,0 and T0,1 are empty statements, we may
proceed. Assume inductively that k + l > 1 and that Sa,b and Ta,b hold whenever
a, b ≥ 0 and 1 ≤ a + b < k + l.

We begin by verifying Tk,l. Consider first the case l = 1. Then k ≥ 1. As
observed in Remark 6.5, T1,1 holds. Thus, assume l = 1 and k > 1. Then (k− 1) +
1 = k < k + l, so we have Statements Tk−1,1 and Sk−1,1. Now Tk,1 follows from
Theorem 6.7(3).

Consider now the case l > 1 (and k ≥ 1). Then (l−1)+1 = l < k+l, k+1 < k+l
and k + (l − 1) < k + l. Thus we have Statements Tl−1,1, Tk,1, Tk,l−1 and Sk,l−1.
Now Tk,l follows from Theorem 6.7(1).

Hence we have verified Tk,l and we may assume that Ta,b holds whenever a, b ≥ 0
and 1 ≤ a + b ≤ k + l.

We now verify Sk,l. Consider first the case l = 1. Then k ≥ 1. Note that S1,1

follows from Proposition 6.6. Thus, we may assume that l = 1 and k > 1. Then
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(k − 1) + 1 = k ≤ k + l and (k − 1) + 1 = k < k + l. Thus, we have Tk−1,1 and
Sk−1,1. Now Sk, 1 follows from Theorem 6.7(2).

Now consider the case l > 1. Then (k + l− 1) + 1 = k + l so Tk+l−1,1 holds. We
know that Sk+l−1,1 holds from the case above. And k + (l − 1) < k + l so Sk,l−1

holds. Now Sk,l follows from Theorem 6.7(4). ¤

Note that Theorems 6.1 and 6.3 follow immediately. The missing link is the
proof of Theorem 6.7 which will be completed in §9.

7. Stratified systems of stratified fibrations

Quinn [13] introduced stratified systems of fibrations over stratified spaces. We
now generalize this to stratified systems of stratified fibrations in which the domain
as well as the range is stratified.

In this section our minimal standing hypothesis will be that X denotes a space
with a partition {Xi}i∈I and Y denotes a space with a filtration {Y j}j∈J such
that Y is partitioned by its strata {Yj}j∈J .

Definition 7.1. If p : X → Y is a map and A ⊆ Y , then A is said to be a stratified
p-NDR subset of Y if there exist a neighborhood U of A in Y and a strong defor-
mation retraction of U to A in Y which is covered by a stratum preserving strong
deformation retraction of p−1(U) to p−1(A) in X; that is, there exist homotopies
h : U × I → Y and h̃ : p−1(U)× I → X such that

(1) h(y, 0) = y and h̃(x, 0) = x for all y ∈ U , x ∈ p−1(U),
(2) h(y, t) = y and h̃(x, t) = x for all (y, t) ∈ A× I, (x, t) ∈ p−1(A)× I,
(3) h(y, 1) ∈ A and h̃(x, 1) ∈ p−1(A) for all y ∈ U , x ∈ p−1(U),
(4) ph̃(x, t) = h(p(x), t) for all x ∈ p−1(U), t ∈ I,
(5) h̃ is a stratum preserving homotopy.

Special attention should be paid to the condition in the definition above that h̃ is
required to be stratum preserving, not just nearly stratum preserving. In particular,
consider the identity map idX : X → X. If both the domain and range are given
the same filtration, then the skeleta of X are not, in general, idX -NDR subsets of
X. However, if the domain is unstratified (i.e., consists of a single stratum) and the
skeleta in the range are neighborhood strong deformation retracts, then the skeleta
are idX -NDR subsets of X.

Lemma 7.2. If Y is a metric space, A ⊆ Y is a closed union of strata and stratified
forward tame in Y , and q : Pnsp(Y ) → Y is evaluation, then A is a stratified q-NDR
subset of Y .

Proof. Let U be a neighborhood of A in Y for which there exists a nearly stratum
preserving strong deformation retraction h : U × I → Y of U to A in Y as in
Definition 3.4. Since Pnsp(Y ) is paracompact, there exists a map α : q−1(U) → (0, 1]
such that ω([0, α(ω)]) ⊆ U for each ω ∈ q−1(U). Define h̃ : q−1(U)× I → Pnsp(Y )
by

h̃(ω, s)(t) =

{
h(ω(2tα(ω)), s− 2t), if 0 ≤ t ≤ s

2

ω(2(1−sα(ω))t+2sα(ω)−s
2−s ), if s

2 ≤ t ≤ 1. ¤



STRATIFIED PATH SPACES AND FIBRATIONS 13

Corollary 7.3. If Y is a metric space, B ⊆ A ⊆ Y are closed unions of strata, B
is stratified forward tame in Y , and q : Pnsp(Y, A) → A is evaluation, then B is a
stratified q-NDR subset of A.

Proof. Let p : Pnsp(Y ) → Y be evaluation. Lemma 7.2 implies that B is a stratified
p-NDR subset of Y . Let U be a neighborhood of B in Y for which there exists
homotopies h : U × I → Y and h̃ : p−1(U) × I → Pnsp(Y ) as in 7.1. By the proof
of 7.2 we may assume that h is nearly stratum preserving. Note that Pnsp(Y,A) ⊆
Pnsp(Y ) and, in fact, Pnsp(Y, A)i ⊆ Pnsp(Y )i for all i. Also q−1(B) = p−1(B). It
then follows from the explicit construction in 7. 2 that h̃| : q−1(U)×I → Pnsp(Y, A)
is a stratum preserving strong deformation retraction covering h. ¤
Definition 7.4. A map p : X → Y is a stratified system of stratified fibrations if
for each j ∈ J ,

(1) p| : p−1(Yj) → Yj is a stratified fibration for each stratum Yj of Y , and
(2) each skeleton Y j of Y is a stratified p-NDR subset of Y .

If in the definition above, X is unstratified (i.e., the partition of X consists of a
single stratum) and p| : p−1(Yj) → Yj is a fibration for each stratum Yj of Y , then
p is said to be a stratified system of fibrations. This notion was defined by Quinn
[13] and is useful in the theory of group actions. Talbert [16] observes that any
map with a homotopy colimit structure is a stratified system of fibrations.

Our interest in stratified system of fibrations is that they are usually stratified
approximate fibrations. See Corollary 7.6. This is a generalization of the analogous
fact for stratified systems of fibrations due to Quinn [14, 3.3]

Lemma 7.5. Let X be a metric space with a partition, Y a metric space with a
stratification satisfying the Frontier Condition, and let Y 0 be a minimal skeleton of
Y (so that Y 0 = Y0). If p : X → Y is a map such that p| : p−1(Y \ Y 0) → Y \ Y 0

is a stratified approximate fibration, p| : p−1(Y 0) → Y 0 is a stratified fibration, and
Y 0 is a stratified p-NDR subset of Y , then p : X → Y is a stratified approximate
fibration.

Proof. Let U be a neighborhood of Y 0 in Y for which there exists a strong defor-
mation retraction h : U × I → Y of U to Y 0 in Y which is covered by a stratum
preserving strong deformation retraction h̃ : p−1(U)×I → X of p−1(U) to p−1(Y 0)
in X as in Definition 7.1. Suppose there is given a stratified lifting problem

Z
f−−−−→ X

×0

y
yp

Z × I
F−−−−→ Y

for which we need to find a stratified controlled solution. According to Remark
5.5(2) we may assume that Z is a metric space. Let Z0 = F−1

0 (Y 0). Since F is
stratum preserving, Z0× I = F−1(Y 0). Let Z1 = F−1

0 (Y \Y 0). Since F is stratum
preserving, Z1 × I = F−1(Y \ Y 0). Thus, there is a stratified lifting problem

Z1
f |−−−−→ p−1(Y \ Y 0)

×0

y
yp|

Z1 × I
F |−−−−→ Y \ Y 0
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and, since p| : p−1(Y \ Y 0) → Y \ Y 0 is a stratified approximate fibration, there is
a stratified controlled solution

g : Z1 × I × [0, 1) → p−1(Y \ Y 0).

Thus g(z, 0, t) = f(z) for all (z, t) ∈ Z1 × [0, 1), g is stratum preserving along
I × [0, 1), and the function g : Z1 × I × I → Y \ Y 0 defined by

g(z, s, t) =
{

pg(z, s, t), if (z, s, t) ∈ Z1 × I × [0, 1)
F (z, s), if (z, s) ∈ Z1 × I and t = 1

is continuous and stratum preserving along I × I. Choose a neighborhood Z ′ of
Z0 in Z such that F (Z ′ × I) ⊆ U and let Z ′1 = Z ′ ∩ Z1 = Z ′ \ Z0. Use the fact
that Z is paracompact to define a map α : Z ′1 → [0, 1) such that g(z, s, t) ∈ U if
α(z, s) ≤ t ≤ 1 and let α̃ : Z → I be any continuous extension of α. Let ρ : Z → I
be a map such that ρ−1(0) = Z0 and ρ(Z \ Z ′) = 1. Define β : Z ′ × I → Y by

β(z, s) =
{

h(g(z, s, ρ(z) · α(z, s) + 1− ρ(z)), 1), if (z, s) ∈ Z ′1 × I

F (z, s), if (z, s) ∈ Z0 × I,

define β̃ : Z ′1 × I → X by

β̃(z, s) = h̃(g(z, s, ρ(z) · α(z, s) + 1− ρ(z)), 1)

and note that p ◦ β̃ = β|Z ′1 × I. Define A ⊆ Z ′ × [0, 1) by A = {(z, t) | ρ(z) ≥
1− t, z ∈ Z ′} and let

B = {(z, s, t) | ρ(z) ≥ 1− t, s ∈ I, z ∈ Z ′} ⊆ Z ′ × I × [0, 1),

so that with a slight abuse of notation, B can be identified with A× I. See Figure
7.5.1.

Figure 7.5.1
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We will now show that Z ′ × {0} × [0, 1) ∪ B is a strong deformation retract
of Z ′ × I × [0, 1). First we need an auxiliary map. Given 0 ≤ τ ≤ 1 define
Rτ : I × I × I → I by

Rτ (s, t, u) =





(s− us, t + us), if t ≤ τ − s

(s− ut− uτ, t− ut− uτ), if τ − s ≤ t ≤ τ

(s, t), if τ ≤ t.

Thus Rτ is a strong deformation retraction of I × I onto {(s, t) ∈ I × I | s =
0 or τ ≤ t}. Now define K : Z ′ × I × [0, 1)× I → Z ′ × I × [0, 1) by K(z, s, t, u) =
(z,R1−ρ(z)(s, t, u)). Thus, K is a strong deformation retraction of Z ′ × I × [0, 1)
onto Z ′ × {0} × [0, 1) ∪B. Define γ : Z ′ × {0} × [0, 1) ∪B → p−1(Y 0) by

γ(z, s, t) =
{

h̃(f(z), 1), if (z, s, t) ∈ Z ′ × {0} × [0, 1)

β̃(z, s), if (z, s, t) ∈ B.

Define Γ : Z ′ × I × [0, 1) → Y 0 by Γ(z, s, t) = β(z, s) and note that

Z ′ × {0} × [0, 1) ∪B
γ−−−−→ p−1(Y 0)

inclusion

y
yp|

Z ′ × I × [0, 1) Γ−−−−→ Y 0

commutes. In fact, γ and Γ are stratum preserving along I and the strong defor-
mation K is such that

(1) ΓK : Z ′ × I × [0, 1)× I → Y 0 is stratum preserving along the final I factor
(because Y 0 has only a single stratum!), and

(2) γK1 : Z × I × [0, 1) → p−1(Y 0) is stratum preserving along I (this requires
a check of the definitions).

Thus Lemma 5.2 implies that there is a stratified solution

Γ̃ : Z ′ × I × [0, 1) → p−1(Y 0)

extending γ; that is,
(1) Γ̃ is stratum preserving along I,
(2) Γ̃|Z ′ × {0} × [0, 1) = γ|,
(3) Γ̃|B = γ|,
(4) pΓ̃ = Γ.

See Figure 7.5.2.
Define Λ : Z × (I × [0, 1) ∪ {0} × I) → X by

Λ(z, s, t) =





Γ̃(z, s, t), if t ≤ 1− ρ(z), z ∈ Z ′, t < 1

h̃(g(z, s, (1− t)α(z, s) + t), 1−t
ρ(z) ), if t ≥ 1− ρ(z), z ∈ Z ′, t < 1

(i.e. (z, s, t) ∈ B)
g(z, s, (1− t)α̃(z, s) + t), if z ∈ Z \ Z ′, t = 1
f(z), if s = 0, t = 1.
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Figure 7.5.2

Define Λ : Z × I × I → Y by

Λ(z, s, t) =
{

pΛ(z, s, t), if t < 1 or s = 0
F (z, s), if t = 1.

One checks that Λ is stratum preserving along I×[0, 1)∪{0}×I and Λ is continuous
and stratum preserving along I × I. Apply Lemma 5.6 to turn Λ into a controlled
stratified solution of the original problem. ¤

Corollary 7.6. Let X be a metric space with a partition, Y a metric space with a
stratification satisfying the Frontier Condition such that Y has only finitely many
strata. If p : X → Y is a stratified system of stratified fibrations, then p is a
stratified approximate fibration.

Proof. This follows from Lemma 7.5 by induction on the number of strata of Y . ¤

Remark 7.7. If p : X → Y is an algebraic map between algebraic varieties, then X
and Y have Whitney stratifications with the property that p takes each stratum of
X submersively into some stratum of Y . I conjecture that such maps are stratified
approximate fibrations, I don’t know if they are stratified fibrations, and suspect
they need not be stratified systems of fibrations.

8. Preliminary constructions

This section contains a collection of technical results which will be needed in the
proofs of the main results in §9.

Lemma 8.1 (The Limbo). Suppose X is a space, Z is a metric space, A ⊆ Z is
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a closed subspace and there is a commuting diagram

Z
f−−−−→ XI

×0

y
yq

Z × I
h−−−−→ X

with q(ω) = ω(0) for all ω ∈ XI and f(a)(t) = f(a)(0) for all (a, t) ∈ A × I.
Suppose also that there exists a partial lift h̃ : (Z \ A) × [0, 1) → XI ; that is,
qh̃ = h|(Z \A)× [0, 1) and h̃(z, 0) = f(z) for all z ∈ Z \A. Then there exists a map
u : (Z \A)× I → I such that u(z, 0) = 1 for all z ∈ Z \A, u−1(0) = (Z \A)×{1},
and so that the function ĥ : Z × I → XI given by

ĥ(z, s)(t) =
{

h̃(z, s(1− t))(su(z, 1− t) + (1− s)t), if t > 0 and z ∈ Z \A

h(z, s(1− t)), if t = 0 or z ∈ A

is continuous. Moreover, ĥ0 = f and qĥ = h.

Proof. For each point (z, t) ∈ (Z \A)× [0, 1) choose a number N(z, t) such that
(1) 0 < N(z, t) ≤ 1− t,
(2) diam{h̃(z, t)(s) | 0 ≤ s ≤ N(z, t)} < 2 diam{f(z)(s) | 0 ≤ s ≤ t},
(3) N(z, 0) = 1 for all z ∈ Z \A.

For each (z, t) ∈ (Z\A)×[0, 1) choose a neighborhood U(z,t) of (z, t) ∈ (Z\A)×[0, 1)
such that

(1) diam{h̃(z′, t′)(s) | 0 ≤ s ≤ N(z, t)} < 2 diam{f(z′)(s) | 0 ≤ s ≤ t′} for all
(z′, t′) ∈ U(z,t),

(2) U(z,t) ∩ Z × {0} 6= ∅ if and only if t = 0.
Let {Uα} be a locally finite refinement of {U(z,t)} and let {φα} be a partition of
unity subordinate to {Uα}. For each α choose (z, t) such that Uα ⊆ U(z,t) and set
δα = N(z, t). Define u : (Z \ A) × I → I by u|(Z \ A) × [0, 1) =

∑
δαφα and

u(z, 1) = 0 for all z ∈ Z \ A. Note that if z ∈ Z \ A and t < 1, then u(z, t) > 0.
One checks that the function ĥ defined above is continuous. Finally, it is easy to
verify that ĥ0 = f and qĥ = h. ¤

Here is some explanation for the preceding lemma. Consider the map ∆u : Z →
XI defined by

∆u(z)(t) = ĥ(z, 1)(t) =
{

h̃(z, 1− t)(u(z, 1− t)), if t > 0 and z ∈ Z \A

h(z, 1− t), if t = 0 or z ∈ A.

Then ĥ is a homotopy from f to ∆u. One should think of ∆u as the u-damped
diagonal map. The point of the lemma is that the undamped diagonal function
∆ : Z → XI defined by

∆(z)(t) =
{

h̃(z, 1− t)(t), if t > 0 and z ∈ Z \A

h(z, 1− t), if t = 0 or z ∈ A

need not be continuous. For if {zn} is a sequence in Z \ A converging to a ∈ A,
there is no reason for {h̃(zn, 1− t)(t)} to converge to h(a, 1− t) if 0 < t < 1. But u
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Figure 8.1.1. The Limbo

is chosen so that {h̃(zn, 1− t)(u(z, 1− t))} converges to h(a, 1− t). The name ‘The
Limbo’ refers to the way one must duck below the diagonal as in the Limbo dance.
See Figure 8.1.1.

Addendum 8.2. In the situation of Lemma 8.1, suppose further that X is a metric
space with a stratification satisfying the Frontier Condition, f(Z) ⊆ Pnsp(X), h is
a stratum preserving homotopy so that

Z
f−−−−→ Pnsp(X)

×0

y
yq

Z × I
h−−−−→ X

is a stratified lifting problem, and that h̃ has image in Pnsp(X) and is stratum
preserving along [0, 1). Then the map ĥ defined in Lemma 8.1 has image in Pnsp(X)
and is a stratum preserving homotopy.

Proof. If z ∈ Z, then ĥ(z, 0) = f(z) ∈ Pnsp(X). Choose i such that ĥ(z, 0) ∈
Pnsp(X)i. Thus, ĥ(z, 0)(t) ∈ Xi for each t ∈ (0, 1]. We must show that ĥ(z, s) ∈
Pnsp(X)i for each s ∈ I; that is, we must show that ĥ(z, s)(t) ∈ Xi for each s ∈ I

and t ∈ (0, 1]. First assume that z ∈ A. Then ĥ(z, s)(t) = h(z, s(1 − t)). Since
h(z, 0) = ĥ(z, 0)(1) ∈ Xi and h is stratum preserving, it follows that ĥ(z, s)(t) =
h(z, s(1−t)) ∈ Xi for each s ∈ I and t ∈ I. Now assume that z ∈ Z\A, s ∈ I and t ∈
(0, 1]. Then ĥ(z, s)(t) = h̃(z, s(1−t))(v) where v = su(z, 1−t)+(1−s)t. Since t > 0
and u(z, 1− t) > 0, it follows that v > 0. Since h̃(z, 0)− f(z) = ĥ(z, 0) ∈ Pnsp(X)i,
and h̃ is stratum preserving along [0, 1), it follows that h̃(z, s(1 − t)) ∈ Pnsp(X)i.
Thus, h̃(z, s(1− t))(v) ∈ Xi as required. ¤
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Lemma 8.3. Let X be a metric space with a stratification satisfying the Frontier
Condition and let K and L be closed unions of strata of X with M = K ∩ L. Let
L′ = {ω ∈ XI | ω(t) = ω(0) ∈ L for each t ∈ I}. If the evaluation at 0

q : Pnsp(X \ L,K \M) → K \M

is a stratified fibration, then so is the evaluation at 0

q′ : Pnsp(X \ L,K \M) ∪ L′ → K ∪ L.

Proof. Suppose there is given a stratified lifting problem

Z
f−−−−→ Pnsp(X \ L,K \M) ∪ L′

×0

y
yq′

Z × I
F−−−−→ K ∪ L

for which we need to find a stratified stratified solution. Note that A = f−1(L′) is
a closed subset of Z and, since F is stratum preserving, F−1(K \M) = (Z \A)× I.
Thus, there is a stratified lifting problem

Z \A
f |−−−−→ Pnsp(X \ L,K \M)

×0

y
yq

(Z \A)× I
F |−−−−→ K \M.

Since q is a stratified fibration, there is a controlled solution F̃ : (Z \ A) × I →
Pnsp(X \ L,K \ M). According to the Limbo Lemma 8.1 there exists a map u :
(Z \ A) × I → I such that u(z, 0) = 1, u(z, 1) = 0 for each z ∈ Z \ A and so that
the function F̂ : Z × I → XI given by

F̂ (z, s)(t) =
{

F̃ (z, s(1− t))(su(z, 1− t) + (1− s)t), if t > 0 and z ∈ Z \A

F (z, s(1− t)), if t = 0 or z ∈ A

is continuous. Lemma 8.1 implies that F̂ is a solution of the problem and Addendum
8.2 implies that F̂ is a stratum preserving homotopy. ¤
Lemma 8.4. Let X be a metric space with a stratification satisfying the Frontier
Condition and let K and L be closed unions of strata of X with M = K ∩ L. If
K \M is stratified forward tame in X \ L, then there exists an open neighborhood
U of K \M in X \ L such that K is stratified forward tame in U ∪M .

Proof. Let W be a neighborhood of K \M in X \L for which there exists a nearly
stratum preserving homotopy h : W × I → X \ L showing that K \M is stratified
forward tame in X \ L as in Definition 3.4. For each n = 1, 2, 3, . . . let Wn be an
open neighborhood of K \M in X \ L such that diam h({x} × I) < 1/n for each
x ∈ Wn. Let

U =
∞⋃

n=1

[B(1/n,M) \ clB(1/(n + 1),M)] ∩Wn ∪ [W \ clB(1,M)]

where B(k, M) denotes the set of points which are a distance less than k from
some point of M . Let U ′ be an open neighborhood of K \M in X \ L such that
h(U ′ × I) ⊆ U . Since h|U ′ × I extends continuously via the identity to M × I, the
result follows. ¤
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Proposition 8.5 (Blending). Let X be a metric space with a stratification sat-
isfying the Frontier Condition. Let K and L be closed unions of strata of X such
that

(1) M = K ∩ L is stratified forward tame in K,
(2) K \M is stratified forward tame in X \ L,
(3) L is stratified forward tame in (X \K) ∪M ,
(4) q : Pnsp(X \ L, K \M) → K \M is a stratified fibration.

Then K ∪ L is stratified forward tame in X.

Proof. The stratified forward tameness conditions in items (1)–(3) above imply that
there exist open neighborhoods UM of M in K, UK of K \M in X \ L, and UL of
L in (X \K) ∪M together with nearly stratum preserving homotopies

(1) hM : UM × I → K,
(2) hK : UK × I → X \ L, and
(3) hL : UL × I → (X \K) ∪M

as in Definition 3.4. See Figure 8.5.1

Figure 8.5.1

By Lemma 8.4 we can assume that hK is defined on UK ∪M and hK : (UK ∪
M)×I → X is such that hK(x, t) = x for each (x, t) ∈ M×I. Now extend hK (but
continue to denote it the same) to hK : (UK ∪L)× I → X so that hK(x, t) = x for
each (x, t) ∈ L× I.

Let ρM : K → I be a map such that ρ−1
M (0) is a closed neighborhood of M in K

and ρ−1
M (1) = K \ UM . Let h̃M : (K ∪ L)× I → K be defined by

h̃M (x, t) =
{

hM (x, t(1− ρM (x))), if x ∈ UM

x, if x ∈ (K \ UM ) ∪ L.

Note that h̃M deformation retracts a neighborhood of M in K to M rel M and that
h̃M |(K ∪ L) × [0, 1) is stratum preserving along [0, 1). If L′ = {ω ∈ XI | ω(t) =
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ω(0) ∈ Lfor eacht ∈ I}, then it follows from Lemma 8.3 that the evaluation map
q′ : Pnsp(X \L,K \M)∪L′ → K ∪L is a stratified fibration. Define f : UK ∪L →
Pnsp(X \ L,K \M) ∪ L′ by

f(x)(t) = hK(x, 1− t) for(x, t) ∈ (UK ∪ L)× I.

Define F : (UK ∪ L)× I → K by

F (x, t) = h̃M (hK(x, 1), t) for(x, t) ∈ (UK ∪ L)× I.

Consider the commuting diagram

UK ∪ L
f−−−−→ Pnsp(X \ L,K \M) ∪ L′

×0

y
yq′

(UK ∪ L)× [0, 1)
F |−−−−→ K ∪ L.

Note that F |(UK ∪ L) × [0, 1) is stratum preserving along [0, 1). Since q′ is a
stratified fibration there exists a stratified solution F̃ : (UK ∪L)× [0, 1) → Pnsp(X \
L,K \M) ∪ L′; that is, F̃ is stratum preserving along [0, 1), q′F̃ = F and F̃0 = f .
Now the Limbo Lemma 8.1 can be applied with Z = UK ∪ L, A = K ∪ L, and
F̃ the partial lift of F with given initial lift f . It follows that there exists a map
u : (UK \K)× I → I such that u(x, 0) = 1, u(x, 1) = 0 for all x ∈ UK \K and so
that the function F̂ : (UK ∪ L)× I → X given by

F̂ (x, s)(t) =
{

F̃ (x, s(1− t))(su(x, 1− t) + (1− s)t), if t > 0 and x ∈ UK \K

F (x, s(1− t)), if t = 0 or x ∈ K ∪ L

is continuous. Note that F̂ (x, 0)(t) = f(x)(t) = hK(x, 1 − t) for all (x, t) ∈ (UK ∪
L)×I. Let VK be an open neighborhood of K\M in X\L such that the closure of VK

in X \L is contained in UK . Let ρK : UK → I be a map such that ρ−1(0) = K \M
and ρ−1

K (1) = UK \ VK . Define F ∗ : UK ∪ L → XI by

F ∗(x)(t) =
{

F̂ (x, ρK(x))(1− t), if x ∈ UK

x, if x ∈ L.

In particular, F ∗(x)(t) = x for all x ∈ K∪L, F ∗(x)(0) = x and F ∗(x)(1) ∈ K for all
x ∈ UK , and if ρK(x) = 1, then F ∗(x) is a path with F ∗(x)(0) = x and F ∗(x)(1) ∈
M . Let ρL : X \(K \M) → I be a map such that ρ−1

L (0) is a closed neighborhood of
L in X\(K\M) and ρ−1

L (1) = X\(UL∪K). Let h̃L : X\(K\M)×I → X\(K\M)
be defined by

h̃L(x, t) =
{

hL(x, t(1− ρL(x)), if x ∈ UL

x, if x ∈ X \ UL.

Note that h̃L deformation retracts a neighborhood of L in X \ (K \M) to L rel L

and h̃L|L× [0, 1) is a stratum preserving along [0, 1). Let ρ : X \ L → I be a map
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Figure 8.5.2

such that ρ−1(0) is the closure of VK in X \ L and ρ−1(1) = X \ (UK ∪ L). See
Figure 8.5.2.

Define H : X × I → X by

H(x, t) =





F ∗(x)(t), if 0 ≤ t ≤ 1− ρ(x) and ρ(x) 6= 1,
or x ∈ L

h̃L(F ∗(x)(1− ρ(x)), t+ρ(x)−1
ρ(x) ), if 1− ρ(x) ≤ t ≤ 1, ρ(x) 6= 0,

ρ(x) 6= 1 and x /∈ L

h̃L(x, t), if ρ(x) = 1
x, if x ∈ K ∪ L.

See Figure 8.5.3.
Then H deformation retracts a neighborhood of K ∪L to K ∪L in a way which

shows that K ∪ L is stratified forward tame in X. ¤

The following result is a generalization of a phenomenon observed by Quinn [14,
2.7], namely that approximate lifts can sometimes be turned into exact lifts.

Proposition 8.6. Let X be a metric space with a stratification satisfying the Fron-
tier Condition and let K ⊆ X be a closed union of strata.

(1) If q : Pnsp(X,K) → K is a stratified approximate fibration, then it is a
stratified fibration.

(2) If q : holinks(X, K) → K is a stratified approximate fibration, then it is a
stratified fibration.

Proof. The proofs are similar so we only give the proof of (i). Suppose we are given
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Figure 8.5.3

a stratified lifting problem

Z
f−−−−→ Pnsp(X, K)

×0

y
yq

Z × I
F−−−−→ K.

Thus, F is a stratum preserving homotopy and the diagram commutes. According
to Remark 5.5(2), we may assume that Z is metric. Let F̃ : Z × I × [0, 1) →
Pnsp(X,K) be a stratified controlled solution so that F̃ is stratum preserving along
I × [0, 1), F̃ (z, 0, t) = f(z) for all (z, t) ∈ Z × [0, 1) and F : Z × I × I → K defined
by F |Z × I × [0, 1) = qF̃ and F |Z × I ×{1} = F × id{1} is continuous and stratum
preserving along I × I. Define F̂ : Z × I → XI by

F̂ (z, y)(t) =
{

F̃ (z, y, 1− t)(t), if t > 0
F (z, y), if t = 0.

Note that F̂ is continuous, qF̂ = F and F̂ (z, 0) = f(z). One checks that Im F̂ ⊆
Pnsp(X,K) and that F̂ is a stratum preserving homotopy, so that F̂ is a stratified
solution to the given problem. ¤
Lemma 8.7. Let X be a metric space with a stratification satisfying the Frontier
Condition and let Y ⊆ X be a minimal stratum. If evaluation q : holinks(X,Y ) →
Y is a stratified fibration, then so is evaluation q : Pnsp(X, Y ) → Y .

Proof. Suppose we are given a stratified lifting problem

Z
f−−−−→ Pnsp(X,Y )

×0

y
yq

Z × I
F−−−−→ Y.
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Let A = {z ∈ Z | f(z) ∈ Y I} and let Z1 = Z \A. Thus, we have a stratified lifting
problem

Z1
f |−−−−→ holinks(X,Y )

×0

y
yq

Z1 × I
F |−−−−→ Y

which by hypothesis has a stratified solution G : Z1 × I → holinks(X, Y ). There is
also a homotopy lifting problem

A
f |−−−−→ Y I

×0

y
yq

A× I
F |−−−−→ Y

which has a lift h : A× I → Y I defined by

h(z, s)(t) =
{

F (z, s(1− 2t))(t), if 0 ≤ t ≤ 1/2
f(z)(2t− 1), if 1/2 ≤ t ≤ 1.

Note that qh = F |A× I but h0 6= f(z), so this is not a solution of the problem. At
any rate we will now modify G so that it can be extended to all of Z× I via h, and
then worry about the initial lift.

Use Remark 5.5(2) to assume that Z has a metric d and use paracompactness
to construct a map u : Z1 → (0, 1] such that for each (z, s) ∈ Z1 × I

diam{G(z, s)(t) | 0 ≤ t ≤ u(z)} < lub{d(f(z)(t), Y ) | i ∈ I}.

Note that u extends to a map Z → I by sending all of A to 0. For each z ∈ Z1 let
γz : I → I be the map which takes [0, 1/2] linearly onto [0, u(z)] and takes [1/2, 1]
linearly onto [u(z), 1]. That is,

γz(t) =
{

2u(z)t, if 0 ≤ t ≤ 1/2
2(t− 1)(1− u(z)) + 1, if 1/2 ≤ t ≤ 1.

Define G′ : Z1 × I → holinks(X, Y ) by

G′(z, s)(t) =
{

G(z, s(1− 2t))(γz(t)), if 0 ≤ t ≤ 1/2
f(z)(γz(t)), if 1/2 ≤ t ≤ 1.

Then there is a map G̃ : Z × I → Pnsp(X,Y ) defined by G̃|Z1 × I = G′ and
G̃|A × I = h. Note that qG̃ = F , but G̃0 6= f . However, it is easy to see that
there is a stratum preserving homotopy H : f ' G̃0 such that qH is the constant
homotopy F × idI . This is enough to conclude that q : Pnsp(X,Y ) → Y is a
stratified approximate fibration (cf. Lemma 5.6). Finally, apply Proposition 8.6 to
conclude that q is a stratified fibration. ¤
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9. Proofs of the main results

In this section the proofs of the main results stated in §6 are presented. The first
result is a restatement of Theorem 6.7(1). A couple of related results are given in
Corollaries 9.5 and 9.7.

Proposition 9.1. For k ≥ 0, l ≥ 2, Statements Tl−1,1, Tk,1, Tk,l−1 and Sk,l−1

imply Statement Tk,l.

Proof. Let Y be a closed union of strata of a homotopically stratified metric space
X such that X \ Y has k strata and Y has l strata. Let Y0 be a minimal stratum
of Y and note that

(1) Y0 is stratified forward tame in Y by Tl−1,1,
(2) Y \ Y0 is stratified forward tame in X \ Y0 by Tk,l−1,
(3) Y0 is stratified forward tame in (X \ Y ) ∪ Y0 by Tk,1, and
(4) Pnsp(X \ Y0, Y \ Y0) → Y \ Y0 is a stratified fibration by Sk,l−1.

The Blending Proposition 8.5 (applied with K = Y and L = M = Y0) implies that
Y is stratified forward tame in X. ¤

The following result is a restatement of Theorem 6.7(2).

Proposition 9.2. For k ≥ 2 Statements Tk−1,1 and Sk−1,1 imply Statement Sk,1.

Proof. Let Y be a closed union of strata of a homotopically stratified metric space
X such that Y is a single stratum and X \ Y has k strata. We need to show that
q : Pnsp(X, Y ) → Y is a stratified fibration. By Lemma 8.7 it suffices to show that
q : holinks(X, Y ) → Y is a stratified fibration.

Let X0 be a minimal stratum of X \ Y and note that W = X0 ∪ Y is a closed
union of strata of X with only two strata such that X \W has k − 1 strata. Thus
Tk−1,1 implies that X0 is stratified forward tame in X \Y . Lemma 8.4 implies that
there exists an open neighborhood U ′ of W \ Y = X0 in X \ Y such that W is
stratified forward tame in U ′ ∪ Y . Let U be an open neighborhood of W in U ′ ∪ Y
and h : U × I → U ′ ∪ Y a nearly stratum preserving deformation of U to W in
U ′ ∪ Y as in Definition 3.4. Moreover, the proof of Lemma 8.4 shows that we may
assume that h−1(Y ) = Y × I.

Observe that q : Pnsp(X \ X0, Y ) → Y is a stratified fibration by Sk−1,1. As
observed in the proof of Corollary 6.2(2), it follows from Remark 5.5(1) that q :
holinks(X \X0, Y ) → Y is a stratified fibration.

We will now show that q : holinks(U, Y ) → Y is a stratified fibration. Suppose
there is given a stratified lifting problem

(9.2.1)

Z
f−−−−→ holinks(U, Y )

×0

y
yq

Z × I
F−−−−→ Y.

Note that the adjoint induces ĥ1 : holinks(U, Y ) → holinks(W,Y ) so that we have
a stratum preserving lifting problem

Z
ĥ1f−−−−→ holinks(W,Y )

×0

y
yq

Z × I
F−−−−→ Y.
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Now S1,1 (which holds according to Proposition 6.6) implies that there is a stratified
solution G : Z × I → holinks(W,Y ) of this second problem (as above, we are using
the fact that Pnsp(W,Y ) → Y is a fibration implies that holinks(W,Y ) → Y is
a stratified fibration). Define Ĝ : Z × I × I → W by Ĝ(z, s, t) = G(z, s)(t) and
g : Z × I → Pnsp(X, W ) by g(z, s)(t) = h(f(z)(s), 1− t) so that there is a stratified
lifting problem

Z × I
g−−−−→ Pnsp(X,W )

×0

y
yq

Z × I × I
Ĝ−−−−→ W.

Unfortunately, it takes Sk−1,2 to solve this problem. So instead of attempting to
solve it, note that it restricts to

Z × (0, 1]
g|−−−−→ Pnsp(X \ Y, X0)

×0

y
yq

Z × I × (0, 1]
Ĝ|−−−−→ X0

which, by Sk−2,1, has a stratified solution G∗ : Z × I × (0, 1] → Pnsp(X \ Y, X0).
We will now define a commuting diagram

Z × I
A−−−−→ XI

×0

y
yq

Z × I × I
B−−−−→ W

to which the Limbo Lemma 8.1 can be applied. Define B and A by the formulas
B(z, r, s) = Ĝ(z, r, 1−s) = G(z, r)(1−s) and A(z, r) = G∗(z, r, 1). One checks that
the diagram commutes. Define C : Z×I×[0, 1) → XI by C(z, r, s) = G∗(z, r, 1−s).
Then qC = B| and C(z, r, 0) = A(z, r) so that C is a partial lift in the sense of 8.1.
It follows from 8.1 that there exists a lift D : Z × I × I → XI such that qD = B
and D(z, r, 0) = A(z, r). Now define E : Z × I → XI by E(z, r) = D(z, r, 1). Then
qE = F and the explicit formula for D in 8.1 implies that E : Z×I → holinks(U, Y )
and that there is a stratum preserving homotopy E0 ' f which is fibre preserving
over Y . This is enough to conclude that there exists a stratified controlled solution
of (9.2.1) (cf. 5.6 and [10, §12]). Hence, q : holinks(U, Y ) → Y is a stratified
approximate fibration and Proposition 8.6 implies that it is a stratified fibration.

We now complete the proof that q : holinks(X, Y ) → Y is a stratified fibration.
Consider a stratified lifting problem

(9.2.2)

Z
f−−−−→ holinks(X,Y )

×0

y
yq

Z × I
F−−−−→ Y.

Assume that Z is metric (5.5(2)). Let

Z0 = {z ∈ Z | f(z) ∈ holinks(W,Y )}, and

Z1 = {z ∈ Z | f(z) ∩ (X \ U) 6= ∅}.
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Then problem (9.2.2) restricts to problems

Z \ Z1
f |−−−−→ holinks(U, Y )

×0

y
yq

(Z \ Z1)× I
F |−−−−→ Y

and

Z \ Z0
f |−−−−→ holinks(X \X0, Y )

×0

y
yq

(Z \ Z0)× I
F |−−−−→ Y

which (by the first two parts of this proof) have stratified solutions G : (Z \ Z1)×
I → holinks(U, Y ) and H : (Z \ Z0) × I → holinks(X \ X0, Y ). It follows that
G|,H| : (Z \ (Z0 ∪ Z1))× I → holinks(X \X0, Y ) are both stratified solutions of

Z \ (Z0 ∪ Z1)
f |−−−−→ holinks(X \X0, Y )

×0

y
yq

(Z \ (Z0 ∪ Z1))× I
F |−−−−→ Y.

By Lemma 5.3 there exists a map J : Z \ (Z0 ∪ Z1)× I × I → holinks(X \X0, Y )
such that

(1) qJ = F | × idI ,
(2) J is stratum preserving along I × I,
(3) J(z, 0, t) = f(z) for each (z, t) ∈ Z \ (Z0 ∪ Z1)× I,
(4) J(z, s, 0) = G(z, s) and J(z, s, 1) = H(z, s) for each (z, s) ∈ Z\(Z0∪Z1)×I.

Let ϕ : Z → I be a map such that ϕ−1(0) = Z0 and ϕ−1(1) = Z1. Finally, define
F̃ : Z × I → holinks(X, Y ) by

F̃ (z, t) =





G(z, t), if z ∈ Z0

J(z, t, ϕ(z)), if z ∈ Z \ (Z0 ∪ Z1)
H(z, t), if z ∈ Z1.

It follows that F̃ is a stratified solution of (9.2.2). ¤

The following result is a restatement of Theorem 6.7(3).

Proposition 9.3. For k ≥ 2 Statements Tk−1,1 and Sk−1,1 imply Statement Tk,1.

Proof. Let Y be a closed union of strata of a homotopically stratified metric space
X such that Y is a single stratum and X \ Y has k strata. Let X0 be a minimal
stratum of X \ Y and note that W = X0 ∪ Y is a closed union of strata of X with
only two strata such that X \W has k − 1 strata. Note that

(1) Y is stratified forward tame in W by T1,1 (see 6.5(3)),
(2) X0 is stratified forward tame in X \ Y by Tk−1,1,
(3) Y is stratified forward tame in X \X0 by Tk−1,1, and
(4) Pnsp(X \ Y, X0) → X0 is a stratified fibration by Sk−1,1.

The Blending Proposition 8.5 (applied with K = W and L = M = Y0) implies that
Y is stratified forward tame in X. ¤

The following result is a restatement of Theorem 6.7(4).
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Proposition 9.4. For k ≥ 0, l ≥ 0, Statements Tk+l,1, Sk+l,1 and Sk,l imply
Statement Sk,l+1.

Proof. Let Y be a closed union of strata of a homotopically stratified space metric
X such that X \ Y has k strata and Y has l + 1 strata, and consider the map
q : Pnsp(X, Y ) → Y . Let Y0 be a minimal stratum of Y . Note that q−1(Y0) =
Pnsp(X,Y0) and q−1(Y \Y0) = Pnsp(X \Y0, Y \Y0). Since (X \Y0)\(Y \Y0) = X \Y ,
it follows that (X \ Y0) \ (Y \ Y0) has k strata. Also, Y \ Y0 has l strata. From
Sk,l we have that q| : q−1(Y \ Y0) → Y \ Y0 is a stratified fibration. Since X \ Y0

has k + l strata and Y0 has 1 stratum, Sk+l,1 implies that q| : q−1(Y0) → Y0 is a
stratified fibration. Moreover, Tk+l,1 implies that Y0 is stratified forward tame in
X. It follows from Corollary 7.3 that Y0 is a q-NDR subset of Y . Now Lemma 7.5
implies that q : Pnsp(X, Y ) → Y is a stratified approximate fibration. Finally, use
Proposition 8.6 to conclude that q is a stratified fibration. ¤

Finally we establish a couple of related results.

Corollary 9.5. Let X be a homotopically stratified metric space with a finite num-
ber of strata and let Y ⊆ X be a closed union of strata. Then q : Pnsp(X, Y ) → Y
is a stratified system of stratified fibrations.

Proof. If Y k is a skeleton of Y (i.e., Y k = Xk ∩Y ), then Corollary 7.3 implies that
Y k is a q-NDR subset of Y . Since q−1(Yk) = Pnsp(X,Yk), Corollary 6.2(4) implies
that q| : q−1(Yk) → Yk is a stratified fibration. ¤
Lemma 9.6. Let X be a homotopically stratified metric space with a finite number
of strata and let Y ⊆ X be a minimal stratum. Then q : holink(X, Y ) → Y is a
fibration.

Proof. The proof of Proposition 8.6 shows that it suffices to show that

q : holink(X,Y ) → Y

is an approximate fibration (cf. [14, 2.7]). Let

(9.6.1)

Z
f−−−−→ holink(X, Y )

×0

y
yq

Z × I
F−−−−→ Y

be a lifting problem. By Theorem 6.3 Y is stratified forward tame in X. Thus let U
be an open neighborhood of Y in X for which there is a nearly stratum preserving
homotopy h : U × I → X as in Definition 3.4. By using an elementary partition
of unity argument, one sees that we may assume that f(Z) ⊆ holink(U, Y ) (cf. [2],
[14, 2.4(1)]). Now define f ′ : Z × I → XI by

f ′(z, s)(t) = h(f(z)(s), 1− t).

Since h is nearly stratum preserving, f ′(Z × (0, 1]) ⊆ holinks(X, Y ). Moreover,
f ′(z, 0) is the constant path at f(z)(0). Thus we have f ′ : Z × I → Pnsp(X,Y ).
Define F ′ : Z × I × I → Y by

F ′(z, s, t) =
{

(h(f(z)(s− t), 1), if 0 ≤ t ≤ s

F (z, t− s), if s ≤ t ≤ 1



STRATIFIED PATH SPACES AND FIBRATIONS 29

and note that we have a stratified lifting problem

Z × I
f ′−−−−→ Pnsp(X, Y )

×0

y
yq

Z × I × I
F ′−−−−→ Y.

By Theorem 6.1 this problem has a stratified solution F̃ ′ : Z× I× I → Pnsp(X,Y ).
Define g : Z × I × I → Pnsp(X, Y ) by

g(z, s, t)(u) = F̃ ′(z, u, s)(1− t + tu).

One checks that
(1) g(z, 0, 0) = f(z),
(2) g(z, s, 1)(0) = F (z, s), and
(3) g is stratum preserving along I × I.

We now modify g to get a controlled stratified solution F̃ to the original problem
(9.6.1). To this end define F̃ : Z × I × [0, 1) → Pnsp(X, Y ) by F̃ (z, s, t)(u) =
g(zsw)(u) where

w =

{
ts

1−t if 0 ≤ s ≤ 1−t
2−t

t
2−t , if 1−t

2−t ≤ s ≤ 1.

Then F̃ (z, 0, t) = g(z, 0, 0) = f(z), F̃ is stratum preserving along I × [0, 1), and
w → 1 as t → 1 so that qF̃ extends continuously to Z × I × I via F × id{1}. ¤

The following result is essentially due to Quinn [14]. See §10.

Corollary 9.7. Let X be a homotopically stratified metric space with a finite num-
ber of strata and let Y ⊆ X be a closed union of strata. Then q : holink(X,Y ) → Y
is a stratified fibration and a stratified system of fibrations. (Here holink(X,Y ) is
unstratified.)

Proof. It suffices to show that q : holink(X, Y ) → Y is a stratified system of
fibrations, for then Corollary 7.6 implies that q is a stratified approximate fibration
and the proof of Proposition 8.6 shows that q is also a stratified fibration. Since a
stratum Yj is minimal in X \⋃i<j Yi and q−1(Yj) = holink(X \⋃i<j Yi, Yj), Lemma
9.6 implies that q| : q−1(Yj) → Yj is a fibration. It remains to see that the skeleton
Y j is a q-NDR subset of Y . Using the fact that Y j is stratified forward tame in Y
(Theorem 6.3), this follows from the proof of Lemma 7.2. ¤

10. Appendix: Pure subsets

Versions of Theorem 6.3 and Corollary 9.7 are claimed by Quinn in [14, 3.2]
for subsets more general than closed unions of strata, namely the so-called pure
subsets. In this section we present an example to show that [14, 3.2] is not quite
true in the generality as stated, and then show, if one assumes the strata are locally
path connected, Quinn’s claim can be recovered from the results in this paper. Of
course, local path connectedness is not a burdensome restriction because in Quinn’s
important applications the strata are manifolds.
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Definition 10.1. A subset A of a space X with a stratification is called a pure
subset if A is closed and a union of components of strata of X.

Let Y = {0, 1/n | n = 1, 2, 3, . . . } ⊆ R and let X be the cone on Y with vertex
v ∈ X. Then X has a natural stratification with two strata: {v} and X \ {v}. It
is easy to see that with this stratification, X is a homotopically stratified metric
space. The subset A ⊆ X consisting of the closed segment joining {0} and {v} is a
pure subset of X, but A is not stratified forward tame in X (or even a neighborhood
deformation retract). This contradicts [14, 3.2].

The next result shows that in some situations spaces with stratifications can be
restratified so that a pure subset becomes a closed union of strata, rather than just
a closed union of components of strata, so that the results of this paper apply.

For notation in Proposition 10.2 let X denote a space with a finite filtration by
closed subsets:

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xn = X.

Assume that the strata Xi = Xi \Xi−1 satisfy the Forward Tameness and Normal
Fibrations Conditions of Definition 3.3. This might be slightly confusing because
we are not now assuming that the Frontier Condition holds. However, the following
weaker version of the Frontier Condition is satisfied: If C is a path component of a
stratum Xi and C∩cl(Xj) 6= ∅ for some stratum Xj , then C ⊆ cl(Xj). In fact there
is a component K of Xj such that C ⊆ cl(K). For if C ∩ cl(Xj) 6= ∅, then Forward
Tameness guarantees that holink(Xj ∪ C, C) 6= ∅ and the path connectivity of C
and the Normal Fibrations condition imply the existence of K.

Proposition 10.2. Let X be as above. Suppose that the strata are locally path
connected and let A ⊆ X be a pure subset. Then there exists a stratification R of
X such that :

(1) R is finite, satisfies the Frontier Condition, and elements of R are locally
closed,

(2) each R ∈ R is a union of components of the strata {Xi},
(3) X is homotopically stratified with respect to R, and
(4) A is a closed union of some of the strata R.

Proof. The proof is by induction on n. If n = 0, then A is closed and a union of
components of X = X0. Since X is locally path connected, A is also open. Let
R = {X \A,A}. Clearly R is finite and each member of R is a union of components
of X. Because the strata are both open and closed, the Frontier, Forward Tameness
and Normal Fibrations Conditions trivially hold.

Now assume that n > 0 and that the result is true for filtrations with fewer than
(n + 1)-skeleta. In particular, A \X0 is pure in X \X0 and the result applies to

∅ = X0 \X0 ⊆ X1 \X0 ⊆ · · · ⊆ Xn \X0 = X \X0.

Let S be the stratification of X \ X0 with the guaranteed properties. Let {Cα}
be the collection of components of X0. Define Cα ∼ Cβ to mean for every S ∈ S,
Cα ∩ cl(S) 6= ∅ if and only if Cβ ∩ cl(S) 6= ∅. For Cα ⊆ X \ Y let

[Cα]1 = ∪β{Cβ | Cβ ⊆ X \ Y and Cα ∼ Cβ}
and for Cα ⊆ Y let

[Cα]2 = ∪β{Cβ | Cβ ⊆ Y and Cα ∼ Cβ}.
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Let R = S ∪ {[Cα]1} ∪ {[Cα]2}. That R is finite follows from the fact that S is
finite and there exist natural injections of {[Cα]k}α into the set of subsets of S for
k = 1, 2. We only need to check forward tameness and normal fibrations at the new
strata R\S. The union of these strata is X0 and their components are both closed
and open in X0. The result now follows from the fact that the original stratification
satisfies forward tameness and normal fibrations at X0. The Frontier Condition is
verified as follows. Let R ∈ R \ S and suppose R ∩ cl(S) 6= ∅ for some S ∈ S. This
implies that Cα ∩ cl(S) 6= ∅ whenever R = [Cα]k. To show R ⊆ cl(S) it suffices to
show that Cα ⊆ cl(S). Since S = ∪n

i=1S ∩ Xi there exists i = 1, . . . , n such that
Cα ∩ cl(S ∩ Xi) 6= ∅. By the comments before the statement of 10.2, there exists
a component K of Xi such that Cα ⊆ cl(K). Since S is a union of components of
strata from the original stratification, K ⊆ S and so Cα ⊆ cl(S).

Elements of R are easily seen to be locally closed. Finally note that A =
∪α{[Cα]2}. ¤

In the proof above one cannot simply let R be the collection of components of
the strata {Xi} because the components need not be locally finite. For example,
let X be the space consisting of a point {v} with a countable collection of closed
line segments emanating from and converging to {v}. Stratify X with two strata:
{v} and X \ {v}. The the collection of components of strata is not locally finite.

Restratifications also appear in the work of Beshears [2].
Proposition 10.2 can be used to recover Quinn’s result [14, 3.2] from Theorem

6.3 and Corollary 9.7 if one assumes strata are locally path connected.
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