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The main objects of study are the homotopically stratified metric spaces introduced
by Quinn. Closed unions of strata are shown to be stratified forward tame. Stratified
fibrations between spaces with stratifications are introduced. Paths that lie in a
single stratum, except possibly at their initial points, form a space with a natural
stratification, and the evaluation map from that space of paths is shown to be a
stratified fibration. Applications to mapping cylinders and to the geometry of
manifold stratified spaces are expected in future papers.

1. Introduction

Spaces with stratifications are decomposed into disjoint subspaces called strata.
Two strata are adjacent if one of them (the lower stratum) is contained in the
closure of the other. Quinn [14] defines homotopically stratified spaces in terms of
homotopy theoretical properties of pairs of adjacent strata, the defining conditions
essentially implying that there is a good homotopy theoretical model for a normal
fibration of one strata in the other. In addition to conditions on pairs of adjacent
strata, it is desirable to have an understanding of the nature of the embedding of
a stratum (or a closed union of strata) in the entire space. For example, instead of
just knowing that the local homotopy type of a pair of adjacent strata is locally
constant along the lower stratum, one would like to know that the stratified local
homotopy type of the space is locally constant along any stratum. The main object
of this paper is to develop such a global understanding.

The paper by Hughes (6] announces a generalized ‘tubular neighbourhood theo-
rem’ for homotopically stratified spaces with manifold strata. For spaces with only
two strata, a complete proof was given in [9). The present paper is the first in a
series (culminating in [7]) that will provide a proof of the general case.

‘To motivate the main results, consider a locally finite simplicial complex X . Such
a space is an example of the type of stratified space of interest here: the strata are
the open simplices. If Y is a subcomplex of X, then Y is a closed union of strata. The
classical ‘homotopy extension property’ implies that any deformation f : Y xI = Y
(i.e. a self-homotopy with kg = idy) extends to a deformation f XxI—=X.In
general, the extension f cannot be required to preserve the complement of Y (i.e.
one cannot require f((X \Y) x I ) C X \Y). This is because the local homotopy
type of the complement might not be locally constant along Y. (For example, if X
is the union of three 1-simplices with a single common vertex v, and Y is the union
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of two of the 1-simplices, then a deformation of Y that moves v cannot be extended
to a complement prescrving homotopy of X.) However, if f is a stratum-preserving
deformation (i.e. for cach y € Y, f({y} x I) lies in the same open simplex of ¥ as
y). then the extension f can be required to preserve the complement of Y in fact,
f can be required to be stratum preserving,.

This stratum-preserving deformation extension property is easily verified for sim-
plicial complexes by extending the deformation over one simplex at a time. As an
application of our main results, we will verify the extension property for a homo-
topically stratified metric space (with finitely many strata) with Y C X a closed
union of strata. The crux of the problem is to extend the stratum-preserving de-
formation f : Y x I = Y to a neighbourhood U of Y in X. The first step for this
(and the first part of the main theorem below) is to prove that Y is stratified for-
ward tame in X: there exists a neighbourhood U for which there is a deformation
h:UxI = XofUtoY in XrelY, which is nearly stratum preserving in the sense
that h is stratum preserving except at time ¢ = 1 when iy (U) =Y.

The second step is to notice that the deformation f and the nearly stratum-
preserving deformation i combine to give a homotopy lifting problem into the
space Pu,(X,Y) of nearly stratum-preserving paths in X with end point in Y.
Pusp(X.Y) maps to Y by evaluation. A stratum-preserving solution solves the ex-
tension problem (for more details see § 6). Such a solution exists by the second part
of the main theorem.

We now state the main theorem and the corollary regarding stratum-preserving
deformation extension, referring to the body of the paper for more complete defi-
nitions. The two parts in the theorem are global versions of the ‘forward-tameness’
and ‘normal-fibrations’ conditions in definition 3.3 below.

THEOREM 1.1 (Main theorem). Let X be a homotopically stretified metric space

with a finite number of strata and let Y C X be a closed union of some of the strata
of X. Then:

(1) Y is stratified forward tame in X: and
(2) the evaluation map q: P (X.Y) = Y, is a stratified fibration.

COROLLARY 1.2 (Stratum-preserving deformation extension property). Let X be
a homotopically stratified metric space with a finite number of strata and letY C X
be a closed union of some of the strata of X. If f.: Y xI = Y is a stratum-preserving
deformation, then there exists a stratum-preserving deformation f : X x I = X
extending f.

One purpose of this paper is to provide some foundational material on stratified
fibrations and stratified approximate fibrations. Quinn {13] has previously consid-
ered stratified systems of fibrations in which the range of a map is stratified and over
each stratum there is an ordinary fibration (with a mild compatibility condition).
For stratified fibrations, both domain and range are stratified and the homotopy
lifting problem and solution are required to respect these stratifications.

Here is one way the homotopy theoretical results of this paper will be used.
Limits of certain stratum-preserving geometric constructions will be taken in [7].
The stratum-preserving property will be lost in the limit because of collapsing of
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strata phenomena. The fact that ¢ : P,,,(X,Y) = Y is a stratified fibration will be
used to lift the collapse and recover stratum preservation.

In addition, we plan to use the results of this paper to verify that mapping
cylinders of certain maps between manifold stratified spaces are themselves manifold
stratified spaces. This line of research is related to the work of Cappell and Shaneson
(3].

These results are closely related to those of Quinn [14, 3.2]. However, the proofs
given here are independent of [14], and correct certain technical deficiencies in {14].
For more information see Appendix A.

2. Background on spaces with stratifications

This section contains the basic definitions from the theory of stratifications together
with a few observations that are well known to the experts. For other treatments of
this foundational material, consult Akbulut and King {1], Dovermann and Schultz
[4]. Goresky and MacPherson [5], Verona [17] and Mather [11,12].

DEFINITION 2.1. A partition of a space X consists of an index set Z and a collection
{Xi}iez of pairwise disjoint subspaces of X such that X = U;ezX;. Fori € T, X;
is called the i-stratum.

DEFINITION 2.2. A stratification of a space X consists of an index set Z and a
locally finite partition {X;}icz of locally closed subspaces of X. For i € Z, X is
called the i-stratum and

X'= U{X | Xk Nel(X;) # 0}
is called the i-skeleton. In this case, X is a space with a stratification.

Note that the skeleta are closed subspaces of X. For if € X \ X*, then z € X},
for some k # i and Xy Necl(X;) =0 so x ¢ cl(X).
For a space X with a stratification {X,},cz, define a relation, <, on the index
set Z by
i<j, ifandonlyif X; Ccl(X;).

The stratification satisfies the frontier condition if for every i,j € T,
Xinel(X;) #0. implies X; C cl(X).

PROPOSITION 2.3. If a stratification {X;}icz of X satisfies the ‘frontier condition’,
then:

(1) < is a partial ordering of T;
(2) for cveryi.jeI. X' C X/ if and only if i < j; and
(8) for each i € I, X' = cl(X;).

Proof.

(1) The reflexive and transitive propertics are clear. To establish anti-symmetry,
assume X; C cl(X;) and X; C cl(X;) and show that X; = X;. Since X; is
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locally closed, given x € X; there exists an open neighbourhood U of z in
X such that U N X; is closed in U. Note that U N X; = U N cl(X;). Since
z € cl(X;) there exists

RS Uan QUﬂcl(X,):UﬂX,».
Thus X; N X; # 0 and so X; = X;.

(2) Suppose first that X* C X7. Since X, € X! C X7/, it follows that X;Ncl(X;) #
. The ‘frontier condition’ implies that X; C ¢l(X;) so i < j. Conversely,
suppose i € j so that X; C cl(Xj). If Xi Ncl(X;) # 0, then X Ncl(X;) # 0,
so Xt C X7,

(3) Since X; C X* and skeleta are closed, cl(X;) C X*. If X Ncl(X;) # 0, then
the ‘frontier condition’ implies that X; C cl(X;), so X* C cl(X;).

o

COROLLARY 2.4. If {X;}icz is a stratification of X, then the ‘frontier condition’
holds if and only if < is a partial ordering of T and for each i € Z, X' = cl(X;).

Proof. 1f the ‘frontier condition’ holds, use proposition 2.3. Conversely, to verify the
‘frontier condition’ assuming the sufficient conditions, assume that X; Ncl(X;) # 0.
Since X7 = cl(X;) by assumption and X; C X7, it follows that X; Ccl(X;). O

REMARK 2.5. In the terminology of Goresky and MacPherson [5, p. 36] a stratifi-
cation {X; }icz of a space X satisfying the ‘frontier condition’ is an Z-decomposition
of X and the strata X; are called pieces.

DEFINITION 2.6. A filtration of a space X consists of a partly ordered index set
(Z,<) and a collection {X'};ez of subspaces of X such that for every i,j € Z,
X' C XJ ifand only if i < j. For i € Z, X' is called the i-skeleton and

Xi=Xx"\J(x’1j<i},
is called the i-stratum. In this case, X is a filtered space.

Note that a minimal element, —co, and a maximal element, oo, may be adjoined
to Z so that X~> =@ and X~ = X.

If X has a filtration, then it is often the case that the associated strata define
a stratification of X. For example, this happens if the skeleta in the filtration are
closed in X, the strata are pairwise disjoint and the index set is finite. Conversely,
it follows from proposition 2.3 above that the skeleta induced by a stratification
satisfying the ‘frontier condition’ forms a filtration.

3. Quinn’s theory of stratified spaces

Some definitions from Quinn [14] are recalled (see also [6,8,9]).

DEFINITION 3.1. A subset Y C X is forward tame in X if there exist a neighbour-
hood U of Y in X and a homotopy h : U x I — X such that hg = inclusion : U — X,
he | Y =inclusion: Y — X foreacht € I, ) (U) =Y and R((U\Y)x[0,1)) € X\Y.
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DEFINITION 3.2. For Y C X the homotopy link of Y in X by
holink(X.Y) = {w € X! | w(t) € Y if and only if t = 0}.
Evaluation at 0 defines a map g : holink(X,Y) = Y, called holink evaluation.

DEFINITION 3.3. A space X with a stratification satisfying the ‘frontier condition’
is a homotopically stratified space if the following two conditions are satisfied.

(i) Forward tameness. For each k > i, the stratum X is forward tame in X;U Xj.
(ii) Normal fibrations. For each k > i, the holink evaluation
q : holink(X; U Xy, X;) = X;,
is a fibration.

If X is a space with a partition, then a map f : Z x A = X is stratum preserving
along A if for each 2 € Z, f({z} x A) lies in a single stratum of X. In particular,
amap f:Z x I — X is a stratum-preserving homotopy if f is stratum preserving
along I.

DEFINITION 3.4. A subset ¥ C X of a space with a stratification is stratified
forward tame in X if there exist a neighbourhood U of Y in X and a homotopy
h:U x I = X, such that hy = inclusion : U = X, hy | Y = inclusion : Y — X for
eacht €I, M(U)=Y, h((U\Y)x[0,1)) C X\Y, and h is stratum preserving
along [0, 1).

Note that the homotopy / need not be stratum preserving, but it is nearly stratum
preserving.

4. Stratified path spaces

Let X be a space with a stratification {X;},cz satisfying the ‘frontier condition’
so that < is a partial order on Z. All spaces of paths are given the compact-open
topology.

If Y C X, then the stratified homotopy link of Y in X, denoted holinks(X,Y),
consists of all w in holink(X,Y'), such that w((0, 1]} lies in a single stratum of X:

holink,(X,Y) = {w € holink(X,Y) | for some i,w(t) C X; for all t € I}.
The stratified homotopy link has a natural filtration with i-skeleton
holink,(X,Y)' = {w | w(1) € X'}.

The holink evaluation (at 0) restricts to a map ¢ : holink,(X,Y) — Y.
Let Puy,(X) be the space of nearly stratum-preserving paths in X; that is, those
paths w: I = Y such that w((0, 1]) lies in a single stratum of X. Thus,

Pusp(X) = {w € X! | w((0,1]) C X; for some i € T}.

Define g : Pysp(X) — X to be the evaluation at 0, g(w) = w(0).
There is a natural partition of Pysp(X) into disjoint subspaces

Pnsp(x)i = {w € Pnsp(x) I w(l) € Xi}'
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Throughout the rest of the paper, we will assume that P,,(X) is endowed with
this natural partition.
Define the total homotopy link of X to be

holink(X) = (] holink«(X, X;) € X',
i€Z
with evaluation ¢ : holink(X) — X. Naturally partition the total homotopy link by
setting
holink(X); = Py, (X); N holink(X),
forieZ.
If Y C X is a union of strata of X, define

Posp(X.Y) = holink,(X.Y) UPp(Y).

with evaluation ¢ : Py, (X.Y) — V. Again the partition of Pp,(X) induces a
partition of Pusp(X,Y).
Finally, define the space of stratum-preserving paths in X to be

Pop(X) = {w e X! |w(l) € X; for some i € T}.
Thus, P.p(X) = holink(X') U Py, (X) and holink(X) NP, (X) = 0.

5. Stratified fibrations
Let X and Y be spaces with partitions {X;};ez and {Y;};ec7, respectively.

DEFINITION 5.1. A map p : X = Y is a stratified fibration provided given any
space Z and any commuting diagram

Z—f—>X

xo| |»

ZxIl Y5 v

with F a stratum-preserving homotopy. there exists a stratified solution; i.e. a strat-
ified homotopy F : Z x I = X such that F(z,0) = f(z) foreach z € Z and pF = F.
The diagram above is a stratified homotopy lifting problem.

As an example, consider the evaluation ¢ : Ps,(X) — X. The standard proof
that the evaluation X/ — X is a fibration shows that ¢ is a stratified fibration.

Another example occurs when a group G acts discontinuously on a space X, such
that the orbit space X/G is homotopically stratified by the orbit-type stratification.
Then Beshears (2] has shown that under mild hypothesis, the orbit map X = X/G
is a stratified fibration. Such actions include locally lincar actions of finite groups
on manifolds. The proof in [2] relies on some of the results in this paper.

In the usual theory of fibrations certain partial solutions can be extended [18,
p- 35]. We will need a stratified version. For notation let Z be a metric space with
a closed subspace A C Z, such that the inclusion A — Z is a cofibration. Thus
(Z,A) is an NDR-pair and so Z x {0} U A x I is a strong deformation retract
of Z x 1 [18, p. 22]. Let K : Z x I x I = Z x I be such a strong-deformation
retraction. so that Ko = idzxs. K¢ | (Z x {0} U A x I) is the inclusion for all t € J
and Ki(ZxI)=Zx{0JuAdxI.
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LEMMA 5.2 (Stratified relative lifting). Suppose p: X — Y is a stratified fibration
and there is @ commuting diagram

Zx{0uAxI <, x

iuclusimxl ll'

Zx1 .,y

with f and F stratum preserving along I; that is, a stratified relative lifting problem.
If(Z, A) is @ melric NDR-pair and K : Z x I x I = Z x I is a strong-deformation
retraction as above with the additional properlies:

(1) FK:Z x I xI =Y is stralum preserving along the second I factor;
(2) fK,:Z x I = X is slratum preserving along I;

then there is a stratified solution extending f; thal is, a stratum-preserving homotopy

F:ZxI—X suchthatpF=F and F|(Zx{0JUAxI)=f.

Proof. Let ¢ : Z x I — I be a map such that o= '(0) = Z x {0} U A x I and define
H:ZxIxI—>2ZxIhby

t 3 1)
K(z,.s,l— m), if t < (2, 8),

K(z,s,0), if t 2 o(z, s).

H(z,s,t) =

Now .
ZxIx{o} £ x

! I

ZxIxl M,y

is a stratified lifting problem (that FH is stratum preserving along the second /
factor follows from condition (1) on FX above) so there is a stratified solution
G:Zx1Ix1I— X.One checks that the homotopy F : Z x I = X defined by
F(z,s) = G(2,5,9(z,8)) is a stratified solution of the original problem extending
f (that I is stratum preserving follows from the fact that G is and condition (2)
on fK; above}. a

LEMMA 5.3. Suppose p : X — Y is a stratified fibration and there is a stratificd
lifting problem
z L x

| J»

ZxI L,y

with two solutions G,H : Z x I — X. Then there exists a homotopy J : G =~
HrelZ x {0} such that:

(1) pJ = F xid;; and

(2) J is stratum preserving along I x I.
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Proof. The usual proof (e.g. [15, pp. 100-101]) in the unstratified case works here.
Alternatively, if one is willing to assume that Z is metric, then lemma 5.2 can be
applied. 0

DEFINITION 5.4. A map p: X — Y is a stratified approzimate fibration provided
given any space Z and any commuting diagram

Z—f—>X

o] |

Zx] Lt
where F is a stratum-preserving homotopy., there exists a stratified controlled solu-
tion;i.c.amap F : Zx1Ix[0,1) = X that is stratum preserving along I x [0, 1), such
that F(z,0.t) = f(2) for each (z,t) € Z x [0,1) and the function F: ZxIxI Y
defined by F | Zx I x[0,1) =pFand F | Zx I x {1} = F x idy,} is continuous
and stratum preserving along I x 1.

Note that the partitions of X and Y need not be stratifications and the map p
need not be stratified.

REMARK 5.5.

(1) If K € X is a union of a subcollection of {X; }iez, and p : X — Y is a stratified
fibration (or stratified approximate fibration), then sois pj: K = Y.

(2) If X and Y are metric spaces, then in the definition of a stratified fibration
or stratified approximate fibration p : X — Y there is no loss of generality
in assuming that the spaces Z in the homotopy lifting problems are metric
spaces. This is because there is an universal lifting problem whose solution
implies that any other problem can be solved. For the universal problem the
space Z is a subspace of Y/ x X and, hence, is metric (cf. [9, §12]).

The following lemma shows that we can relax the requirement in the definition
of stratified approximate fibrations that stratified controlled solutions agree at all
times with the given initial lift.

LEMMA 3.6. Suppose

z 1, x

xol lp

ZxIl —ft vy

is a stratified lifting problem (i.e. the diagram commutes and F is a stratum-
preserving homotopy), and g : Z x ({ x [0,1) U {0} x I) = X is a map such
that:

(1) g is stratum preserving along I x [0,1) U {0} x I;
(2) 9(z,0.1) = f(z) for each z € Z; and
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(3) the functiong:Z x I x I - Y defined by
(2, 5,t) = prg(z,s,t), 1'ft<1 ors =0,
F(z,s), ft=1,
is continuous and stratum preserving along I x 1.

Then there exists a stratified controlled solution, F 1 Z x I x [0,1) = X, of the
given problem.

Proof. Define I by F(z,3,t) = g(z,s, (1 — s)(1 — £) + t). a

6. Statements of the main results

In this section we state the main results and formulate inductive statements from
which the main results will follow. After more background work in §§7 and 8, the
proofs of the main results are completed in §9.

THEOREM 6.1. If X is a homotopically stratified metric space with a finite number
of strate and Y C X is a closed union of strata, then the evaluation map

q: Pup(X,Y) 2 Y,
s a stratified fibration.

As pointed out below after theorem 6.8, theorem 6.1 will follow from theorem 6.7.
The proof of theorem 6.7 will be completed in §9.

COROLLARY 6.2. If X is a homotopically stratified metric space with a finite num-
ber of strata, Y C X is a closed union of strata and X; C X is a stratum, then
each of the following evaluation maps is a stratified fibration:

(1) g: Pnsp(X) = X;

(2) ¢:holinky(X,Y) - Y;
(3) ¢: holink(X) — X;

(4) q: Pusp(X, X)) = Xi;
(5) ¢: holinks(X, X;) = X;.

Proof. (1) follows from theorem 6.1 and the equality P,,(X) = “.;,,(X X).

(2) follows from theorem 6.1 and the fact that holinks(X,Y) is a union of strata
of Pysp(X,Y) (see remark 5.5(1)).

For (3}, let

Z  —L o holink(X) —S— Puey(X)

xo| K

zx1 Y, x

be a stratified lifting problem. From (1), there is a stratified solution in Pusp(X),
F:ZxI> Pnsp(X). However, the image of F is actually in holink(X). For if
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(2.8) € Z x I, let X; be the stratum of X containing F({z} x I) and let X; be the

stratum containing f(z)(0). Then i # j and f(2) € holink(X);. Since F is stratum

preserving, F(z,s) € holink(X); for all s € f. Thus, F(z,8)(t) € Xjforalt>0

and F(z,8)(0) = qF(z.8) = F(z,s) € X,. It follows that F(z,s) € holink(X).
Finally. note that X; is a closed union of strata in (X \ X') U X; and

holinks (X, X;) = holink,((X \ X*) U X;, X;),
Posp(X, X)) = P (X \ XF) U X, X3).
Thus, (4) and (5) follow from theorem 6.1 and (2), respectively. O

THEOREM 6.3. If X is a homotopically stratified metric space with a finite number
of strata and Y C X is a closed union of strata, then Y is stratified forward tame
in X.

As pointed out below after theorem 6.8, theorem 6.3 will follow from theorem 6.7.
The proof of theorem 6.7 will be completed in §9.

We now restate and prove the ‘stratumn preserving deformation extension prop-
erty’ from the § 1.

COROLLARY 6.4. Let X be a homotopically stratified metric space with a finite
number of strata and let Y C X be a closed union of some of the strata of X. If
J:Y x I =Y is a stratum-preserving deformation, then there exists a stratum-
preserving deformation, f: X x I = X, extending f.

Proof. Let U be a neighbourhood of Y in X for which there is a nearly stratum-
preserving deformation A : U x I =5 X of U to Y in XrelY (by theorem 6.3).
Define a stratum-preserving lifting problem

U _ll___) pnsp(x' Y)

xo K

Uxl —< Y
by g(z)(t) = h(z,1 - t) and G(a,t) = f(h(z,1),t). By theorem 6.1 there is a
stratified solution G : U x I = Pyu,(X,Y). Let p: X — [ be a map such that
p~H0)=Y and p~ (1) = X \U. Define f : X x I - X by

(1(.t). if p(z) = 0,
é(x.s)(w), if0<p(z)<land p(z) <s< 1,
fla.t) = 1 - p(z)
Gz, e)((p(i) _pg:;-" p(:v))’ if 0 < p(z) < 1and 0 £ s < p(x),
Lz if p(x) =1,
where s = t(1 — p(x)). a

We now formulate the statements that will be proven inductively in later sections
in order to deduce theorems 6.1 and 6.3. Let £ > 0 and ! > 1 be integers.
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STATEMENT (Sk:). If X is a homotopically stratified metric space, Y C X is a
closed union of strate, X \'Y has at most k strata and Y has at most | strata, then
the evaluation map q : Py, (X.Y) = Y is a stratified fibration.

STATEMENT (Tkt). If X is a homotopically stratified metric space, Y C X is a
closed union of strata, X \'Y has at most k strate and Y has at most ! strata, then
Y is stratified forward tame in X.

REMARK 6.5.

(1) Sp.1 holds. For if X has a single stratum, then P, (X, X) = X I and evalua-
tion at 0 X’ = X is a fibration.

(2) To holds for all I 2 1 vacuously.
(3) T1.1 holds by the ‘forward-tameness’ condition (definition 3.3 (i)).

The induction gets started in the following proposition, whose proof relies on the
work of [9] on stratified spaces with two strata.
PROPosITION 6.6. S;.1 holds.

Proof. Let X be a homotopically stratified metric space, let Y € X be a closed
union of strata and assume that X \ Y and Y are each a single stratum. In the
terminology of [9], (X,Y) is a homotopically stratified pair. According to [9, theo-
rem 4.2] there exist a neighbourhood U of Y in X and a retraction r : U — Y such
that (X,Y) has the W(r)-lifting property. We now recall this property. Let

W(r) = {(z,w) €U x Y | r(z) = w(1)}.
The W (r)-lifting property asserts the existence of a map a : W(r) = X7 such that:
(1) a(r,w)(0) = w(0) for each (r,w) € W(r):
(2) a(z,w)(1) = z for each (x,w) € W(r);
(3) ifz € Y, then a(z,w) = w;
(4) if z € U\Y, then a(z,w) € holink(X,Y).
Now consider a lifting problem

z —L 5 P(X,Y)

o] Js

Zx] £ Y
According to remark 5.5 we may assume that Z is metric. Using a partition of unity
onhe can construct a map
€:Z — (0,1,

such that for every z € Z and 0 < ¢ < €(z), we have f(z)(t) € U. Define a map
w:ZxI—-Y! by

e )(s) = {F(:,t — 2t3), i

fo
r(f(z)(e(z)(@2s — 1)), if ]
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Note that w(z,0)(s) = F(z,0) = f(2)(0) for all z € Z and s € 1. Now define
§:Zx1— X" byd(z,t) = a(f(2)(e(2)t),w(z,1)),
and note that
(1) 8(z2,0)(s) = F(2,0),

(2) 8(z,1)(1) = f(2)(e(2)t),
(3) 8(2,8)(0) = F(z,1),
(4) if f(2) € Y?, then 8(2,t) € Y.

Finally, define a stratified solution £ : Z x I — Pusp(X,Y) of the lifting problem
by

- _ ) a(z, t)(s/e(2)t), if 0 € s < e(2)t,
Flz,t)(s) = {f(z)(s), ife(z)t <s<g 1.

THEOREM 6.7. Let k 2 0 and ! 2 0 be integers.
(1) Tr-1,1, Tuns Thy—1 and Sig—1 imply Try if 1 > 1.
(2) Tx—1,1 and Si_1,1 imply Sk if k> 1.
(3) Tr—1,1 and Sx—1,) imply Tr. 1 ifk > 1.
(4) Titi,1 Sk+t1 end Sk, imply Sy p41.

THEOREM 6.8. If theorem 6.7 holds, then statements Sy and Ty hold whenever
klz0andk+121.

Proof. The proof is by induction on k +!. Assume k+! = 1 and note that Sy, and
To.1 hold by remark 6.5. Since S, ¢ and Ty ; are empty statements, we may proceed.
Assume inductively that £ + ! > 1 and that S, and T, hold whenever a,b > 0
andl1<a+b<k+1.

We begin by verifying T} ;. Consider first the case [ = 1. Then k > 1. As observed
in remark 6.5, T 1 holds. Thus, assume ! = 1and k > 1. Then (k—1)+1 = k < k+I,
so we have statements Ty, 1 and Sk—; 1. Now T} ; follows from theorem 6.7 (3).

Consider now the case ! > 1 (and k 2 1). Then ({-1)+1 =1 < k+{, k+1 < k+!
and k + (I — 1) < k +{. Thus we have statements Tj_, 1, Tk,1, Tx,1—1 and Sg-1.
Now Ty follows from theorem 6.7 (1).

Hence we have verified T and we may assume that T, ; holds whenever a,b 2 0
and1<€a+d<k+ 1

We now verify Si;. Consider first the case I = 1. Then & > 1. Note that S5) 1
follows from proposition 6.6. Thus, we may assume that { = 1 and & > 1. Then
(k—1)+1=k<k+!land (k—1)+1=k < k+1. Thus, we have T and
Sk—1,1. Now Sy, 1 follows from theorem 6.7 (2).

Now consider the case ! > 1. Then (k+1{—1)+ 1 =k + 1 50 Ti41—1,1 holds. We
know that Syii—11 holds from the case above. And k+ (! = 1) < k 4+ so Sk
holds. Now Sy follows from theorem 6.7 (4). a

Note that theorems 6.1 and 6.3 follow immediately. The missing link is the proof
of theorem 6.7, which will be completed in §9.
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7. Stratified systems of stratified fibrations

Quinn [13] introduced stratified systems of fibrations over stratified spaces. We now
generalize this to stratified systems of stratified fibrations in which the domain as
well as the range is stratified.

In this section, our minimal standing hypothesis will be that X denotes a space
with a partition {X;};ez and Y denotes a space with a filtration {Y7},c 7, such
that Y is partitioned by its strata {Y;};c7.

DEFINITION 7.1. If p: X -5 Y isa map and A C Y, then A is said to be a
stratified p-NDR subset of Y if there exist a neighbourhood U of A in Y and
a strong-deformation retraction of U to A in Y that is covered by a stratum-
preserving strong-deformation retraction of p~!(U) to p~'(A) in X; that is, there
exist homotopies h: U x I = Y and h: p~Y(U) x I = X such that:

(1) h(y,0) = y and h(z,0) =z for all y € U, z € p~1(U);

(2) h(y.t) =y and h(z,t) = z for all (y,t) € Ax I, (z,t) € p~1(A) x I;
(3) h(y.1) € A and h(z,1) e p~}(A) for all y € U, z € p~ (U);

(4) ph(z,t) = h(p(z),t) for all x € p~}(U), t € I;

(5) h is a stratum-preserving homotopy.

Special attention should be paid to the condition in the definition above that his
required to be stratum preserving, not just nearly stratum preserving. In particular,
consider the identity map idy : X — X. If both the domain and range are given
the same filtration, then the skeleta of X are not, in general, idx-NDR subsets
of X. However, if the domain is unstratified (i.e. consists of a single stratum) and
the skeleta in the range are neighbourhood strong-deformation retracts, then the
skeleta are idx-NDR subsets of X.

LEMMA 7.2. IfY is a metric space, A C Y is a closed union of strata and stratified
forward tame inY, and q : Pusp(Y) = Y is evaluation, then A is a stratified -NDR
subset of Y.

Proof. Let U be a neighbourhood of A in Y for which there exists a nearly stratum-
preserving strong-deformation retraction h : U xI - Y of Uto AinY as in
definition 3.4. Since Py, (Y') is paracompact, there exists a map a : ¢~ '(U) — (0, 1],
such that w([0,a(w)]) C U for each w € ¢~ (U). Define h : g1 (U) x I = P (Y)
by

h(w(2ta(w)), s — 2t), if0St< 3s,
iz(w, s)t) = - -
w(2(1 sa(w)2)t—-!~s2sa(w) s)’ fls<t<l,

]

COROLLARY 7.3. If Y is a metric space, B C A CY are closed unions of strata,
B is stratified forward tame in'Y and q : Py, (Y, A) = A is evaluation, then B is
a stratified g-NDR subset of A.
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Proof. Let p: Pyugp(Y) — Y be evaluation. Lemma 7.2 implies that B is a stratified
p-NDR subset of Y. Let U be a neighbourhood of B in ¥ for which there exists
homotopies i : U x I = Y and h : p~'(U) x I — P,,(Y) as in definition 7.1.
By the proof of lemma 7.2 we may assume that A is ncarly stratum preserving.
Note that Py, (Y, A) € Puyp(Y) and, in fact, Pugp(Y, A)i € Py (Y): for all .
Also ¢='(B) = p~!(B). It then follows from the explicit construction in 7.2 that
h|:q Y (U)y x I = Py,(Y. A) is a stratum-preserving strong-deformation retraction
covering h. O

DEFINITION 7.4. A map p: X = Y is a stratified system of stratified fibrations if
for each j € J,

(1) p|: p~'(Y;) = Yj is a stratified fibration for each stratum Y; of Vi and
(2) each skeleton Y7 of Y is a stratified p-NDR subset of Y.

If in the definition above, X is unstratified (i.e. the partition of X consists of a
single stratum) and p |: p~!(Y;) — Y; is a fibration for cach stratum Y; of Y, then p
is said to be a stratified system of fibrations. This notion was defined by Quinn [13]
and is useful in the theory of group actions. Talbert [16] observes that any map
with a homotopy colimit structure is a stratified system of fibrations.

Our interest in stratified system of fibrations is that they are usually stratified
approximate fibrations. Sce corollary 7.6. This is a generalization of the analogous
fact for stratified systems of fibrations due to Quinn [14, 3.3].

LEMmMA 7.5. Let X be a metric space with a partition, Y a metric space with a
stratification satisfying the ‘frontier condition’, and let Y° be a minimal skeleton of
Y (so that Y =Y,). If p: X = Y is a map such that p |: p~L (Y \Y°) = Y\ Y©
is a stratified approzimale fibration, p |: p~'(Y°) = YV is a stratified fibration, and
Y? is a stratified p-NDR subset of Y, then p: X — Y is a stratified approzimate
fibration.

Proof. Let U be a neighbourhood of Y in Y for which there exists a strong-
deformation retraction h : U x I = Y of U to }’0 in Y, which is covered by a
stratum-preserving strong-deformation retraction b : p~'(U) x I = X of p~!(U) to
p~1(Y?) in X as in definition 7.1. Suppose there is given a stratified lifting problem

z L, x

ol |+

Zxl —toy
for which we need to find a stratified controlled solution. According to remark 5.5 (2)
we may assume that Z is a metric space. Let Zy = Fy ' (Y?). Since F is stratum
preserving, ZoxI = F~'(Y°). Let Z, = F; '(Y'\Y?). Since F is stratum preserving,
Zy x I = F-Y(Y'\ Y?). Thus, there is a stratified lifting problem

Zr L v\ v

| |

ZixI 2 y\ye
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p=1

Figure 1.

and, since p |: p~ 1Y\ Y?) = Y \ Y is a stratified approximate fibration, there is
a stratified controlled solution

g:Zy xIx[0,1)=p (Y \Y%.
Thus g(z,0,t) = f(z) for all (z,t) € Z; x [0,1), g is stratum preserving along
I x [0.1). and the function §: Z; x I x [ = Y \ Y defined by

3(z,8,1) = pe(z.8,t), if(z,s8) € Z1 x I x[0,1),
9(z,8,t) = F(z, ), if (2,8) €Zy xTandt =1,

is continuous and stratum preserving along ! x I. Choose a neighbourhood Z’ of
Zg in Z such that F(Z' x I) C U, and let Z; = Z'nZ, = Z'\ Zy. Use the fact
that Z is paracompact to define a map a : Z{ — [0,1), such that g(z,s,t) € U if
a(z,8) £t <1andlet a:Z — I be any continuous extension of a. Let p: Z = I
be a map such that p=(0) = Zy and p(Z\ Z') = 1. Define B: Z' x I - Y by

3(z.s) = h(G(z.s,p(2) - a(z,8) + 1 — p(2)), 1), if (z,8) € Z] x 1,
o F(z.s). if (2,8) € Zo x 1.

define 3: Z| x I - X by

B(z,5) = h(g(z,5.p(2) - (2, 8) + 1 = p(2)), 1),
and note that po 3 = 3| Z! x I. Define A C Z' x [0,1) by A = {(z.t) | p(2) =
1-t.z€ 2’} and let
B=A{(z,s,t) [p(z) 21-t,sel,z€Z'}CZ' xIx|[0,1),

s0 that with a slight abuse of notation, B can be identified with A x I. See figure 1.
We will now show that Z’ x {0} x [0,1) U B is a strong-deformation retract of
Z' x I x [0.1). First we need an auxiliary map. Given 0 < 7 < 1, define R, :
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IxIxI—=Thby

(s — us, t + us), ift <7—s,
R (s,t,u) =< (s~ ut —ur,t — ut — ur), ifr—s<g<tgr,
(s.1), ifrgt

Thus R, is a strong-deformation retraction of I x I onto {(s,t) € IxI|s=0
or 7 < t}. Now define K : Z' x I x [0,1) x I —» Z' x I x [0,1) by K(z,s,¢,u) =
(2, Ry=p(z)(s,t,u)). Thus, K is a strong-deformation retraction of Z’ x I x [0,1)
onto Z' x {0} x [0,1) U B. Define v: Z’' x {0} x [0,1)U B = p~1(Y?) by

- ) ,
s < UG, i Gst €2 x 0} x[0.1),
B(z,s), if (z,s,t) € B.
Define I': Z' x I x [0,1) = Y° by I'(z,s,t) = (2, s) and note that
Z'x {0} x [0,1)UB —X— p~}(Y?)

inclusionl val

Z'xIx[01) ——s YO

commutes. In fact, v and I' are stratum preserving along I and the strong defor-
mation K is such that:

(1) 'K : Z' x I x [0,1) x I = Y? is stratum preserving along the final I factor
(because Y has only a single stratum!); and

(2) YKy : Z x I x[0,1) = p~!(Y?) is stratum preserving along I (this requires a
check of the definitions).

Thus lemma 5.2 implies that there is a stratified solution
I:Z xIx[0,1) = p~}(Y?),
extending v; that is,

(1) I is stratum preserving along I,

@) [ 2" x {0} x[0,1) =7},

® L|B=7l,
(4) p'=T.
Sec figure 2.
Define A: Z x (I x [0,1)U {0} x I) = X by
rf“(z,s,t), ift<1-p(2),2€ 2"t <1,
f}(g(z,s,u — a(z,5) + 1), :—(‘5‘5) e3> 1—plz)z€ 2 t<],
A(z,8,t) = (i.e. (z,s,t) € B)

g(z,8,(1 = t)a(z, s) + t), ifzeZ\Z',t=1,

Lf(2), ifs=0,t=1
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Figure 2.

Define A: ZxIxI—=Y by

/T(Z,S t) = pA(Z,S, {)’ ift<lors= O’
’ F(Z, S), ift=1.

One checks that A is stratum preserving along I x [0, 1)U{0} x I and A is continuous
and stratum preserving along 7 x I. Apply lemma 5.6 to turn A into a controlled
stratified solution of the original problem. a

COROLLARY 7.6. Let X be a metric space with a partition, Y a metric space with
a stratification satisfying the ‘frontier condition’ such that Y has only finitely many
strata. If p: X — Y is a stratified system of stratified fibrations, then p is a stratified
approzimate fibration.

Proof. This follows from lemma 7.5 by induction on the number of strataof Y. O

REMARK 7.7. If p: X — Y is an algebraic map between algebraic varieties, then X
and Y have Whitney stratifications with the property that p takes each stratum of
X submersively into some stratum of Y. I conjecture that such maps are stratified
approximate fibrations, I don’t know if they are stratified fibrations, and suspect
they need not be stratified systems of fibrations.

8. Preliminary constructions

This section contains a collection of technical results that will be needed in the
proofs of the main results in §9.

LEMMA 8.1 (The limbo). Suppose X is a space, Z is a metric space, A C Z is a
closed subspace and there is a commuting diagram

z 4, x

| Js

ZxI—h—)
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with q(w) = w(0) for all w € X' and f(a)(t) = f()(0) for all (a,t) € A x I.
Suppose also that there exists a partial lift h : (Z \ A) x [0,1) = X that is,
qh =h|(Z\A)x[0.1) and h(z.0) = f(2) for all z € Z\ A. Then there exists a map
:(Z\NA)x I =1, such that u(z,0) =1 forallz € Z\ A, u~1(0) = (Z\ A) x {1},
and s0 that the function h: Z x I — X! given by
(e 8)() = {h(z.s(l —t)(su(z.1—t)+(1—s)t), ift>0andze Z\ A,
h(z.s(1 =t)). ift=0 or € A,

is continuous. Moreover, hy = f and qiz =h.

Proof. For each point (z,1) € (Z \ A) x [0, 1). choose a number N(z,t) such that:
() 0< Nz ) g1 -t
(2) diam{h(z,8)(s) | 0 < s < N(z, 1)} < 2diam{f(2)(s) |0 < s < t};
(3) N(z.0)=1forall z € Z\ A.

For each (z,t) € (Z\ A) x [0,1) choose a neighbourhood Uy ) of (z.t) € (Z\
x [0, 1) such that:

(1) diam{A(z",#')(s) | 0 € s € N(z.1)} < 2diam{f(z')(s) | 0 < s < #'} for all
(") €Upy:

(2) UeyNZ x {0} #0 if and only if ¢ = 0

Let {Ua} be a locally finite refinement of {U; } and let {¢,} be a partition of
unity subordinate to {U,}. For each a choose (z.t) such that U, C U, ). and set
da = N(z,t). Define u: (Z\ AYx I = I by

[(Z\A)x[0,1) =D baha

and u(z,1) =0forall z € Z\A Note that if 2 € Z\ A and £ < 1, then u(z,t) > 0.
One checks Athat the fungtlon i defined above is contimious. F inally, it is easy to
verify that by = f and gh = h. a

Here is some explanation for the preceding lemma. Consider the map 4, : Z —
X! defined by

h(z,1—=t)(u(z,1-1)), ift>0and z€ Z\ A,

A,(z)(t) = i‘( )(t) {h(‘” 1-1t), ift=0 or z€ A.

Then h is a homotopy from f to A,. One should think of 4, as the u-damped
diagonal map. The point of the lemma is that the undamped diagonal function
A:Z = X! defined by

h(z.1=t)(t), ift>0andz€Z\A,

A(z)(t) = {h(:vl—t)- ift:o or ZGA!

need not be continuous. For if {2,} is a sequence in Z \ A converging to a € A,
there is no reason for {h(z,, 1 — t)(t)} to converge to h(a,1~2)if 0 <t < 1. But u
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h

Figure 3. The limbo.

is chosen so that {A(z,,1 — t)(u(z.1 = t))} converges to h(a,1 — t). The name ‘the
limbo’ refers to the way one must duck below the diagonal as in the limbo dance.
See figure 3.

ADDENDUM 8.2. In the situation of lemma 8.1, suppose further that X is a metric
space with a stratification satisfying the ‘frontier condition’, f(Z) C Pyeu(X), h is
a stratum-preserving homotopy so that

z —L5 P(X)

o] Js

Zxl —", X

is a stratified lifting problem, and that h has image in Pusp(X) and is stratum

preserving along [0,1). Then the map h defined in lemma 8.1 has image in Prsp(X)
and is a stratum-preserving homotopy.

Proof. If z € Z, then h(z,0) = f(2) € Posp(X). Choose ¢ such that iz(z 0) €
Pup(X)i. Thus, 2(2,0)(t) € X; for each t € (0,1). We must show that h(z. s) €
Puap(X); for each s € I; that is, we must show that h(z,s)(t) € X; for each s € [

and ¢ € (0,1). First assume that z € A. Then A(z,s)(t) = h(z,s(1 - t)). Since

h(z,0) = h(z 0)(1) € X; and h is stratumn preserving, it follows that h(z, s)(f) =

h(z,s(1-t)) € X, foreach s € I and ¢t € I. Now assume that z € Z\A,s € Jand t €

(0.1). Then h(z, s)(t) = h(z, s(1-t))(v), where v = su(z,1-t)+(1-s)t. Since t > 0

and u(z,1—t) > 0, it follows that v > 0. Since h(z,0) — Jf(2) = h(z,0) € Pyop(X)i,

and h is stratum preserving along [0, 1), it follows that h(z, s(1 — t)) € Pugp(X);-

Thus, Ai(z, (1 — t))(v) € X; as required. a

LEMMA 8.3. Let X be a metric space with a stratification satisfying the ‘frontier
condztzon and let K and L be closed unions of strata of X with M = KN L. Let
={w € X! |w(t) = w(0) € L for each t € 1}. If the evaluation at 0

G:Pop(X\L.K\M)> K\ M
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is a stratified fibration, then so is the evaluation at 0
¢ Posp(X\ L, K\M)UL - KUL.
Proof. Suppose there is given a stratified lifting problem

z —L P (X\LK\MUL

xﬂl 10'
ZxI £ KUL

for which we need to find a stratified solution. Note that A = f~!(L’) is a closed
subset of Z and, since F is stratum preserving, F~1(K \ M) = (Z \ A) x I. Thus,
there is a stratified lifting problem

Z\A LY P (X \ LK\ M)

"] Js

(z\A)yx1 L, K\ M.
Since g is a stratified fibration, there is a controlled solution F : (Z\ A) x I —
Pusp(X \ L, K \ M). According to the limbo lemma 8.1 there exists a map u :
(Z\ A) x I = I such that u(z,0) = 1, u(z,1) = 0 for each z € Z \ A and so that
the function F': Z x I — X! given by

Bz, 8)(t) = F(z,8(1 — t))(su(z,1 —t) + (1 - 8)t), f” >0and z€ Z\ A,
F(z,s(1 - t)), ift=0 or z€ A4,

is continuous. Lemma 8.1 implies that F is a solution of the problem and adden-

dum 8.2 implies that F is a stratum-preserving homotopy. O

LEMMA 8.4. Let X be a metric space with a stratification satisfying the ‘frontier
condition’ and let K and L be closed unions of strata of X with M = KnL. If
K\ M is stratified forward tame in X \ L, then there ezxists an open neighbourhood
Uof K\M in X\ L, such that K is stratified forward tame in U U M.

Proof. Let W be a neighbourhood of K\ M in X \ L for which there exists a nearly
stratum-preserving homotopy h : W x I = X \ L showing that K \ M is stratified
forward tame in X \ L as in definition 3.4. For each n = 1,2,3,..., let W,, be an
open neighbourhood of K\ M in X \ L, such that diam h({z} x I) < 1/n for each
xz € W,. Let

20
U = {JIB(1/n, M)\ cl B(1/(n + 1), M)] N W,, U [W \ cl B(1, M)],
n=1
where B(k, M) denotes the set of points that are a distance less than k from some
point of M. Let U’ be an open neighbourhood of K\ M in X\ L such that h(U'xI) C

U. Since h | U’ x I extends continuously via the identity to M x I, the result
follows. 0
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Figure 4.

ProprosITION 8.5 (Blending). Let X be a metric space with a stratification satis-
Jying the ‘frontier condition’. Let K and L be closed unions of strata of X such
that:

(1) M = KN L is stratified forward tame in K;

(2) K\ M is stratified forward tame in X \ L;

(3) L is stratified forward tame in (X \ K)U M;

(4) q:Pusp(X\ L. K\ M) = K\ M is a stratified fibration.
Then K U L is stratified forward tame in X.

Proof. The stratified forward-tameness conditions in items (1)-(3) above imply that
there exist open neighbourhoods Uy of M in K, Uk of K\ M in X \ L and Uy, of
L in (X \ K)U M together with nearly stratum-preserving homotopies:

(1) M Uy x T — K
(2) R :Ug x I - X\ L; and
(3) kUL x I - (X\K)UA;

as in definition 3.4 (see figure 4).

By lemma 8.4 we can assume that h¥ is defined on Uy U M and h¥ : Uk v
M) x I — X is such that h¥(z,t) = z for each (z,t) € M x I. Now extend h¥ (but
continue to denote it the same) to h¥ : (Ux UL) x I = X so that h¥(z,t) = z for
each (r,t) e L x I.
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Let pas : K — I be a map such that p3/(0) is a closed neighbourhood of M in
K and p;,l(l) =K\ Uy Let hM . (KU L) x I = K be defined by

WM () = Mz t(1 = par(x))).  ifx € Uy
' x. ifre (K\Uy)UL.

Note that hM deformation retracts a neighbourhood of M in K to M rel M, and
that A% | (K U L) x [0,1) is stratum preserving along [0,1). If L' = {w € X! |
w(t) = w(0) € L for each ¢ € I}, then it follows from lemma 8.3 that the evaluation
map ¢’ ¢ Pusp(X \ L, K\ M)U L' —» K UL is a stratificd fibration. Define f :
Uk UL 5 Py ( X\ L, K\MYUL by
f@Q) =@ 1-1), for (z,t) € (Ux UL) x I.
Define F: (Ux UL) x I = K by
F(x.t) = hM(h¥ (2. 1).0). for (z.t) € (Ux UL) x I.

Consider the commuting diagram

Uk UL L P (X \ LK\ M)UL

o I

(U UL)x[0,1) —L KUL.
Note that F | (Ux U L) x [0,1) is stratum preserving along [0, 1). Since ¢’ is a
stratified fibration there exists a stratified solution

F:(UrUL)x[0.1) 5 Pup(X \ LK\ M)U L":

that is, F is stratum preserving along [0.1). ¢ F = F and Fo = f. Now the limbo
lemma 8.1 can be applied with Z = U UL, A = KU L, and F the partial lift of
F with given initial lift f. [t follows that there exists amap u: (Uxk \ K) x I = I
such that u(z,0) = 1, u(z,1) = 0 for all x € Ux \ K and so that the function
F:(UxUL)xI-— X given by

F(z,s(1 —t))(su(z, | =) + (1 —s)t), ift>0andz€Uk\K,

F:,. t) =
(, 5)(8) {F(:c,s(l—t)), ift=0 or € KUL,

is continuous. Note that F'(xx, 0)(t) = f(x)(t) = h¥ (x,1—1t) for all (z,t) € (UxUL) x
I. Let Vi be an open neighbourhood of i\ M in X'\ L such that the closure of Vi
in X \ L is contained in Uy. Let py : Uy — I be a map such that p~1(0) = K\ M
and pr'(1) = Uk \ V. Define F* : Uy UL — X' by
P )0 = {f’(m.ph'(ar))(l _— lfx € Ug.
x. ifx € L.

In particular, F*(z)(t) = « for all 2 € KU L, F*(2)(0) = x and F*(z)(1) € K
for all z € Uy, and if pg(x) = 1, then F*(z) is a path with F*(z)(0) = z and
F*(z)(1) € M. Let pr, : X \ (K'\ M) = I be a map such that p7'(0) is a closed
neighbourhood of L in X \ (/ \ M) and p;'(1) = X \ (UL UK). Let

RECXN(K\M) x T = X\ (K\M),
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Figure 5.

be defined by

hl(z,t) = hi(x, (1 - pr(x)),  ifz € UL,
YT g, ifze X\Ug.

Note that AL deformation retracts a neighbourhood of L in X \ (K \ M) to Lrel L
and hL | L x [0,1) is stratum preserving along [0,1). Let p: X \ L — I be a map
such that p~1(0) is the closure of Vi in X \ L and p~}(1) = X \ (Ux U L) (see
figure 5).

Define H : X x I = X by

( F*(z)(t), ifogt< 1 -p(x)
and p(z) #lorz e L,

ill‘ (F*(x)(l - p(m))’ Lz)_l-), if 1~ p(fE) <t P(‘c) #0,

H(z,t) = | plz) plzy#landzx € L,
ht(z, 1), if p(z) = 1,
|z, ifzre KUL.
See figure 6.
Then H deformation retracts a neighbourhood of K U L to K U L in a way that
shows that K U L is stratified forward tame in X. O

The following result is a generalization of a phenomenon observed by Quinn [14,
§2.7], namely that approximate lifts can sometimes be turned into exact lifts.

PROPOSITION 8.6. Let X be a metric space with a stratification satisfying the ‘fron-
tier condition’ and let K C X be a closed union of strata.

(1) If ¢ : Pusp(X,K) = K is a stratified approzimate fibration, then it is a
stratified fibration.
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Figure 6.

(2) If q : holinks(X, K) = K is a stratified approzimate fibration, then it is a
stratified fibration.

Proof. The proofs are similar so we only give the proof of (1). Suppose we are given
a stratified lifting problem

z —L P (X K)

o |

Zx1 £, K.

Thus, F is a stratum-preserving homotopy and the diagram commutes. According to
remark 5.5 (2), we may assume that Z is metric. Let F': Z x I x[0,1) = Pysp(X, K)
be a stratified controlled solution so that £ is stratum preserving along I x [0,1),
F(2,0,t) = f(z) for all (z,¢) € Z x [0,1) and F': Z x I x I — K defined by

F|ZxIx[0,1)=¢F and F|ZxIx{l}=F xidgy,
is continuous and stratum preserving along I x I. Define £: Z x I — X! by

. F(z,y, 1 =8)(t), ift>0,
Flay)n = Dmwd =00
F(z,y), ift=0.
Note that F is continuous, gF = F and F(2,0) = f(z). One checks that ImE C

Prsp(X, K) and that Fisa stratum-preserving homotopy, so that F is a stratified
solution to the given problem. a

LEMMA 8.7. Let X be a metric space with a siratification satisfying the ‘frontier
condition’ and let Y C X be a minimal stratum. If evaluation ¢ : holinks(X,Y) -5 Y
is a stratified fibration, then so is eveluation g : Ppop(X,Y) = Y.
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Proof. Suppose we are given a stratified lifting problem

z —L P (X.Y)

" Jo

Zx1 Y.

Let A={z€ Z| f(z) €Y'} and let Z; = Z\ A. Thus, we have a stratified lifting
problem

Z —L holinky(X,Y)

" |+

Zx I —2 Y

which, by hypothesis, has a stratified solution G : Z; x I — holink;(X,Y). There
is also a homotopy lifting problem

A Ay

o Js

Ax] —— Y
which has a lift h: A x I = Y/ defined by

F(z,s(1-2t))(t), ifo<t<y,
f(z)(2t = 1), ifl<tgl

Note that gh = F | A x I but hy # f(z), so this is not a solution of the problem.
At any rate we will now modify G so that it can be extended to all of Z x I via h,
and then worry about the initial lift.

Use remark 5.5 (2) to assume that Z has a metric d and use paracompactness to
construct a map u : Z; — (0, 1], such that for each (z,s) € Z; x I

diam{G(z, 5)(t) | 0 < ¢ < u(z)} < lub{d(f(2)(¢),Y) | i € I}.

Note that u extends to a map Z — I by sending all of A to 0 For each 2z € Z,
let 7: : I = I be the map which takes [0, }] linearly onto [0, u(z)] and takes [}, 1]
linearly onto [u(z), 1]. That is,

h(z,s)(t) = {

- =
N O
AN
VAN
= e

) = { u(2)t,
20t - (1 —u(z)) + 1,
Define G’ : Zy x I — holinky(X,Y) by
' _ )Gz s(1 =20)(7:(8)), 0Kt
Ga = {f(Z)(‘r:(t)) il <t<

Then there is a map G Z x I = Ppp(X,Y) defined by G|Z,xI=G and G|
A x I = h. Note that qG F, but Gy #_f. However, it is easy to see that there is a
stratum-preserving homotopy H : f = G, such that gH is the constant homotopy

+

— N



376 B. Hughes

F x idy. This is enough to conclude that g : Ppep(X,Y) = Y is a stratified approx-
imate fibration (cf. lemma 5.6). Finally, apply proposition 8.6 to conclude that q is
a stratified fibration. O

9. Proofs of the main results

In this section the proofs of the main results stated in § 6 are presented. The first
result is a restatement of theorem 6.7 (1). A couple of related results are given in
corollaries 9.5 and 9.7.

PROPOSITION 9.1. For k 2> 0, | > 2, statements Ti_y,, Ty, Tri—1 aend Siy_,
imply statement Ty, ;.

Proof. Let Y be a closed union of strata of a homotopically stratified metric space
X such that X \'Y has & strata and Y has ! strata. Let Y be a minimal stratum
of Y and note that:

(1) Yy is stratified forward tame in Y by Tj_; 1:

(2) Y\ 'Yy is stratified forward tame in X \ Yy by Ty y_1:

(3) Yy is stratified forward tame in (X \ Y)U Y by Ti.1: and

(4) Pusp(X \ Y0, Y \ Yg) = Y\ Y is a stratified fibration by S;,_;.

The blending proposition 8.5 (applied with K =Y and L = M = Yp) implies
that YV is stratified forward tame in X. g

The following result is a restatement of theorem 6.7 (2).
PROPOSITION 9.2. For k 2 2, statements Ty_)) and Sk_1,) imply statement Sy ;.

Proof. Let Y be a closed union of strata of a homotopically stratified metric space
X such that Y is a single stratum and X \ Y has k strata. We need to show that
q: Pusp(X.Y) = Y is a stratified fibration. By lemma 8.7 it suffices to show that
¢ : holink,(X.Y) — Y is a stratified fibration.

Let Xp be a minimal stratum of X \ ¥ and note that ' = XoU Y is a closed
union of strata of X with only two strata such that X \ W has & — 1 strata. Thus
Ti—1,1 implies that X, is stratified forward tame in X \ Y. Lemma 8.4 implies that
there exists an open neighbourhood U’ of W\ Y = X in X \ Y such that W is
stratified forward tame in U’ UY. Let U be an open neighbourhood of W in U'UY
and h : U x I = U'UY a nearly stratum-preserving deformation of U to W in
U'UY as in definition 3.4. Moreover, the proof of lemma 8.4 shows that we may
assume that i~ (Y) =Y x L.

Observe that ¢ : Pyp(X \ Xo,Y) — Y is a stratified fibration by Si—;1. As
observed in the proof of corollary 6.2 (2), it follows from remark 5.5(1) that ¢ :
holinks(X \ Xo,Y) = Y is a stratified fibration.
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We will now show that ¢ : holinks(U,Y) — Y is a stratified fibration. Suppose
there is given a stratified lifting problem

z L, holink; (U, Y)
xol lq (9‘1)

zZx1 £, Y.

Note that the adjoint induces h; : holinks(U,Y) — holink,(W,Y) so that we have
a stratum-preserving lifting problem

Z 295 holink(W,Y)

o] Jo

zZx1 —t, Y.

Now S ; (which holds according to proposition 6.6) implies that there is a stratified
solution G : Z x I — holinks(W, Y of this second problem (as above, we are using
the fact that Ppop(W,Y) — Y is a fibration implies that holink,(W,Y) — Y is
a stratified fibration). Define G : Z x I x I — W by G(z,s,t) = G(z,s)(t) and
g: Z x I = Pnyp(X, W) by g(2, s){(t) = h(f(2)(s),1 —¢) so that there is a stratified
lifting problem

ZxI —25 Pup(X, W)

"] Js

ZxIxI -S4 W

Unfortunately, it takes Si_; 2 to solve this problem. So instead of attempting to
solve it, note that it restricts to

Zx (0,1 —Z Pop(X\Y,Xo)

xo| o

ZxIx (01 —<s Xo
which, by Sk_2,1, has a stratified solution G* : Z x I x (0,1] = Ppep(X \ Y, Xo).
We will now define a commuting diagram

Zxl 2, xI

| Js

ZxIxI 25w
to which the limbo lemma 8.1 can be applied. Define B and A by the formulas
B(z,r,8) = G(z,7,1 — 8) =G(z,7)(1—5) and A(z,r)=G*(z,11).

One checks that the diagram commutes. Define C : Z x I x [0,1) — X' by
C(z,7,8) = G*(z,1,1 — s). Then ¢C = B | and C(z,1,0) = A(z,r) so that C
is a partial lift in the sense of lemma 8.1. It follows from lemma 8.1 that there
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exists a lift D : Z x I x I = X! such that gD = B and D(z,r,0) = A(z,r). Now
define E: Z x I = X! by E(z,7) = D(z,7.1). Then qE = F and the explicit for-
mula for D in lemma 8.1 implies that £ : Z x I — holink,;(U, Y) and that there is a
stratum-preserving homotopy Ey ~ f that is fibre preserving over Y. This is enough
to conclude that there exists a stratified controlled solution of (9.1) (cf. lemma 5.6
and (10, §12]). Hence, ¢ : holinks(U,Y) — Y is a stratified approximate fibration
and proposition 8.6 implies that it is a stratified fibration.

We now complete the proof that g : holink,(X,Y) — Y is a stratified fibration.
Consider a stratified lifting problem

Z —L holink(X,Y)
x()l lq (9.2)
Zxl L Y.
Assume that Z is metric (remark 5.5 (2)). Let
Zo={z€ Z| f(z) € holinks(W,Y)},

and

Zi={z€Z|fz)N(X\U) #0}.

Then problem (9.2) restricts to problems

zZ\2Z,  —2' holink,(U,Y)

"] |s

(Z\Z)) x T -2 Y
and
Z\Zy —2' holinky(X \ Xo,Y)

xo| e

(Z\Z())X[i-) Y

which (by the first two parts of this proof) have stratified solutions
G:(Z\Z)) x 1T = holinky(U,Y) and H :(Z\ Zy) x I = holink(X \ Xy, Y).

It follows that G |, H |: (Z\ (ZgU Z;)) x I — holink;(X \ Xo,Y) are both stratified
solutions of

Z\(ZoUZ) —I holinks(X \ Xo.Y)

o] |

(Z\(ZouZ)) x I —2 Y.

By lemma 5.3 there exists a map J : Z\ (ZpU Z;) x I x I = holink,(X \ Xy.Y)
such that:

1) ¢J = F | xidy;
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(2) J is stratum preserving along I x I;
(3) J(2,0,t) = f(=) for cach (2,t) € Z\ (ZyU Z}) x I
(4) J(z,5.0) = G(z,s) and J(z,s.1) = H(z,s) for each (z,5) € Z\(ZoUZ;) x I.

_Let ¢: Z — I be a map such that ¢~!(0) = Zy and ¢~!(1) = Z,. Finally, define
F:Z x I - holink,(X,Y) by

G(z,t), if z € Zy,
F(zt) = J(zto(z)), ifze€ Z\(ZoU %),
H(Z,t), if z € Z;.
It follows that F is a stratified solution of (9.2). 0

The following result is a restatement of theorem 6.7 (3).
PROPOSITION 9.3. For k > 2, statements Ty_yy and Sy_1,, tmply statement Ty ;.

Proof. Let Y be a closed union of strata of a homotopically stratified metric space
X such that Y is a single stratum and X \ 'Y has & strata. Let X be a minimal
stratum of X \ Y and note that W = X, UY is a closed union of strata of X with
only two strata such that X \ W has k — 1 strata. Note that:

(1) Y is stratified forward tame in W by Ty, (see remark 6.5 (3));
(2) Xo is stratified forward tame in X \'Y by Ty_1 ;;

(3) Y is stratified forward tame in X \ Xo by Ti—;.1: and

(4) Pusp(X\Y, Xo) = Xp is a stratified fibration by Si_; ;.

The blending proposition 8.5 (applied with K = W and L = M = Yp) implies
that Y is stratified forward tame in X. g

The following result is a restatement of theorem 6.7 (4).

PROPOSITION 9.4. For k 2 0, | > 0, statements Tyxy11, Ski11 and Sy imply
statement Sy 14..

Proof. Let Y be a closed union of strata of a homotopically stratified space metric
X such that X \ 'Y has k strata and Y has [ + 1 strata, and consider the map
q : Pup(X,Y) = Y. Let Yy be a minimal stratum of Y. Note that g (Vo) =
Pusp(X, Y0) and ¢~ (Y \Yp) = Ppsp(X \ Yo, Y\ Yo). Since (X \Yp)\(Y\Yo) = X\V,
it follows that (X \ Yy) \ (Y \ Yp) has k strata. Also, Y \ Y has { strata. From Sy,
we have that ¢ |: ¢~ (Y \ ¥p) » Y \ Yy is a stratified fibration. Since X \ Y, has
k + 1 strata and Y, has 1 stratum, Si4;, implies that ¢ |: ¢7'(Yo) = Yp is a
stratified fibration. Moreover, T, implies that Yj is stratified forward tame in
X. It follows from corollary 7.3 that Y; is a ¢-NDR subset of Y. Now lemma 7.5
implies that ¢ : Ppe,(X,Y) — Y is a stratified approximate fibration. Finally, use
proposition 8.6 to conclude that q is a stratified fibration. O

Finally we establish a couple of related results.
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COROLLARY 9.5. Let X be a homotopically stratified metric space with e finite
number of strata and let Y C X be a closed union of strata. Then q : Ppep(X,Y) =
Y is a stratified system of stratified fibrations.

Proof. If Y* is a skeleton of Y (i.e. Y¥ = X* N YY), then corollary 7.3 implies that
Y* is a ¢-NDR subset of Y. Since q~!(Yx) = Pusp(X, Yi), corollary 6.2 (4) implies
that g |: ¢~ 1(Y%) — Yi is a stratified fibration. O

LEMMA 9.6. Let X be a homotopically stratified metric space with a finite number
of sirata and let Y C X be a minimal stratum. Then ¢ : holink(X,Y) > Y isa
fibration.

Proof. The proof of proposition 8.6 shows that it suffices to show that
g :holink(X,Y) - Y
is an approximate fibration (cf. [14, §2.7]). Let

Zz —L holink(X,Y)

o o

Zx1 —f£ Y

be a lifting problem. By theorem 6.3, Y is stratified forward tame in X. Thus
let U be an open neighbourhood of Y in X for which there is a nearly stratum-
preserving homotopy h : U x I = X as in definition 3.4. By using an elementary
partition of unity argument, one sees that we may assume that f(Z) C holink(U,Y)
(cf. [2], [14, 2.4(1)]). Now define f': Z x I — X' by

f'(z’ s)(t) = h(f(z)(s)a 1- t)'

Since h is nearly stratum preserving, f'(Z x (0,1]) C holinks(X,Y’). Morcover,
f'(2,0) is the constant path at f(z)(0). Thus we have f' : Z x I = Pyup(X, Y).
Define F' : Zx I x I - Y by

o (RS (2)(s—1),1), if0
F(z’sgt)_{F(z,t—s), if s

<t
<t

’

8
1,

A4

and note that we have a stratified lifting problem

ZxI —Lo Puy(X,Y)

o] |s

ZxIxI—L> Y.

By theorem 6.1, this problem has a stratified solution FreZxIxI—> Pusp(X.Y).
Define g: Z X I x I = Ppep(X,Y) by

g(z, 8, )(u) = F'(z,u,8)(1 — t + tu).
One checks that:

(1) g(z’ 0:0) = f(z);
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(2) g(z,5,1)(0) = F(z,s); and

(3) ¢ is stratum preserving along / x 1.

We now modify g to get a controlled stratified solution F:’ to the original problem
(9.3). To this end define F' : ZxIx[0,1) = Pusp(X,Y) by F(z, s, t)(u) = g(zsw)(u),

where
ts ) 1-1t
m. lfOS.SS(—Q_t),

i 1-1
_ ifl — VY<s<l.
(" 1f(2_t)\s\l

Then F(z,0,t) = 9(2,0,0) = f(z), F is stratum preserving along I x [0,1), and
w— 1 as ¢t — 1 so that ¢F extends continuously to Z x I x I via F x idgq3. O

The following result is essentially due to Quinn [14] (sce § 10).

COROLLARY 9.7. Let X be a homotopically stratified metric space with a finite
number of strata and let Y C X be a closed union of strata. Then q : holink(X,Y) —
Y is a stratified fibration and a stratified system of fibrations. (Here holink(X,Y)
is unstratified.)

Proof. 1t suffices to show that ¢ : holink(X,Y) — Y is a stratified system of fibra-
tions, for then corollary 7.6 implies that g is a stratified approximate fibration and
the proof of proposition 8.6 shows that q is also a stratified fibration. Since a stra-
tum Yj is minimal in X \ |, ., ¥; and ¢~} (Y;) = holink(X \ Uic; Y5, Yj), lemma 9.6
implies that ¢ |: ¢~'(Y;) = Y; is a fibration. It remains to see that the skeleton Y7
is a ¢-NDR subset of Y. Using the fact that Y7 is stratified forward tame in ¥

(theorem 6.3), this follows from the proof of lemma 7.2. g

Appendix A. Pure subsets

Versions of theorem 6.3 and corollary 9.7 are claimed by Quinn in (14, 3.2] for
subsets more general than closed unions of strata, namely the so-called pure subsets.
In this section we present an example to show that [14, 3.2] is not quite true
in the generality as stated, and then show, if one assumes the strata are locally
path connected, Quinn’s claim can be recovered from the results in this paper. Of
course, local path connectedness is not a burdensome restriction because in Quinn’s
important applications the strata are manifolds.

DEFINITION A.1. A subsct A of a space X with a stratification is called a pure
subset if A is closed and a union of components of strata of X.

Let Y ={0.1/n|n=1,2,3,...} CR and let X be the cone on Y with vertex
v € X. Then X has a natural stratification with two strata: {v} and X \ {v}. It is
easy to see that with this stratification, X is a homotopically stratified metric space.
The subset A C X consisting of the closed segment joining {0} and {v} is a pure
subset of X, but A is not stratified forward tame in X (or even a neighbourhood
deformation retract). This contradicts [14, 3.2].
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The next result shows that in some situations spaces with stratifications can be
restratified so that a pure subset becomes a closed union of strata, rather than just
a closed union of components of strata, so that the results of this paper apply.

For notation in proposition A.2 let X denote a space with a finite filtration by
closed subsets:

p=X'cXxX°cx'c...cx"=X.

Assume that the strata X; = X'\ X*~! satisfy the ‘forward-tameness’ and ‘normal-
fibrations conditions’ of definition 3.3. This might be slightly confusing because we
are not now assuming that the ‘frontier condition’ holds. However, the following
weaker version of the ‘frontier condition’ is satisfied. If C is a path component of a
stratum X; and CNcl(X;) # @ for some stratum X, then C C cl(X;). In fact there
is a component K of X; such that C C cl(K). For if Cncl(X;) # @, then ‘forward
tameness’ guarantees that holink(X; U C,C) # @ and the path connectivity of C
and the ‘normal-fibrations’ condition imply the existence of K.

PROPOSITION A.2. Let X be as above. Suppose that the strata are locally path
connected and let A C X be a pure subset. Then there exists a stratification R of
X such that:

(1) R is finite, satisfies the ‘frontier condition’, and elements of R are locally
closed;

(2) each R € R is a union of components of the strata {X;};
(3) X is homotopically stratified with respect to R; and
(4) A is a closed union of some of the strata R.

Proof. The proof is by induction on n. If n = 0, then A is closed and a union
of components of X = Xq. Since X is locally path connected, A is also open. Let
R = {X\ A, A}. Clearly R is finite and each member of R is a union of components
of X. Because the strata are both open and closed, the ‘frontier’, ‘forward-tameness’
and ‘normal-fibrations’ conditions trivially hold.

Now assume that n > 0 and that the result is true for filtrations with fewer than
(n + 1)-skeleta. In particular, A \ X is pure in X \ Xy and the result applies to

=X\ XoC X"\ XoC - C X"\ Xg =X\ Xo.

Let S be the stratification of X \ X, with the guaranteed properties. Let {C,} be
the collection of components of Xy. Define C, ~ Cj to mean for every § € S,
CoaNcl(S) # 0 if and only if CsNcl(S) #0. For C, € X\ Y let

[Cali =Us{C3 | C3 C X\Y and C, ~ Cs},
and for C, C Y let
[Cal2 =Ug{Cs | Cs CY and C, ~ Cs}.

Let
R =SU{[Cal1} U{[Ca)2}-

That R is finite follows from the fact that S is finite and there exist natural injec-
tions of {{Calr}a into the set of subsets of S for & = 1,2. We only need to check
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forward tameness and normal fibrations at the new strata R\ S. The union of these
strata is Xo and their components are both closed and open in Xy. The result now
follows from the fact that the original stratification satisfies forward tameness and
normal fibrations at Xy. The ‘frontier condition’ is verified as follows. Let R € R\S
and suppose RNcl(S) # @ for some S € S. This implies that C,Ncl(S) # @ whenever
R = [Ca]x. To show R C cl(S) it suffices to show that C, C cl(S). Since

S=U%,5nX;,

there exists i = 1,...,n such that C, Ncl(SN X;) # 0. By the comments before the
statement of proposition A.2, there exists a component K of X; such that C, C
cl(K). Since S is a union of components of strata from the original stratification,
K C S and so C, C cl(S).

Elements of R are ecasily seen to be locally closed. Finally, note that A =

Un{[Cu]2}- O

In the proof above, one cannot simply let R be the collection of components of
the strata {X;} because the components need not be locally finite. For example, let
X be the space consisting of a point {v} with a countable collection of closed line
segments emanating from and converging to {v}. Stratify X with two strata: {v}
and X \ {v}. The the collection of components of strata is not locally finite.

Restratifications also appear in the work of Beshears [2).

Proposition A.2 can be used to recover Quinn’s result (14, 3.2] from theorem 6.3
and corollary 9.7 if one assumes strata are locally path connected.
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