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Abstract

Basic topological constructions of manifold stratified spaces and stratified approximate fibrations
are studied. These include products of manifold stratified spaces, products and compositions of
stratified approximate fibrations and Euclidean stabilization of stratified approximate fibrations. The
main result shows that the adjunction of two manifold stratified spaces via a manifold stratified
approximate fibration is a manifold stratified space.
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1. Introduction

The purpose of this paper is to establish some basic properties of constructions involving
manifold stratified spaces. These are the spaces introduced by Quinn [14] as the natural
setting for the study of topological stratified phenomena. Manifold stratified spaces are the
topological analogues of the smoothly stratified sets of Thom [16] and Mather [13] (see
Goresky and MacPherson [4] for an exposition). Earlier Siebenmann [15] had introduced
a category of topologically stratified spaces less inclusive than Quinn’s, but the locally
conelike condition of Siebenmann has proved to be too rigid (see [12]).

The theory of manifold stratified spaces is closely related to the theory of stratified
approximate fibrations. In this paper we study constructions of manifold stratified spaces
and stratified approximate fibrations. The main result is that the adjunction of two manifold
stratified spaces via a stratified approximate fibration is also a manifold stratified space
(Theorem 6.2). Other constructions studied here include products of manifold stratified
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spaces, products and compositions of stratified approximate fibrations and Euclidean
stabilization of stratified approximate fibrations.

Most of the results established in this paper are crucial to [9] which contains a proof of
the Approximate Tubular Neighborhood Theorem for manifold stratified spaces.

2. Manifold stratified spaces

This section contains the basic definitions from the theory of topological stratifications
as presented in [5-7,14]. Quinn [14] is the original source for most of these ideas.

Definition 2.1. A stratificationof a spaceX consists of an index s€tand a locally finite
partition{X;};c7 of locally closed subspaces &f (the X; are pairwise disjoint and their
unionisX). Fori € Z, X; is called the -stratumand the closed set

X = J{Xe | Xk ncl(x;) # 0
is called the -skeletonWe sayX is aspace with a stratificatian

For a spaceX with a stratification{ X;},c7, define a relatior< on the index sef by
i < jifandonly if X; C cl(X;). TheFrontier Conditionis satisfied if for every, j € Z,
X; Ncl(X;) # ¥ implies X; € cl(X;), in which case< is a partial ordering offZ and
X' =cl(X;) for eachi € 7.

If X is a space with a stratification, then a mApZ x A — X is stratum preserving
along A if for eachz € Z, f({z} x A) lies in a single stratum oX. In particular, a map
f:Z x I — X is astratum preserving homotog§ f is stratum preserving along.
A homotopy f: Z x I — X whose restriction t&Z x [0, 1) is stratum preserving along
[0, 1) is said to benearly stratum preserving

Definition 2.2. Let X be a space with a stratificatidX; };c7 andY C X.
(1) Y isforward tamein X if there exist a neighborhodd of Y in X and a homotopy
h:U x I — X such thathg = inclusion:U — X, h;|Y = inclusion:Y — X for
eacht e I,hi(U)=Y,andh((U\Y) x[0,1)) C X \Y.
(2) Thehomotopy linkof Y in X is defined by
holink(X, Y) = {w € X' |w(t) € Y if and only ifr = 0}.
(3) Letxo e X; € X. Thelocal holink atxg is
holink(X, x0) = {w € holink(X, X;) | w(0) =xo andw() € X;
for somej, forall r € (0, 1]}.
All path spaces are given the compact-open topology. Evaluation at 0 defines a

map g : holink(X, Y) — Y called holink evaluation There is a natural stratification of
holink(X, xo) into disjoint subspaces

holink(X, x0); = {w € holink(X, xo) | (1) € X }.
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Definition 2.3. A spaceX with a stratification satisfying the Frontier Condition is a
manifold stratified spackif the following four conditions are satisfied:

(1) Forward Tamenesg-or eachk > i, the stratum¥; is forward tame inX; U Xy.

(2) Normal Fibrations For eachk > i, the holink evaluation

g :holink(X; U Xi, X;) — X;

is a fibration.
(3) Compactly dominated local holinkBor eachxg € X, there exist a compact subset
C of the local holink holinkX, xg) and a stratum preserving homotopy

h :holink(X, xg) x I — holink(X, xo)

such that:g = id andhi1(holink(X, xg)) C C.

(4) Manifold strata property X is a locally compact, separable metric space, each
stratumX; is a topological manifold (without boundary) al has only finitely
many nonempty strata.

If X is only required to satisfy conditions (1) and (2), th€ns ahomotopically stratified
space

Definition 2.4. A subsetA of a spaceX with a stratification is gure subseif A is closed
and is a union of strata of.

3. Stratified approximatefibrations

In this section we give the formal definitions of various types of stratified approximate
fibrations. These maps are the analogues of the approximate fibrations of Coram and Duvall
[3], but the formulation given here is modeled on [11]. In Remarks 3.3 below we correct
some aspects of the definitions given previously.

Definition 3.1. Let X and Y be spaces with stratificationgX;};cz and {Y;};c7,
respectively, and lep : X — Y be a map.

(1) p is a stratified fibrationprovided that given any spacg and any commuting
diagram

f

77— >x
in il’
ZxI—Ltsy

with F a stratum preserving homotopy, there existstratified solutioni.e., a stratum
preserving homotop¥ : Z x I — X such thatF'(z, 0) = f(z) foreach; € Z andpF = F.
The diagram above isgtratified homotopy lifting problem

L1t has been suggested ttwtatifold would be a better name.
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(2) p is a strong stratified approximate fibratioprovided that given any stratified
homotopy lifting problem, there exists strong stratified controlled solutigni.e., a
map F:Zx I x [0,1) — X which is stratum preserving alonf x [0, 1) such that
F(z,0,1) = f(z) for each(z, 1) € Z x [0, 1) and the functiorF : Z x I x I — Y defined
by F|Z x I x [0,1) = pF andF|Z x I x {1} = F x id;1 is continuous and stratum
preserving alond x I.

(3) p is a weak stratified approximate fibratioprovided that given any stratified
homotopy lifting problem, there existsvaeak stratified controlled solution.e., a map
F:ZxIx [0, 1) — X which is stratum preserving alorigx [0, 1) such thatf(z, 0,1)=
f(z) for each(z,1) € Z x [0,1) and the functionF:Z x I x I — Y defined by
F|Z x I x[0,1)= pF andF|Z x I x {1} = F x idy is continuous.

(4) p is amanifold stratified approximate fibratiofMSAF) if X andY are manifold
stratified spaces analis a proper weak stratified approximate fibration.

(5) If @ is an open cover of, then p is a stratified «-fibration provided that given
any stratified homotopy lifting problem, there existsteatified«-solution i.e., a stratum
preserving homotopy : Z x I — X such thatF (z, 0) = f(z) for eachz € Z and pF is
a-close toF.

(6) p is amanifold approximate fibratio(MAF) if p is an MSAF andX andY have
only one stratum each (i.e., they are manifolds).

(7) If Y x R is given the natural stratification (see Section 4), thenampap— ¥ xR
is a stratified rectangularly controlled fibratiofSRCF) if p is a stratified(a x B)-
fibration for all open covers of Y and 8 of R. Herea x 8 denotes the open cover
(Ux V|Uea,Vep}ofY xR.

Example 3.2. Here is an example of a weak stratified approximate fibratioX — Y
which is not a strong stratified approximate fibration (in facts an MSAF). LetX = R?,

a manifold stratified space with a single stratum. Bétbe a Warsaw circle ifR? with
singular arcA (the arc of non-manifold points d¥). LetY = X/A and letp: X — Y be
the quotient map. Of coursp, is cell-like andY = R2. The imagep(W) of W is a circle

Yo in Y. Stratify Y with two strata:Yp andY \ Yo. ThenY is a manifold stratified space
and it follows easily thap is an MSAF (in fact,p is a MAF whenY is left unstratified).
However,p is not a strong stratified approximate fibration because there are pakhs in
which cannot be approximately lifted £ without leavingp—1(Yo) = W

Remarks and Corrections 3.3. The difference between strong and aweak stratified
approximate fibration is in whether or not the mBpZ x I x I — Y is required to be
stratum preserving alonfgx 7. In my previous papers [5—7] the two notions were confused.
Itis hoped that the following remarks will clarify the issue.

(1) The results in [5] hold when “stratified approximate fibrations” are interpreted as
“strong stratified approximate fibrations”. This change in terminology should be made in
Definition 5.4, Remark 5.5, Lemma 7.5, Corollary 7.6 and Proposition 8.6. | suspect that
Proposition 8.6 also holds for weak stratified approximate fibrations.
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(2) The results in [6] hold when “stratified approximate fibrations” are interpreted as
“weak stratified approximate fibrations”. Thus, Definition 4.1(2) should be corrected and
the terminology changed in Propositions 4.2, 5.5,5.7,5.8,5.10,5.11 and Theorem 7.3. 1 do
not know if in Theorem 7.3 one may conclude thas also a strong stratified approximate
fibrations, but | suspect so. As an example, note that.ik — Y is the weak stratified
approximate fibration in Example 3.2 above, then(gylis a homotopically stratified
space, bup is not a strong stratified approximate fibration.

(3) The results in [7] hold when “stratified approximate fibrations” are interpreted
as “weak stratified approximate fibrations”. Thus the definition in Section 2 should be
corrected and the terminology should be changed in the Main Theorem, Proposition 3.2
and Theorems 4.3, 5.4, 6.1 and 7.1. | do not know if the Main Theorem also holds for
proper SRCFs.

(4) If X andY are manifold stratified space®,has only a single stratumand X — Y
is an MSAF, therp is a strong stratified approximate fibration.

(5) If p: X — Y is a proper stratified-fibration for every open cover of Y andX and
Y are manifold stratified spaces, | do not knowimust be an MSAF. The answer in the
special case wherg: X — Y x R is also unknown to me.

(6) SRCFs are included to illustrate some of the puzzles which remain in the stratified
world. For example, | do not know if every proper SREEFX — Y x R whereX andY
are manifold stratified spaces is an MSAF, but | suspect that it need not be so. Moreover,
I do not know if every proper SRCph: X — Y x R whereX andY are manifold stratified
spaces is a stratifieg-fibration for every open cover of Y x R. The problemis in getting
alocal to global result.

The following result on mappings cylinders is the main result from [6] and will be used
several times in this paper.

Theorem 3.4 [6, Theorem5.11]Let p: X — Y be a proper map between locally compact
homotopically stratified metric spaces with only finitely many strata and suppose the strata
of Y are path connected. Thenis a weak stratified approximate fibration if and only if
cyl(p) with the natural stratification is a homotopically stratified space.

Corollary 35. If p:X — Y is a manifold stratified approximate fibration between
manifold stratified spaces with only finitely many strata, tlogh(p) with the natural
stratification is a manifold stratified space.

Proof. All of the conditions except the compactly dominated local holinks condition
follow from Theorem 3.4. The remaining condition follows from [7, Theorem 6.1].

Theorem 6.2 below on adjunctions of manifold stratified spaces generalizes Corol-
lary 3.5, but its proof uses Corollary 3.5. See Cappell and Shaneson [1] for other conditions
which insure that a mapping cylinder is a manifold stratified space.
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4. Products, compositionsand Euclidean stabilization

In this section we establish facts about products of stratified spaces, products and
compositions of stratified approximate fibrations and Euclidean stabilization.

Products of spaces with stratifications

Here is the notation used in the first result. DeandY be spaces with stratifications
{Xi}iez and{Y;};c 7, respectively. The natural stratification &nx Y is given by

{XixYjl|G, j)eIxT}

It is elementary to verify that this is indeed a locally finite partition by locally closed
subsets. Moreover, if the stratificationsXfandY satisfy the Frontier Condition, then so
does the stratification of x Y. In fact, the induced partial order @hx 7 is described by

(i, j) < (k, ) ifandonlyifi <kandj <I.

Proposition 4.1.

(1) If the stratifications of andY satisfy the forward tameness condition, then so does
the natural stratification of{ x Y.

(2) If the stratifications ofX andY satisfy the normal fibrations condition, then so does
the natural stratification of x Y.

(3) If the stratifications ofX and Y satisfy the compactly dominated local holinks
condition, then so does the natural stratificationbi Y.

(4) If X and Y are manifold stratified spaces, then soXsx Y (with the natural
stratification).

Proof. The proof of (1) is straightforward and is left to the reader. For (2), suppose
(i, j) < (k,1) and show that

holink((X; x Y;) U (Xx x Y1), X; x Y;) > X; x Y;

is a fibration. There are three cases which givg) < (k, [):
() i <kandj <,
(i) i=kandj <1,
(i) i <kandj=1I.
In each of these cases, there is, respectively, a natural identification of

hoIink((X,- x Y;j)U (X x ¥p), X; x Yj) — X; xY;

with the natural map:
() holink(X; U X, X;) x holink(Yj Uy, Yj) — X; xYj,
(i) X; x holink(Y; UY;,Y;) — X; x Yj,
(i) holink (X; U Xy, X;) x Y; - X; xYj.
Each of these is a fibration by hypothesis.
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For (3) let (xo, yo) € X; x Y; be given. The result follows immediately from the
following lemma.

Lemma 4.2. There exists a stratum preserving homotopy equivalence between the local
holink holink(X x Y, (xg, yo)) and the joinholink(X, xo) * holink(Y, yo).

Proof of Lemma 4.2. The join holink X, xp) * holink(Y, yo) is the quotient space of
holink(X, xg) x I x holink(Y, yo)

obtained by making the identificatiots, 0, 0) ~ (», 0, 0’) and(w, 1, 0) ~ (', 1, o) for
all w, o € holink(X, xg) ando, o’ € holink(Y, yg). The natural strata of holik, xg) *
holink(Y, yo) are indexed byA = {(k,[) e T x J | (i, j) < (k, 1)} and are given by

(holink(X, xq) * holink(Y, YO))(k,z)
holink(X, xo)x x (0,1) x holink(Y, yo);, i<k, j<I,
= { holink(X, x0)x x {0} x holink(Y, yo), i<k, j=I,
holink(X, xp) x {1} x holink(Y, yo);, i=k, j<l,
where the sets on the right hand side are identified with their images in

holink(X, xg) * holink(Y, yo).
The strata of holinkX x Y, (xo, yo)) are also indexed byl and are given by

holink(X x Y, (xo, y0)) w € holink(X x Y, (xo0, y0)) | @(1) € Xi x Y1}.

kD = {
In order to begin the definition of a homotopy equivalepcérst let

p tholink(X x Y, (xo, y0)) = I

be a map such thgt1(0) = {w | ©(1) € X x ¥;} andp~1(1) = {w | w(1) € X; x Y}.
Define

@ :holink(X x Y, (xo, yo)) = X' % ¥/
by
p(@)=[pxow, p(w), py ow]

wherepy : X xY — X andp, : X x Y — Y are the projections. The following three facts
imply thaty is well-defined and has image in holid, xg) * holink(Y, yo):

(1) If 0 < p(w) <1, thenpy o w € holink(X, xg) and py o w € holink(Y, yo).

(2) If p(w) =0, thenpx o w € holink(X, xg).

(3) If p(w) =1, thenpx o w € holink(Y, yo).
We only verify the first since the others are similar. So supposedw) < 1. Then
w(1) € X; x Y, forsomei <k andj <. Thus,w((0,1]) C Xi x ¥; andw(0) = (xg, y0)-
The result follows. It is also easy to verify thatakes strata to strata and preserves indices.

In order to define a stratum preserving homotopy inversepfoadopt the following
notation: given any patlv: 1 — Z in a spaceZ and anyt € I, let ¢t - w be the path
(t - w)(s) = w(ts). Definey :holink(X, xo) * holink(Y, yo) — holink(X x Y, (xo, yo)) by



54 B. Hughes / Topology and its Applications 124 (2002) 47-67

Y([o,t,t]) = (1 —1t)-0 x t-7.Itis not too difficult to verify thaty o ¢ andy o ¢ are
stratum preserving homotopic to the respective identiti€s.

Finally, to complete the proof of Proposition 4.1, note that (4) follows immediately from
(1), (2)and (3). O

Products of stratified approximate fibrations

The next result concerns products of stratified approximate fibrations.

Proposition 4.3. If fi:X; — Y;, i = 1,2, are weak(respectively, strong stratified
approximate fibrations between spaces with stratifications, ther f>: X3 x X —

Y1 x Y2 is also a weal(respectively, strongstratified approximate fibratiofwhere the
product spaces are given the natural stratificatipns

Proof. A stratified lifting problem

24f>X1XX2

in lflez

ZxI—L =y, xVs

induces stratified lifting problems
pif

Z——=X;

o

zZx 12y,
wherep; denotes projection to th¢h factor,i = 1, 2. Weak (respectively, strong) stratified
controlled solutionsF;:Z x I x [0,1) — X; of these two problems induce a weak
(respectively, strong) stratified controlled solutibh Z x I x [0,1) — X1 x X2 of the
original problem defined by (z, s, t) = (F1(z, s, 1), F2(z, 5, 1)), as is easily verified. O

The proof of the following result is very similar to the proof of Proposition 4.3 so we
omit it.

Proposition 4.4. If f;: X; — Y;,i =1, 2, are stratifiedw; -fibrations between spaces with
stratifications wherey; is an open cover of;, then f1 x f2:X1 x Xo - Y1 x Yo is a
stratified (a1 x ap)-fibration.

Compositions of stratified approximate fibrations
The following fact concerns compositions of stratified approximate fibrations.

Proposition 45. If f:X — Y andg:Y — Z are weak(respectively, strongstratified
approximate fibrations between metric spaces with stratifications,glieX — Z is also
a weak(respectively, strongstratified approximate fibration.
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Proof. A stratified lifting problem

w—" s x

o Jo

WxI—-tsz
induces a stratified lifting problem
fh

W——>Y

o lg

WxI—t1s~7

with a stratified controlled solutioﬁl: WxIx[0,1)—Y.Letpy:W x[0,1) > W be
projection. Then there is an induced stratified lifting problem

W x [0, 1) —" %
x0 f
WxIx[0,1)—y

with a stratified controlled solutiorﬁg:W x I x [0,1) x [0,1) - X. One might
think that the mapd : W x I x [0, 1) — X defined byH (w, s, 1) = Ho(w, s,t,1) is a
stratified controlled solution of the original problem. However, the @ﬁﬁ need not be
continuously extendible to all oW x I x I via H. The construction can be corrected
as follows. First, sinc&X and Z are metric, it can be assumed tH#t is also a metric
space (cf. [5, Remark 5.5]). Then a partition of unity argument allows one to find a map
¢:WxIx[0,1)—[0,1) so thatH defined byﬁ(w,s,t) = ﬁz(w,s, t,p(w,s, 1)) isa
stratified controlled solution (cf. [5, Lemma 8.1])O

The next example provides a simple example of a stratified fibration and is needed in [9].

Proposition 4.6 (Corner Collapse).et Y be a space with a stratification. DefineY x
[0, +00) x [0, +00) = Y x [0,+00) by r(x,s,t) = (x,s + t). Thenr is a stratified
fibration and maps strata into strata.

Proof. The stratifications ot x [0, +00) x [0, +00) andY x [0, +o00) are the natural
ones. For example, the stratalofx [0, +00) x [0, +00) are of the formY; x {0} x {0},
Y;{0} x (0, +00), ¥; x (0, +00) x {0} or ¥; x (0, +00) x (0, +00) wherey; is a stratum
of Y. Itis clear that- maps strata into strata. To see thas a stratified fibration, suppose
there is a stratified lifting problem:

Z%Y x [0, +00) x [0, +00)

Xol !

Zx1—LF =y x[0,400)
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Write F(z,t) = (F1(z,t), F2(z, 1)) € Y x [0, +00) and f(g) = (~f1(z~), f2(2), f3(2)) €
Y x [0, +00) x [0, +00) for each(z,t) € Z x I. Define F = (F1, F», F3).Z x I —
Y x [0, +00) x [0, +00) for (z,¢) € Z x I by

Fi(z,t) = Fi(z,0) €Y,
f2(2)

Fa(z,t) = m - F2(z,1) €[0,400) if fa(z) + f3(2) #0,
~ _ EIC N .

1:3(2, r) = 7]:2(@ + AR Fa(z,1) € [0, +00) if f2(z) + f3(z) #0,
F2(z,t) = F3(z,t) =0€ [0, +00) if f2(z) + f3(z) =0.

Itis easy to verify that is a stratified solution of the given problemc
Euclidean stabilization of stratified approximate fibrations

The next result concerns stabilizing a mapX — Y by crossing with the identity oR.
It characterizes when the mapx idR is a strong stratified approximate fibration, a weak
stratified approximate fibration, or an SRCF.

Proposition 4.7. Let X andY be metric spaces with stratificatiofX;};cz and{Y;};c7,
respectively, and lep: X — Y be a map.
(A) The following are equivalent
(1) p is astrong stratified approximate fibration,
(2) p xidr:X x R— Y x Ris a strong stratified approximate fibration.
(B) The following are equivalent
(1) pis aweak stratified approximate fibration,
(2) p x idR is a weak stratified approximate fibration,
(3) p x idg is a stratifiedx-fibration for every open cover of Y x R.
(C) The following are equivalent
(1) pis a stratifieda-fibration for every open cover of Y,
(2) p x idR is a stratified rectangularly controlled fibration.

Proof. (A) (1) implies (2) follows from Proposition 4.3 above.
(A) (2) implies (1). Let

f

Z—=X

1]

ZxI——Y

be a stratified homotopy lifting problem. There is an induced stratified homotopy lifting
problem

7% xR

xoi \pridR
ivF

ZxI——=Y xR
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whereix(x) = (x,0) andiy(y) = (y,0) forall x e X andy e Y. If F:Zx1Ix [0,1) —
X x R is a strong stratified controlled solution of the induced problem, then it is easy to
checkthatprz Z x I x[0,1) — X is a strong stratified controlled solution to the original
problem wherepx denotes projection t&.

(B) (1) implies (2) follows from Proposition 4.3 above.

(B) (2) implies (3) follows from a straightforward modification of the proof of the
unstratified case in [11, 12.10].

(B) (3) implies (1). Let

f

Z—=X

1]

ZxI]——Y

be a stratified homotopy lifting problem. There is an induced stratified homotopy lifting
problem

ZXRﬂXXR

in ipxidR
Fxidg

ZxIxR——=Y x R.

Give Y x R the product metric and let be an open cover df x R such that ifU € «,
neZ,andUNY x [n,+00) # @, thendianU <1/n. Let F/':Z x I xR— X xR
be a stratifiedx-solution of the induced problem. Defié: Z x I x [0, +00) — X by
F(z,5,1) = px F'(z,s,t) where px denotes the projection t&. Note thatF is stratum
preserving alond x [0, +o0) and thatf(z,s, t) = f(z) forevery(z,t) € Z x [0, +00).
It remains to show that the functiofi: Z x I x [0, +oco] — Y defined by extendin@f
via F x id{1) is continuous at points df x I x {4-o0}. For this it suffices to consider a
sequence(z;, s, @}ioil in Z x I x [0, +00) converging tazg, sg, +00) € Z x I x {+00}
and show tha{p F (z;, si, ti)}{2, converges taF (zo, so). To this end lete > 0 be given.
There exists an intege¥ such thatit > N, thens; € [n, +o0) for somen € Z with n >
1/e.Leti > N. Then(p x idr) F'(z;, si, t;) is a-close to(F (z;, s;), t;). Hence there exists
U € a suchthalp x idr) F'(z;, si, t;), (F(zi, si), ;) € U. In particular,U N [n, +00) # @,
so diamU < 1/n < &. Thus, py(p x idr)F’'(zi, si, ;) and F(z;,s;) are e-close. But
py(p X idR)F'(zi, i, 1) = ppx F'(zi, i, 1) = pF(zi, 51, 1;). SinceF (z;, si) — F (2o, 50),
we may assumeV is so large thatF(z;, s;) is e-close to F(zg, so) for i > N. Thus,
pF(zi,si, 1) is 2e-close toF (zo, so) fori > N.

(C) (1) implies (2) follows from Proposition 4.4 above.

(C) (2) implies (1). Let

S

/ —

in
X

V4

e

p

-

—L~

~
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be a stratified homotopy lifting problem. There is an induced stratified homotopy lifting
problem
7 X xR
x0 \pridR
Zx 125y xR

Let 8 be the open cover @& consisting of all open intervals of length oneAfZ x I —
X x R is a stratified« x g)-solution of the induced problem, then it is easy to check that
px F:Z x I — X is a stratifiedx-solution to the original problem. o

Remark 4.8. Itis just a matter of definitions that any of the conditions in (A) imply those
in (B), which in turn imply those of (C). Example 3.2 shows that (B) need not imply (A).

I do not know an example which shows (C) need not imply (B), but | conjecture that such
an example exists. See also Remark 3.3(6).

5. Lemmason compactly dominated local holinks

This section contains a couple of technical results which will be used in the next section
on adjunctions. The hardest aspect in the proof of the adjunction theorem is establishing
the compactly dominated holinks condition and that is the purpose of the results of this
section.

Lemmab5.1. Let X be a homotopically stratified, locally compact metric space with only
finitely many strata and suppose the strata are ANRsxg e a point in a stratunk; of
X. The following are equivalent
(1) X has a compactly dominated local holinkoat
(2) For every neighborhood of xg there exist a neighborhood of xo with V C U, a
compact subsek C U \ X;, and a stratum preserving deformatign(V \ X;) x
I — U such thatg1(V \ X;) C K.
(3) For every neighborhood/ of xg there exists a stratum preserving deformation
h:X\(UNX;)xI— X suchthat
(i) A (X \U)=inclusion:X \ U — X foreveryt €1,
(i) h(U\X;)CU foreveryrel,
(i) there exists a neighborhod# of xg such that C U andclh1(W\ X;)NX; =
@.

Proof. The proof that (1) and (2) are equivalent is in [7, 5.3] (although the condition
K C U\ X; was mistakenly left out of the statement in [7]).

(2) implies (3). LetU be a neighborhood ofp and letV, K andg be as in (2). Let
p:X — I beamap such thay € int(p=1(1)) C p~1(1) € V andX \ V C p~—1(0). Define
h:X\(UNX;)x1— X by
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X ifxeX\U,
h(x’t)z{g(x,p(x)-t) ifxeV\X;.

The conditions (i) and (i) of (3) clearly hold. To verify condition (iii), 1&¢ = p—1(1).
Thenha(W\ X;) =g1(W\ X;) CK,soclhi(W\ X;,) CK CU\X;.

(3) implies (2). LetU be a neighborhood ofy. By local compactness, we may assume
that U is compact. Let: and W be given by (3). LetV = W andg = h|(W \ X;) x I.
Thengi(V \ X;) = hi(W\ X;) Ccl(hi(W\ X;)) C U\ X;. SinceU is compact,K =
cl(h1y(W \ X;)) is also compact. O

Lemmab.2. LetX be a manifold stratified space with only finitely many stratadlet X
be a compact pure subset af, and letC be a closed subset of. For every open
neighborhood’ of C in X there exist a neighborhodd of C in X with V C U, a compact
subsetk C U \ A and a stratum preserving deformatian (V \ A) x I — U \ A such
thath1(V \ A) CK.

Proof. There is a proof given in [8, Section 5] for the special case A. If that proof is
examined, then one finds that the following is established (Wiésea metric forX and
Ns(S) denotes thé-neighborhood of a subsstC X):

For every sufficiently smald > O there is a compact subsketC X \ A and a stratum
preserving deformation

g (Ns(A)\A) x I - X

such thatg is as-homotopy (i.e.d(x, g(x, t)) < é for each(x, ¢)) and the image of is
inL.

Given U chooses > 0 so small thatVo5(C) has compact closure containediih Then
V =Ns(C), K =LNcl(Nys(C)) andg = h|(V \ A) x I satisfy the conclusion. O

6. Adjunctions of manifold stratified spaces

This section contains the main result of this paper in Theorem 6.2 below. An application
to subdividing manifold stratified spaces is given in Corollary 6.4. First a special case of
the main result is established.

Lemma 6.1 (Attaching an external collar).et X be a manifold stratified space with only
finitely many strata and let be a pure subset of. The adjunction space

Z=X U Y x [0, 1)
Y=Y x{0}

obtained by attaching an external open collarifds a manifold stratified space with the
natural stratification(the strata ofZ are {X; | X; is a stratum ofX} U {X; x (0,1) | X; is
a stratum ofX, X; € Y}).
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Proof. The only condition in Definition 2.3 which is not immediately obvious is the
Compactly Dominated Local Holinks condition for a poirge ¥ = Y x {0}. We will
verify Lemma 5.1(3). Let; be the stratum of containingrg and letU be a neighborhood
of xgin Z. We may assume thatN (cl(¥;) \ Y;) =0. LetUx =UNX andUy =Ux NY.
We may assume théat N (Y x [0, 1)) = Uy x [0, &) for somee > 0. Since the local holink
of xp in X is compactly dominated it follows from Lemma 5.1(3) that there is a stratum
preserving deformatioh: X \ (Ux NY;) x I — X such that

(1) h (X \ Ux) =inclusion:X \ Ux — X for everyr € I,

(2) h,(U\Y;) CU foreveryrel,

(3) there exists a neighborho@dof xg in X such thatv C Ux and clhy (W \Y;)NY; =

@.

Letp:Y — [0, £/2] be a map such that~1(0) = cl(¥;). Define

g ([Y x [0, D]\ [(Uy nY) x{0}]) x I - ¥ x [0,1)

by
(¥, 9) 0<p(y) <5,
gy, s,0)=1 (h(y. (o) —=5)-1),8) s<p(y) <2,
(h(y.1).5) 25 <p(y) <1

Thenh andg piece together to define a stratum preserving deformation
jrzZ\NUNnY) xI—Z.

Defineo : Y — [0, £/2] such that ~1(g/2) is a neighborhood afg in Uy which misses
clh1(W\ Y;). Define
k:Y x[0,1)—> Y x[0,1)

by

(y,A=0s+ta(y) 0<s<o(y),
,s) o(y) <s< 1l

Thus,k is a deformation which pushes up to the graph @ind is stratum preserving when
restricted toY x (0, 1) x I. Finally, define

k(y,s,t) ={

H:Z\(UNY)xI—>Z

by
Jj(z,2t) 0<r<1/2,
Hzt)=k(jzD,26-1) 1/2<t1<1, zeY x[0,1),
Jj(z 1 1/2<t<1, zeX.

ThenH satisfies the conditions of Lemma 5.1(3)

Theorem 6.2 (Adjunctions of manifold stratified spaced)et X and Y be manifold
stratified spaces with only finitely many strata, tbe a pure subset ok and let
f:A— Y be an MSAF. Then the adjunction spaée= X U Y obtained by attaching
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X to Y via f is a manifold stratified space with the natural stratificatiphe strata ofW
are {X; | X; isastratum ofX, X; N A =@} U {Y; | Y; is a stratum off'}).

Proof. For the Forward Tameness condition recall thas stratified forward tame iX
[5]. It follows that Y is stratified forward tame i, from which the condition follows
immediately.

For the Normal Fibrations condition, the only non-trivial case to check is the evaluation
g -holink(X; UY;,Y;) — Y; whereY; is a stratum oft and X; is a stratum ofX such
thatX; N A =0 and clX;) N A £ @. It must be shown thaj is a fibration. Recall from
Corollary 3.5 that the mapping cylinder ¢yl) is a manifold stratified space with the
natural stratification. We use the convention tak {0} is the top of the cylinder and
thatA x {1} is identified withY to form the bottom of the cylinder. Now form the space

z=x |J oyltnH)
A=Ax{0}
by identifying A € X with the top of cy(f). It follows from Lemma 6.1 thatZ is a
manifold stratified space. Let

B 4g>h0|lnk(X, U Yj, Yj)
Xol lq (6.2.1)

BxI—Y% v,

be a homotopy lifting problem. There is an induced ng&pB x (0, 1] — X; C Z defined
by ¢*(b,s) = g(b)(s) € X;. Since A is stratified forward tame irX [5], there exists a
neighborhood/ of A in X and a nearly stratum preserving deformatto/ x I — X of

U to A in X (in particular,rg = inclusion andr1(U) = A). Because of the local nature of
the problem we are trying to solve, we may assume that the imageisfcontained inJ
[14]. Consider the homotopy lifting problem

B—2~ holinks(cyl(f), )

Xoi lq (6.2.2)
Bxl—Y9% -y
where
gv(b)(t):{[Vlg*(b,t),l—t]ecyl(f) ift>0
Gb,0)eY ifr=0

and holink denotes the stratified holink [5].

We must show thag is continuous. For this it suffices to show t@atB x I — cyl(f)
defined byé(b, t) = g(b)(¢) is continuous. Here are some auxiliary maps which will also
be used below. The mapping cylinder collapse( £yl— Y x I is given byc([z,t]) =
(f(2),0) if (z,t) € A x I andc([z]) = (z, 1) if z € Y. The projectionry :cyl(f) — Y is
the composition

¢ proj

Y x1I

my :eyl(f)
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Letp:XI1Y — W be the quotientmap and I&t: U Uy Y — Y be the retraction induced
by r1; that is, rl opl:ULY —>Yis frill idy. We use the continuity criterion of [10]
to verify thatg is continuous. F|rstg| (g) Leyl(f)\Y) — cyl(f) \ Y is obviously
continuous. Second, the composition

BxI—tscyl(f)—S=yx1-"%

is given by(b, t) = 1 — ¢ which is continuous. Third, the composition

Bxl—§>0y|(f) Ly xrP%y
is given by
wy([rig* b, 1), 1—1]) _ {frlg*(b,t)
®. 0> {nyG(b,O) = 160.0)
| F1pg*b,ty | gty iftr>0,
T 1 pGB,00 T | G®b,0) ifr=0.

Thisis (b, t) — g(b)(¢) which is continuous.
Now because; : holinks(cyl(f),Y) — Y is a stratified fibration [5], there exists a
stratum preserving solution

H: B x I — holinks(cyl(f),Y)

of the problem (6.2.2). Lety : cyl(f) \ Y — X denote the natural projectiory ((z, u]) =
zwhere[z, u] € cyl(f) \ Y; thatis,z € A andu € (0, 1] (in words,x is the projection of
cyl(f)\ Y to the topA followed by the inclusion o into X). DefineH : B x (0,1] x I —
X by

H(b,s,0) =nx(H(b,1)(s5)).
Defineg: B x (0, 1] — holinks(X, A) by
g, s)(t) =ra-ng" (b, s)

and note that there is a stratified homotopy lifting problem:

B x (0, 1] —=2— holinks(X, A)
X0 lq (6.2.3)
Bx©1xI—1H 4

Let H*: B x (0,1] x I — holinks(X, A) be a stratum preserving solution of (6.2.3).
Consider the commuting diagram

BxI—Ft i

Xol lq (6.2.4)
BxIxI—%=Ww
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wherea(b, s, t) =y (H(b, t)(s)) and

_ | rg, 9@ ifs>0,
ﬂ(b’s)(t)_{G(b,O) if s = 0.

There is a “partial” solutiory : B x (0, 1] x I — W/! of (6.2.4) defined by
y(b.s,0)(u) = p(H*(b, s, 1)(w)).

It follows from [5, 88] that there exists a map: B x (0,1] x I — (0, 1] such that
u(B x (0,1] x {0}) =1 andG: B x I — W! defined by

y (b, t,s)(u(b, t, s)) if r >0,
G(b,s) if r =0,

is continuous. It is easy to check trﬁtactually defines a solution of the original problem
(6.2.2).

It only remains to show tha¥ has compactly dominated local holinks. Legte Y and
let Yo be the stratum of containingyg. We are going to verify condition (2) of Lemma 5.1.
To this end, letU” be an open neighborhood gf in W. Assume that/” has compact
closure and let/’ be another open neighborhood @f in W such that alU’) C U”.
Let Uy, = U’ NY. Apply condition (3) of Lemma 5.1 tgg € Yo € Y with Uy, the given
neighborhood ofg. Thus, there exists a stratum preserving deformation

k:[Y\(UyNYo)] xI—Y

Gb,s)(t) = {

such that
(1) k|(Y \ Uy) =inclusion:Y \ U, — Y foreveryr € I,
(2) k:(Uy \ Yo) C Uy, foreveryr eI,
(3) there exists a neighborho@dof yo in ¥ such that dlT') € Uy, and

clk1(T \ Yo)N Yo =4.

Moreover, we may assume that

(4) yo ¢ cl(imageky)).
To see why this last claim can be made, tett — I be a map such that=1(1) is
a neighborhood ofp, t~%(1) € T andY \ T < r~1(0). Define a new deformation by
(x,t) — k(x, t(x) - t). Then this deformation has all the propertieskodibove (withT
replaced byr ~1(1)) as well as item (4).

We have already proved thdt is a homotopically stratified metric space with only
finitely many strata. Thugy \ Yg is also such a space. We can use the Stratum Preserving
Deformation Extension Theorem [5] to get a stratum preserving deformation

k:(W\Yo) x I — W\ (U'NYo)

such that

(1) kI(Y'\ Yo) x I =k|(Y \ Yo).
In fact, sinceU’ \ Yy is homotopically stratified and is supported o/’ \ Yp, we may
assume that

(i) k(U \Yo)C U’ forallrel,and

(iii) k(W \ U") =inclusion:W \ U’ — W forall ¢ € I.
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Let 7’ be an open set itV such that7’ NY =T and c(T’) C U’. Let S be an open
neighborhood ofg in W such that als’) € T’ and

cl(8") Ncl(Imageky)) = 9.

Let 7: X — W denote the restriction of the quotient magpX 1Y — W. Let C =
f~(¥YoNcl(Uy)) and lety =z ~1(U”). ThenC is a compact subset dfandC € U < X.
Thus we can apply Lemma 5.2 to find an open neighborbiéed C in X with V C U, a
compact subsekt’ of U \ A and a stratum preserving deformation

g (VNA)XI—-U\A

such thatg1(V \ A) C K. It will be convenient to exteng to X \ A. To this end, let
o:X — I be amap such that \ V € ¢ ~1(0) ando —1(1) is a neighborhood of . Define
g1 (X\A)xI— X\ Aby

~ _ g(x,a(x)-t) ifxeV\A
g(x’t)_{x if x e X\ (VUA).

Now g induces a deformation d¥ \ Y,
gi(W\Y)xI—W\Y,

defined byg'(x, 1) = ng(x~1(x), 1).

We need one more auxiliary map. Lgt W — I be a map such that:

(1) B~1(1) is a compact neighborhood &§ N cl(Uy) inU”,

(2) clg~t(©0. 1)) cU”,

(3) cl(B~1((0, 11)) N cl(imagetks)) = 0.

We are finally in a position to define a deformation which will satisfy the conditions of
Lemma 5.1(2). Definé(S"\ Yo) x I — U” by

k(x,2t) if0<r<1/2andx e S\ Yo,
h(x,t) =1 k(x,1) ifl/2<r<1landxe (S NY)\ Yo,
g (k(x,1), 2 —1)-B(k(x,1)) ifl/2<t<landxeS'\Y.

In order to verify thath is continuous, the only questionable case concerns a point
(x0,10) € (' NY)\ Yo x [1/2, 1] with a sequencé(x,, ,)}52 ; in (S"\ Y) x I converging
to (xo, f0). Thenk(xg, o) = k(xo, 1) and

h(xn, 1) = &' (k(xn, 1), (2 — 1B (k(xn, 1))).
Sincex, — xo, it follows that k1(x,) — k1(xg) = k1(xg). Sinceki(xo) € Imageky), it
follows thatk1(x,) ¢ cl(81((0, 11)) for sufficiently largen; that is to sayp(k(x,, 1)) =
0. Hence, g’ (k(x,, 1)(2t, — 1)B(k(x,1))) = k(x,,1) for sufficiently largen. Thus,
h(xn, ty) — h(xo, tp) as desired.

To see thak (S’ \ Yo) is contained in some compact subset/df\ Yy, use the fact that

hi(S"\ Yo) =h1((S'NY)\ Yo) Uh1(S'\Y).

Then note thati1((S' NY) \ Yo) = k1((S' N Y) \ Yp) C cl(k1(T \ Yp)) which is compact
and missedp. Forx € '\ Y, thenh1(x) = g'(k1(x), B(k1(x))). This can be used to finish
the proof. O
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We now give an application to subdividing manifold stratified spaces.

Definition 6.3. Let X be a manifold stratified space with only finitely many strata and let
A be a closed union of strata &f. Supposed’ is a manifold stratified space with only
finitely many strata such that as spages= A and each stratum of is a union of strata

of A’. Let X’ be the space with stratification obtained frafrby replacing the strata of

by those ofA’ (i.e., X’ = X; the strata ofX’ are the strata ok \ A and the strata ofi’).
ThenX’ is called thesubdivision ofX obtained by subdividing into A’.

Corollary 6.4 (Subdivision)If X’ is a subdivision of a manifold stratified spake then
X’ is a manifold stratified space.

Proof. If X’ is obtained fromX by subdividingA into A’, then the identity map id4A —
A’ is obviously an MSAF an&X’ = X Ujg A”. Hence, Proposition 6.2 appliest

7. Partial MSAFs, local M SAFs and restrictions of M SAFs over open subsets

This section contains some applications of the mapping cylinder characterization
Theorem 3.4 and the adjunction Theorem 6.2 which will be used in [9]. Propositions 7.3
and 7.4 are stratified analogues of results known for approximate fibrations (cf. [2]).

Let X andY be manifold stratified spaces with only finitely many strata fleX — Y
be an MSAF and leK C Y be a pure subset df. Define the quotient spadé = X/~
obtained from the equivalence relation generatedcby y if f(x) = f(y) € K. The
guotient mapy : X — Y’ is called apartial manifold stratified approximate fibratiohet
p .Y’ — Y be the unique map such that= pogq.

Proposition 7.1. Y’ is a manifold stratified space with strata
{p~1($) | Sis a stratum ofy}

and the partial manifold stratified approximate fibratipnX — Y’ is a manifold stratified
approximate fibration.

Proof. SinceY’ is the adjunction space

XUy 1x)—k K,

it follows from Proposition 6.2 that’ is a manifold stratified space. According to
Theorem 3.4 cylf) is homotopically stratified and it suffices to show that(gylis a
homotopically stratified. But pairs of strata in ¢y) for which the Forward Tameness and
Normal Fibrations conditions need to be checked correspond to pairs of strata/fim ayl
in cyl(idx) for which the conditions hold. O
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Here is a closely related result.

Proposition 7.2 (Unions of MSAFs).Let X and Y be manifold stratified spaces written
as the union of pure subsef§,= X1 U Xo andY =Y, UY>. If p: X — Y is a proper map
such thatp(X;) =Y; andp|: X; — Y; is an MSAF fori =1, 2, thenp is an MSAF.

Proof. As in the proof of Proposition 7.1, the verification is easily made using the
characterization in Theorem 3.40

Proposition 7.3. Let p: X — Y be a proper map between manifold stratified spaces with
only finitely many strata. If there exists an open caveof Y such that for eaclV € U,
pl: p~X(U) — U is an MSAF, then is an MSAF.

Proof. According to Theorem 3.4 it suffices to verify that the mapping cylinde¢oyl

is homotopically stratified. But Theorem 3.4 also implies that each mapping cylinder
cyl(p|p~1(U)) is homotopically stratified. Since these restricted mapping cylinders form
an open cover of cyp) and the property of being homotopically stratified is a local one
[14], the result follows. O

Proposition 7.4. If p: X — Y is an MSAF between manifold stratified spaces with only
finitely many strata and/ is an open subset df, thenp|: p~1(U) — U is also an MSAF.

Proof. Accordingto Theorem 3.4 cp) is homotopically stratified and it suffices to verify
that cyl p|p~1(U)) is homotopically stratified. But cyb|p~1(U)) is an open subset of
cyl(p) so the result follows. O
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