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Abstract

We characterize those maps between homotopically stratified spaces whose mapping cylinders
are also homotopically stratified spaces. Two applications are offered. The first concerns locally flat
submanifolds of topological manifolds, and the second concerns algebraic maps between algebraic
varieties. 1999 Elsevier Science B.V. All rights reserved.

Keywords:Stratified space; Homotopically stratified space; Stratified approximate fibration;
Mapping cylinder; Manifold embedding; Stratified collection of bundles; Algebraic variety

AMS classification: Primary 57N80; 55R65, Secondary 57N40; 58A35

1. Introduction

A basic technique in topology is to convert a map (i.e., a continuous function) into a
space by taking its mapping cylinder. When doing this it is useful to remain within a given
category. For example, the mapping cylinder of a piecewise linear map between polyhedra
can be given the structure of a polyhedron.

This paper establishes an analogous result for maps between homotopically strati-
fied spaces. Homotopically stratified spaces were introduced by Quinn [23] and are the
homotopy-theoretic analogues of Whitney stratified spaces. In fact, homotopically strati-
fied spaces with manifold strata (ormanifold stratified spaces, for short) appear to be the
topological analogue of polyhedra (see [16]).

What plays the role of piecewise linear maps in this rarefied homotopy-theoretic
context? It is thestratified approximate fibrations, maps with the property that homotopies
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respecting strata in the range can be approximately lifted to homotopies respecting strata
in the domain. These maps were introduced in [10].

The main result of this paper is that the mapping cylinder of a proper map between
homotopically stratified spaces is itself a homotopically stratified space if and only if the
map is a stratified approximate fibration. See Theorem 5.11 for a precise statement.

In Section 6 the techniques developed in this paper are applied to manifold embed-
dings. It is proved that the mapping cylinder of a map between manifolds is itself a man-
ifold with the base a locally flat submanifold if and only if the map is a manifold ap-
proximate fibration with spherical homotopy fibre (see Section 6 for dimensional restric-
tions).

A different perspective on a recent result of Cappell and Shaneson [2] appears in
Section 7. They proved that mapping cylinders of certain maps (‘stratified maps’ in their
terminology) between Whitney stratified spaces are homotopically stratified even though
the mapping cylinders need not be Whitney stratified. This is reproved by first formulating
a result (Theorem 7.3) for homotopy stratifications (instead of Whitney stratifications) and
then deriving the Cappell and Shaneson result as a corollary. As a consequence of the main
result it is proved that a proper algebraic map between algebraic varieties is a stratified
approximate fibration (Corollary 7.5).

A generalized Tubular Neighborhood Theorem for manifold stratified spaces was
announced in [9] and a proof for the two strata case was given in [13]. The present paper
along with [10] provides a good deal of the stratified homotopy theory needed for the proof
of the general case to appear in [11].

2. Definitions

In this section we gather some background material on spaces with stratifications,
homotopy links, mapping cylinders and controlled homotopy equivalences.

Spaces with stratifications.The basic definitions from the theory of stratifications are
presented. For a fuller treatment see [10].

Definition 2.1.
(1) A partition of a spaceX consists of an index setI and a collection{Xi}i∈I of

pairwise disjoint subspaces ofX such thatX=⋃i∈I Xi .
(2) A stratificationof a spaceX consists of an index setI and a locally finite partition
{Xi}i∈I of locally closed subspaces ofX.

(3) In either case, fori ∈ I,Xi is thei-stratumand

Xi =
⋃{

Xk |Xk ∩ cl(Xi) 6= ∅
}

is thei-skeleton.

For a spaceX with a stratification{Xi}i∈I , define a relation6 on the index setI by

i 6 j if and only if Xi ⊆ cl(Xj ).
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The stratification satisfies theFrontier Conditionif for every i, j ∈ I,

Xi ∩ cl(Xj ) 6= ∅ implies Xi ⊆ cl(Xj ).

Remark 2.2 [10]. If {Xi}i∈I is a stratification ofX, then the Frontier Condition holds if
and only if6 is a partial ordering ofI and for eachi ∈ I,Xi = cl(Xi).

Definition 2.3. Let X and Y be spaces with partitions with index setsIX and IY ,
respectively.

(1) A map f :X → Y is filtered if for every i ∈ IX there existsj ∈ IY such that
f (Xi)⊆ Y j .

(2) The mapf is stratifiedif for every i ∈ IX there existsj ∈ IY such thatf (Xi)⊆ Yj .

Proposition 2.4. If X and Y are spaces with stratifications satisfying the Frontier
Condition andf :X→ Y is a stratified map, thenf is filtered and the induced function
f :IX→ IY defined by

f (i)= j if and only if f (Xi)⊆ Yj
is order preserving.

Proof. To see thatf is filtered it suffices to show that iff (Xi) ⊆ Yj , thenf (Xi) ⊆
Y j . SinceXi = cl(Xi), Y j = cl(Yj ) by Remark 2.2, this is immediate. To see that
f :IX→ IY is order preserving, assume thatXi ⊆ cl(Xj ) and show thatYf (i) ⊆ cl(Yf (j)).
Sincef (Xi) ⊆ f (cl(Xj )) ⊆ cl(f (Xj )) ⊆ cl(Yf (j)) and f (Xi) ⊆ Yf (i), it follows that
Yf (i) ∩ cl(Yf (j)) 6= ∅. Thus the Frontier Condition implies thatYf (i) ⊆ cl(Yf (j)). 2
Definition 2.5. LetX be a space with a partition.

(1) A mapf :Z×A→X is stratum preserving alongA if for eachz ∈Z, f ({z} ×A)
lies in a single stratum ofX.

(2) A mapf :Z× I→X is astratum preserving homotopyif f is stratum preserving
alongI .

Definition 2.6. Let X andY be spaces with partitions. A stratified mapf :X→ Y is a
stratified homotopy equivalenceif there exist a stratified mapg :Y → X and stratified
homotopiesF : idX ' gf andG : idY ' fg.

Note that a stratified homotopy equivalencef :X→ Y induces a one-to-one correspon-
dence between the collections of strata ofX and ofY .

Homotopy links. A homotopy model for the normal space of a subspace is provided by
the homotopy link (cf. [23]).

Definition 2.7. LetX be a space with a partition{Xi}i∈I andY ⊆X.
(1) Thehomotopy linkof Y in X is defined by

holink(X,Y )= {ω ∈XI | ω(t) ∈ Y if and only if t = 0
}
.
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(2) Thestratified homotopy linkof Y in X consists of allω in holink(X,Y ) such that
ω((0,1]) lies in a single stratum ofX:

holinks (X,Y )=
{
ω ∈ holink(X,Y ) | for somei, ω(t)⊆Xi

for all t ∈ (0,1]}.
(3) Evaluation at 0 defines maps

q : holink(X,Y )→ Y and q : holinks(X,Y )→ Y ; q(ω)= ω(0),
both calledholink evaluation.

(4) The stratified homotopy link has a natural partition withi-stratum

holinks (X,Y )i =
{
ω ∈ holinks (X,Y ) | ω(1) ∈Xi

}
.

Mapping cylinders. Notation is established for mapping cylinders and various maps
associated with them.

Definition 2.8. Themapping cylinderof a mapp :X→ Y is the space

cyl(p)= ((X× I)q Y )/{(x,1)∼ p(x) ∈ Y | x ∈X}
with theteardrop topology; that is, the minimal topology such that:

(1) the inclusionX× [0,1)→ cyl(p) is an open embedding,
(2) the map

c : cyl(p)→ Y × I ;
{
(x, t) 7→ (p(x), t), if (x, t) ∈X× [0,1),
y 7→ (y,1), if y ∈ Y

is continuous.

If p :X → Y is a proper map between locally compact Hausdorff spaces, then the
teardrop topology agrees with the usual quotient space topology on the mapping cylinder.
See [12, Chapter 12] and [13, §3] for further remarks on the teardrop topology.

We will have occasion to use the following three maps:

pX : cyl(p) \ Y →X; [x, t] 7→ x, (x, t) ∈X× [0,1),

pY : cyl(p)→ Y ;
{ [x, t] 7→ p(x), (x, t) ∈X× I ,
[y] 7→ y, y ∈ Y ,

pI : cyl(p)→ I ;
{ [x, t] 7→ t, (x, t) ∈X× I ,
[y] 7→ 1, y ∈ Y .

Theopen mapping cylindercyl
◦
(p) is cyl(p) \ (X× {0}).

Controlled homotopy equivalence.We generalize the notions of controlled maps and
controlled homotopy equivalences as presented in [14] to the stratified setting. See [13,
§3] for other interpretations of controlled maps.

Definition 2.9. LetX andY be spaces with partitions{Xi}i∈I and{Yj }j∈J , respectively,
and letp :X→ B andq :Y → B be a maps.
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(1) A controlled mapf = {ft } from p to q consists of a family of mapsft :X→ Y ,
06 t < 1, such that the induced maps:

f :X× [0,1)→ Y ; (x, t) 7→ ft (x),

f̂ :X× I→B; (x, t) 7→
{
qft (x), if t < 1,
p(x), if t = 1

are continuous.
(2) A controlled mapf = {ft } from p to q is a controlled homotopy equivalence

provided there exist controlled mapsg = {gt } fromq top,F = {Ft } fromX×I proj−→
X

p→B toX
p→ B, andG= {Gt } from Y × I proj−→ Y

q→ B to Y
q→B such that

Ft(x,0)= x and Ft (x,1)= gtft (x) for x ∈X,
Gt(y,0)= y and Gt(y,1)= ftgt (y) for y ∈ Y.

(3) A controlled mapf from p to q as in (1) above is astratified controlled map
provided for eachi ∈ I there existsj ∈ J such thatf (Xi × [0,1))⊆ Yj .

(4) A controlled mapf from p to q as in (1) above is astratified controlled homotopy
equivalenceprovided there exist a stratified controlled mapg :Y × [0,1)→X and
controlled mapsF :X× I ×[0,1)→X andG :Y × I × [0,1)→ Y as in (2) above
such thatF andG are stratum preserving alongI × [0,1).

3. The homotopy link of a mapping cylinder

For notation, letX andY be spaces with partitions{Xi}i∈I and{Yj }j∈J , respectively,
and letp :X→ Y be a map. The mapping cylinder cyl(p) is naturally partitioned by{

Xi × [0,1)
}
i∈I ∪ {Yj }j∈J .

Theorem 3.1. p :X→ Y andq : holinks(cyl(p),Y )→ Y are stratified controlled homo-
topy equivalent.

Proof. For eachx ∈X letωx : I→ cyl(p) be the path defined byωx(t)= [x,1− t]. Thus
ωx ∈ holinks (cyl(p),Y ) and there is a function

f :X→ holinks
(
cyl(p),Y

); x 7→ ωx.

To verify thatf is continuous, since path spaces are given the compact-open topology,
one only needs to observe that the adjointf ∗ :X × I → cyl(p); (x, t) 7→ [x,1− t] is
continuous. Define

Φ :X× [0,1)→ holinks
(
cyl(p),Y

); (x, t) 7→ f (x).

Sincep = qf , Φ = {Φt } is a stratified controlled map fromp to q . Define

Ψ : holinks
(
cyl(p),Y

)× [0,1)→X; (ω, t) 7→ pX
(
ω(1− t)).
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Evaluation maps are continuous in the compact-open topology; hence,Ψ is continuous. In
fact,Ψ = {Ψt } is a controlled map fromq to p because of the continuity of

Ψ̂ : holinks
(
cyl(p),Y

)× I→ Y ; (ω, t) 7→
{
pω(1− t), if t < 1,
ω(0), if t = 1.

Also observe thatΨ is a stratified controlled map. We claim thatΦ andΨ are stratified
controlled homotopy inverses of each other as in Definition 2.9(4). SinceΨt ◦Φt :X→X

is the identity for eacht , it remains to investigate

Φt ◦Ψt : holinks
(
cyl(p),Y

)→ holinks
(
cyl(p),Y

)
.

To this end note thatωΨ (ω,t)(u)= [Ψ(ω, t),1− u] andΦtΨt(ω)= ωΨ (ω,t). Now define

β : holinks
(
cyl(p),Y

)× [0,1)× I→ holinks (cyl(p),Y );
β(ω, t, s)(u)

=
{[
Ψ
(
ω, st + (1− s)(1− u)), s(1− u)+ (1− s)pIω(u)], if u > 0,[

pYω
(
s(1− t))], if u= 0.

Note thatβ is continuous,β(ω, t,0)(u)= ω(u), andβ(ω, t,1)(u)= [Ψ (ω, t),1− u]. It
follows that

γ : holinks (cyl(p),Y )× [0,1)× I→ holinks (cyl(p),Y )× [0,1);
γ (ω, t, s) 7→ (β(ω, t, s), t)

is a stratum preserving homotopy from the identity to{ΦtΨt }. We just need to check that
it is a controlled homotopy. This amounts to verifying the continuity of the function

γ+ : holinks
(
cyl(p),Y

)× I × I→ Y ; (ω, t, s) 7→
{
qβ(ω, t, s), if t < 1,

q(ω), if t = 1.

One checks thatγ+ is given by

(ω, t, s) 7→
{[
Ψ (ω, st − 1− s),1], if t < 1,
ω(0), if t = 1,

=
{
pYω(s − st), if t < 1,
pYω(0), if t = 1,

= pYω(s − st).
Once again the properties of the compact-open topology show thatγ+ is continuous. 2

4. Stratified fibrations and stratified approximate fibrations

Definitions are recalled from [9,10], and a mapping cylinder criterion for a map to be
a stratified approximate fibration is established (Proposition 4.2). LetX andY be spaces
with partitions{Xi}i∈I and{Yj }j∈J , respectively.
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Definition 4.1.
(1) A map p :X→ Y is a stratified fibrationprovided given any spaceZ and any

commuting diagram

Z

×0

f
X

p

Z× I F
Y

with F a stratum preserving homotopy, there exists astratified solution; i.e., a
stratum preserving homotopỹF :Z × I → X such thatF̃ (z,0) = f (z) for each
z ∈ Z andF = pF̃ .

(2) A map p :X → Y is a stratified approximate fibrationprovided given any
commuting diagram as in (1), there exists astratified controlled solution; i.e., a
mapF̃ :Z× I × [0,1)→X which is stratum preserving alongI × [0,1) such that
F̃ (z,0, t) = f (z) for each(z, t) ∈ Z × [0,1) and the functionF :Z × I × I → Y

defined byF |Z× I ×[0,1)= pF̃ andF |Z× I ×{1} = F × id{1} is continuous and
stratum preserving alongI × I .

Of course, anapproximate fibrationis a mapp :X→ Y which is a stratified approximate
fibration whenX and Y are stratified with a single stratum. For more background on
approximate fibrations from the point of view used here see [14]. The original definition of
an approximate fibration is due to Coram and Duvall [5].

Proposition 4.2. Letp :X→ Y be a map between spaces with partitions. If

q : holinks(cyl(p),Y )→ Y

is a stratified fibration, thenp :X→ Y is a stratified approximate fibration.

Proof. Define

f :X→ holinks
(
cyl(p),Y

)
,

Φ :X× [0,1)→ holinks
(
cyl(p),Y

)
,

Ψ : holinks
(
cyl(p),Y

)× [0,1)→X

as in the proof of Theorem 3.1 and recall thatp = qf , ΨtΦt = idX andΦt = f for all
t ∈ [0,1). Given a commuting diagram

Z
h

×0

X

p

Z × I H
Y

with H is a stratum preserving homotopy, there is an induced commuting diagram

Z
fh

×0

holinks(cyl(p),Y )

q

Z × I H
Y.
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Sinceq is a stratified fibration, there is a stratified solution

G :Z× I→ holinks
(
cyl(p),Y

)
of the second problem. Finally define a stratified controlled solution

H̃ :Z× I × [0,1)→X; (x, s, t) 7→Ψ
(
G(z, s), t

)
of the original problem. 2

5. Homotopically stratified spaces

Some definitions from Quinn [23] are recalled (see also [9,10,13]) and the main result
Theorem 5.11 is stated and proved.

Definition 5.1. A subsetY ⊆ X is forward tamein X if there exist a neighborhoodU
of Y in X and a homotopyh :U × I → X such thath0 = inclusion :U → X, ht |Y =
inclusion :Y →X for eacht ∈ I, h1(U)= Y , andh((U \ Y)× [0,1))⊆X \ Y.

Definition 5.2. A spaceX with a stratification satisfying the Frontier Condition is a
homotopically stratified spaceif the following two conditions are satisfied:

(i) Forward Tameness.For eachk > i, the stratumXi is forward tame inXi ∪Xk .
(ii) Normal Fibrations.For eachk > i, the holink evaluation

q : holink(Xi ∪Xk,Xi)→Xi

is a fibration.

Definition 5.3. LetX be a space with a partition and letY ⊆X.
(i) Y is stratified forward tamein X if there exist a neighborhoodU of Y in

X and a homotopyh :U × I → X such thath0 = inclusion :U → X, ht |Y =
inclusion :Y → X for eacht ∈ I , h1(U) = Y , h((U \ Y) × [0,1)) ⊆ X \ Y, and
h is stratum preserving along[0,1). We say thath is anearly stratum preserving
deformation ofU to Y in X relY .

(ii) The space of nearly stratum preserving pathsis

Pnsp(X,Y )

= {ω ∈ holink(X,Y ) | there exists a stratumXi with ω((0,1])⊆Xi
}

and is partitioned by

Pnsp(X,Y )i =
{
ω ∈Pnsp(X,Y ) | ω(1) ∈Xi

}
.

Evaluation at 0 is denotedq : Pnsp(X,Y )→ Y .

We will need the following result from [10].

Proposition 5.4. LetX be a homotopically stratified metric space with finitely many strata
and letY ⊆X be a closed union of some of the strata ofX. Then
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(1) Y is stratified forward tame inX, and
(2) q : Pnsp(X,Y )→ Y is a stratified fibration.

The following is part of the main result.

Proposition 5.5. Letp :X→ Y be a map between homotopically stratified metric spaces
each with only finitely many strata. If the mapping cylindercyl(p) with the natural
partition is a homotopically stratified space, thenp is a stratified approximate fibration.

Proof. It follows from a variation of Proposition 5.4(2) established in [10], that
q : holinks (cyl(p),Y )→ Y is a stratified fibration (one needs to observe here that cyl(p) is
metrizable—see [13, §3]). Now apply Proposition 4.2.2

The following deformation extension property will be needed in verifying forward
tameness (Proposition 5.7).

Lemma 5.6. LetX, Y be locally compact metric spaces with partitions and letp :X→ Y

be a proper stratified approximate fibration. SupposeA ⊆ Y is a closed union of strata
for which there is an open neighborhoodU of A in Y and a nearly stratum preserving
deformationh :U × I → Y of U to A in Y relA. LetpU = p| :p−1(U)→ U . Then there
exists a homotopy

H : cyl(pU)× I→ cyl(p)

such that
(1) H0= inclusion : cyl(pU)→ cyl(p),
(2) H |(U × I)= h :U × I→ Y ,
(3) H((cyl(pU) \U)× I)⊆ cyl(p) \ Y ,
(4) H | : (cyl(pU) \U)× I→ cyl(p) is a stratum preserving homotopy.

Proof. Define maps

F :p−1(U)× I × I→ Y ; (x, s, t) 7→ h
(
p(x), st

)
,

F ′ = F | :p−1(U)× [0,1)× I→ Y,

f :p−1(U)× [0,1)→X; (x, s) 7→ x.

Then

p−1(U)× [0,1) f

×0

X

p

p−1(U)× [0,1)× I F ′
Y

is a stratified lifting problem. Thus, there is a stratified controlled solution

F̃ :p−1(U)× [0,1)× I × [0,1)→X.
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In particular,F̃ is stratum preserving alongI ×[0,1), F̃ (x, s,0, u)= x for each(x, s, u) ∈
p−1(U)× [0,1)× [0,1), and, by [13, §3], the function

F :p−1(U)× [0,1)× I × I→ cyl(p);

(x, s, t, u) 7→
{[
F̃ (x, s, t, u),u

]
, if u < 1,

F(x, s, t)= h(p(x), st), if u= 1

is continuous. Define a function

G :
(
cyl(pU)× [0,1)× I

)∪ (U × {1} × I)→ cyl(p);
G([x, s], t, u)= F(x, t, u, s), if (x, s) ∈ p−1(U)× I ,

G([y], t, u)= h(y, tu), if (y, t) ∈U × [0,1),
G(y,1, u)= h(y,u), if y ∈U .

Even thoughG need not be continuous, it is true that

G| : cyl(pU)× [0,1)× I→ cyl(p)

is continuous. To see this, recall that cyl(pU) has the quotient topology. Letq : (p−1(U)×
I)q Y → cyl(pU) be the quotient map. It follows that

q × id[0,1)×I :
[
(p−1(U)× I)q Y ]× [0,1)× I→ cyl(pU)× [0,1)× I

is also a quotient map (e.g., [18, Theorem 20.1]). The continuity ofF easily implies that
G| ◦ (q × id[0,1)×I ) is continuous and the continuity ofG| follows from the standard
transgression lemma. Since cyl(pU) is metrizable (e.g., [13, §3]), we can use a partition of
unity argument to construct a mapϕ : cyl(pU)→ I such that

(1) ϕ−1(1)=U ,
(2) s 6 ϕ([x, s]6 1 for each[x, s] ∈ cyl(pU) \U ,
(3) diam{G([x, s′], s, t) | ϕ([x, s])6 s′ 6 1}< 1− s for each[x, s] ∈ cyl(pU) \U and

t ∈ I .
Then the function

H : cyl(pU)× I→ cyl(p);{
H([x, s], t)=G([x,ϕ([x, s])], s, t), if (x, s) ∈ p−1(U)× I ,

H([y], t)=G(y,1, t)= h(y, t), if y ∈U
is continuous and is the desired extension ofh. 2
Proposition 5.7. Let Y be a locally compact homotopically stratified metric space with a
finite number of strata, letX be a locally compact metric space with a partition, and let
p :X→ Y be a proper stratified approximate fibration. IfA⊆ Y is a closed union of strata
of Y , thenA is stratified forward tame incyl(p).

Proof. By Proposition 5.4(1),A is stratified forward tame inY , so letU be an open
neighborhood ofA in Y with a nearly stratum preserving deformationh :U × I→ Y of U
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to A in Y relA and letH : cyl(pU)× I → cyl(p) be the extension ofh given by Lemma
5.6. Define the map

π : cyl(p)× I→ cyl(p);{
([x, s], t) 7→ [x, (1− t)s + t], if (x, s) ∈X× I ,

[y] 7→ [y], if y ∈ Y .

Define

G : cyl(pU)× I→ cyl(p); (z, t) 7→H(π(z, t), t).

ThenG is a nearly stratum preserving deformation of cyl(pU) toA in cyl(p) relA. 2
Corollary 5.8. Letp :X→ Y be a proper stratified approximate fibration between locally
compact homotopically stratified metric spaces each with only finitely many strata and
suppose the strata ofY are path connected. Then the natural partition ofcyl(p) is a
stratification satisfying the Frontier Condition and Forward Tameness condition5.2(i).

Proof. The partition of cyl(p) is obviously locally finite (in fact, it is finite). That each
stratum is locally closed (i.e., the intersection of an open set and a closed set) follows easily
from the fact thatp maps closed sets onto closed sets. For both the Frontier Condition and
Forward Tameness there is only one nontrivial case to consider: supposeXi , Yj are strata of
X, Y , respectively, andYj ∩cl(Xi ×[0,1)) 6= ∅ where the closure is taken in cyl(p). Since
Y j = clYj is stratified forward tame inY by Proposition 5.4(1), it follows from Proposition
5.7 thatY j is stratified forward tame in cyl(p). Hence, letU be an open neighborhood
of Y j in cyl(p) with a nearly stratum preserving deformationh :U × I → cyl(p) of
U to Y j in cyl(p) relY j . SinceYj ∩ cl(Xi × [0,1)) 6= ∅ and Yj is open inY j , there
exists (x0, t0) ∈ (Xi × [0,1)) ∩ U such thatp(x0) ∈ Y ∩ U and h1(p(x0)) ∈ Yj . Say
p(x0) ∈ Yk . Then for everys ∈ [0,1), ωs : [0, s] → Y ; ωs(t) = h(p(x0), t) is a stratum
preserving path with initial liftx0 ∈X. Sincep is a stratified approximate fibration, there
are stratum preserving paths̃ωs : [0, s] → X with ω̃s(0) = x0 and pω̃s as close toωs
as desired. Then(ω̃s(s), s) ∈ Xi × [0,1) are points arbitrarily close toh1(p(x0)). This
shows thath1(p(x0)) ∈ cl(Xi × [0,1)). Sinceh is nearly stratum preserving, we also have
h1(p(x0)) ∈ clYk . Since the stratification ofY satisfies the Frontier Condition,Yj ⊆ cl(Yk).
Now supposey0 ∈ Yj is another point. Letσ : I→ Yj be a path fromh1(p(x0)) toy0. Since
ω : I→ Y ; ω(t)= h(p(x0), t) is a nearly stratum preserving path fromp(x0) toh1(p(x0))

andq : holink(Yk ∪ Yj ,Yj )→ Yj is a fibration, it follows that there exists a nearly stratum
preserving path̃σ : I → Yk ∪ Yj from p(x0) to y0. Now the same argument given above
for h1(p(x0)) shows thaty0 ∈ cl(Xi × [0,1)). HenceYj ⊆ cl(Xi ×[0,1)) and the Frontier
Condition is verified.

To show thatYj is forward tame in cl(Xi × [0,1))∪ Yj , simply let

V = h−1
1 (Yj ) ∩

[
cl
(
Xi × [0,1)

)∪ Yj ].
Thenh|(V × I) is a nearly stratum preserving deformation ofV to Yj in cl(Xi × [0,1))∪
Yj relYj . 2
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Lemma 5.9. Let X be a homotopically stratified metric space with finitely many strata
and letY ⊆X be a closed union of some of the strata ofX. SupposeZ is a metric space
for which there is a stratified lifting problem:

Z
f

×0

Pnsp(X,Y )

q

Z × I F
Y

and letZ0= {z ∈Z | f (z)(t)= f (z)(0) for all t ∈ I }. Then there exists a stratified solution
F̃ :Z× I→Pnsp(X,Y ) such thatF̃ (z, s)(t)= F(z, s) for all (z, s, t) ∈Z0× I × I .

Proof. LetG : (Z \Z0)× I→Pnsp(X,Y ) be a stratified solution of the restricted problem
(which exists by Proposition 5.4(1)). Using a partition of unity define a mapϕ : (Z \Z0)×
I→[0,1) such that

diam
{
G(z, s)(t) | 06 t 6 ϕ(z, s)}6 2 diam

{
f (z)(I)

}
for each(z, s) ∈ (Z \Z0)× I.

Define

F̃ (z, s)(t)=
{
G(z, s)(tϕ(z, s)), if z ∈Z \Z0,

F(z, s), if z ∈Z0. 2
The following proposition is the remaining part of the main result.

Proposition 5.10. Let p :X→ Y be a proper stratified approximate fibration between
locally compact homotopically stratified metric spaces each with only finitely many strata
and suppose the strata ofY are path connected. Thencyl(p) with the natural partition is
a homotopically stratified space.

Proof. Given Corollary 5.8 it only remains to verify the Normal Fibrations condi-
tion 5.2(ii). There is only one nontrivial case: supposeXi , Yj are strata ofX, Y , respec-
tively, andYj ⊆ cl(Xi × [0,1)) where the closure is taken in cyl(p). We need to show that
q : holink((Xi × [0,1))∪ Yj ,Yj )→ Yj is a fibration. For this we will apply the machinery
of [13, §4] with which we assume the reader is familiar. By Proposition 5.7,Y j = clYj is
stratified forward tame in cyl(p). LetU be an open neighborhood ofY j in cyl(p) with a
nearly stratum preserving deformationh :U × I→ cyl(p) of U to Y j in cyl(p) relY j . Let

V = h−1
1 (Yj ) ∩

(
Xi × [0,1)

)∩p−1
Y (U ∩ Y).

ThenV is a neighborhood ofYj in (Xi × [0,1))∪ Yj andr = h1| :V → Yj is a retraction.
By [13, §4] it suffices to verify theW(r)-lifting property for the pair((Xi × [0,1)) ∪
Yj ,Yj ). Recall the definitions:

W1(r)=
{
(z,ω) ∈ Yj × Y Ij | z= ω(1)

}
,

W2(r)=
{
(z,ω) ∈ (V \ Yj )× Y Ij | r(z)= ω(1)

}
,

W(r)=W1(r)∪W2(r).
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The goal is to define a mapα :W(r)→ ((Xi × [0,1))∪ Yj )I such that
(1) α(z,ω)(0)= ω(0) for each(z,ω) ∈W(r),
(2) α(z,ω)(1)= z for each(z,ω) ∈W(r),
(3) α(z,ω)= ω for each(z,ω) ∈W1(r),
(4) α(z,ω) ∈ holink((Xi × [0,1))∪ Yj ,Yj ) for each(z,ω) ∈W2(r).

Define a stratified lifting problem

W(r)
f

×0

Pnsp(Y,Yj )

q

W(r)× I F Yj

(1)

by f (z,ω)(s)= h(pY (z),1− s) and

F
(
(z,ω), s

)= {h1(pY h(z,2s)), if 0 6 s 6 1/2,

ω(2− 2s), if 1/26 s 6 1.

Note that if(z,ω) ∈W1(r), thenf (z,ω) is the constant path atz ∈ Yj . Thus, Lemma 5.9
implies that there exists a stratified solution of (1)F̃ :W(r) × I → Pnsp(Y,Yj ) such that
F̃ ((z,ω), s)(t)= F((z,ω), s) for all ((z,ω), s, t) ∈W1(r)× I × I . Now define a stratified
lifting problem

W2(r)× [0,1) g

×0

X

p

W2(r)× [0,1)× I G
Y

. (2)

Note that there are continuous extensions ofG to G′ :W(r) × I × I → Y and g to
g′ :W2(r) × I → X; it is just thatG′ is no longer stratum preserving andg′ does not
extend toW(r). Let G̃ :W2(r)× [0,1)× I × [0,1)→X be a stratified controlled solution
of (2). In particular,

G :W2(r)× [0,1)× I × I→ cyl(p);(
(z,ω), s, tu

) 7→{[
G̃((z,ω), s, t, u),u

]
, if u < 1,[

G((z,ω), s, t)
]
, if u= 1

is continuous [13, §3]. Use a partition of unity to construct a mapϕ :W2(r)× [0,1)→ I

such that

diam
{
G
(
(z,ω), s, s, s′

) | ϕ((z,ω), s)6 s′ 6 1
}
6 1− s and

s 6 ϕ
(
(z,ω), s

)
< 1 for each

(
(z,ω), s

) ∈W2(r)× [0,1).
Define

β :W2(r)× I→ cyl(p); (
(z,ω), s

) 7→G
(
(z,ω), s, s,ϕ((z,ω), s)

)
.

Then β extends continuously tôα :W(r) × I → cyl(p) by setting α̂((z,ω), s) =
F((z,ω), s) if (z,ω) ∈ W1(r). The adjoint of̂α is a mapα :W(r)→ cyl(p)I with the
desired properties.2
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The main result of this paper can now be established.

Theorem 5.11.Let p :X→ Y be a proper map between locally compact homotopically
stratified metric spaces each with only finitely many strata and suppose the strata ofY

are path connected. Thenp is a stratified approximate fibration if and only if the mapping
cylindercyl(p) with the natural partition is a homotopically stratified space.

Proof. If p is a stratified approximate fibration, then Proposition 5.10 implies that cyl(p)

is homotopically stratified. The converse follows from Proposition 5.5.2
Remark 5.12. Connolly and Vajiac [4] have recently used this result in their work on ends
of stratified spaces.

6. Locally flat submanifolds

In this section we specialize to the case in which the stratified spaces are (unstratified)
manifolds. A proper approximate fibration between manifolds is called amanifold
approximate fibration. It follows from Theorem 5.11 that the mapping cylinder of a
manifold approximate fibration is a homotopically stratified space with two strata. This
fact also follows from the results in [13] where homotopically stratified spaces with two
strata were studied in more detail.

Here we are interested in knowing when the mapping cylinder of a manifold
approximate fibration is actually a manifold with the base a locally flat submanifold. The
answer (Theorem 6.1) is not surprising and should be considered part of the folklore
(see Remark 6.3). Nevertheless, we include it here in order to make the point that
this local flatness result follows from the general machinery of stratified spaces (see
also [16]). Moreover, stratified techniques should have applications to certain nonlocally
flat embeddings. We hope to explore nonlocally flat submanifolds in a future paper.

Theorem 6.1 (Folklore). Let p :M → N be a proper map between manifolds with
dimM = m > 5 and dimN = n. Then cyl

◦
(p) is a manifold withN a locally flat

submanifold if and only ifp is a manifold approximate fibration with homotopy fibre
homotopy equivalent to the(m− n)-sphere.

Proof. Suppose first thatN is a locally flat submanifold of cyl
◦
(p). Then Fadell [7] proved

that q : holink(cyl(p),N)→ N is a fibration with fibreSm−n. Theorem 3.1 implies that
p is controlled homotopy equivalent toq . Hencep is an approximate fibration [14, 12.8]
(or use Theorem 5.11 since cyl(p) is homotopically stratified). Moreover, the associated
Hurewicz fibration ofp is fibre homotopy equivalent toq [13, 4.8] so the homotopy fibre
of p is Sm−n.

Conversely, assume thatp is a manifold approximate fibration with homotopy fibre
Sm−n. Let p0 :V → Rn be the fibre germ ofp (cf. [14]). Then the homotopy fibre of
p0 is Sm−n and there is a controlled homotopy equivalence fromp0 to the projection
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proj :Sm−n×Rn→Rn [14, 12.5, 12.15]. By [3]p0 :V →Rn and proj :Sm−n×Rn→Rn
are controlled homeomorphic. This means that cyl

◦
(p) is locally homeomorphic to the

mapping cylinder of proj :Sm−n ×Rn→Rn. SinceRn is a locally flat submanifold of the
manifold cyl

◦
(proj), the result follows. 2

Corollary 6.2 (Folklore).LetN be a submanifold of a manifoldK with dimK = k > 6
anddimN = n > 5. ThenN is locally flat inK if and only ifN has a mapping cylinder
neighborhoodcyl(p) wherep :M → N is a manifold approximate fibration,dimM =
k− 1, and the homotopy fibre ofp is homotopy equivalent to the(k− n− 1)-sphere.

Proof. The only new information needed here to apply Theorem 6.1 is the fact that ifN is
locally flat inK, thenN has a mapping cylinder neighborhood inK. This result is due to
Edwards [6] (for a published proof see [15]).2
Remark 6.3. Some of the papers which establish closely related local flatness results (and
which likely could be used to give proofs of Theorem 6.1 and Corollary 6.2 as stated) are
those of Chapman [3], Edwards [6], and Quinn [19,21,22].

7. Stratified collections of bundles

In this section we show that mapping cylinders of certain stratified maps between
homotopically stratified spaces are themselves homotopically stratified spaces. This gives
a different perspective on a result due to Cappell and Shaneson [2].

Definition 7.1. LetX andY be spaces with partitions{Xi}i∈I and{Yj }j∈J , respectively.
A mapp :X→ Y is astratified collection of bundlesif for every stratumYj of Y , p−1(Yj )

is a union of strata ofX, andp| :Xi → Yj is a fibre bundle projection for each stratum
Xi ⊆ p−1(Yj ).

Examples 7.2.
(1) LetX, Y be Whitney stratified subsets of smooth manifoldsM,N , respectively. Let

p :X→ Y be a proper map which is the restriction of a smooth mapM→N such
that for each stratumYj of Y , the inverse imagep−1(Yj ) is a union of strata ofX,
each of which is mapped submersively ontoYj . (In the literature, this is often the
definition of a ‘stratified map’.) It follows from Thom’s First Isotopy Lemma [17,
24] thatp is a stratified collection of fibre bundles.

(2) If p :X→ Y is a proper algebraic map between real or complex algebraic varieties,
then the conditions in (1) are satisfied (cf. [8] and Corollary 7.5 below) so thatp is
a stratified collection of bundles.

Theorem 7.3. If X andY are locally compact homotopically stratified metric spaces each
with only finitely many strata, the strata ofY are path connected, andp :X→ Y is a proper
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stratified collection of bundles, thenp is a stratified approximate fibration andcyl(p) with
the natural partition is a homotopically stratified space.

Proof. By Theorem 5.11 it suffices to show that cyl(p) is homotopically stratified. That
the partition is locally finite and the strata are locally closed is obvious. It remains to check
the Frontier Condition, Forward Tameness and Normal Fibrations. As in the proofs of
Corollary 5.8 and Proposition 5.10, there is only one nontrivial case to consider: suppose
Xi , Yj are strata ofX, Y , respectively, andYj ∩ cl(Xi × [0,1)) 6= ∅ where the closure
is taken in cyl(p). Let Yk be the stratum ofY such thatp(Xi) ⊆ Yk . EitherYk = Yj or
Yj ⊆ Yk .

For the Frontier Condition note that sinceYk is path connected,p(Xi) = Yk . Since
Yj ⊆ cl(Yk) it follows thatYj ⊆ cl(Xi × [0,1)).

To verify thatYj is forward tame in(Xi × [0,1)) ∪ Yj assumeYk 6= Yj as the case
Yk = Yj is trivial (push down the mapping cylinder segments). Use the fact thatYj is
forward tame inYk ∪ Yj to get a neighborhoodU of Yj in Yk ∪ Yj and a nearly stratum
preserving deformationh :U × I → Yk ∪ Yj of U to Yj in Yk ∪ Yj relYj . Then there is a
commuting diagram

p−1(U)∩Xi inclusion
Xi

p|

[p−1(U)∩Xi ] × [0,1) F
Yk

,

whereF(x, s) = h(p(x), s). Sincep| :Xi → Yk is a bundle projection, this ‘half-open’
homotopy lifting problem has a solutioñF : [p−1(U) ∩ Xi ] × [0,1) → Xi . Define
H : ([p−1(U)∩Xi] ∪ Yj )× I→ (Xi × [0,1))∪ Yj by

H(x, s)=


(
F̃ (x, s), s

) ∈Xi × [0,1), if x ∈ p−1(U)∩Xi, 06 s < 1,

h
(
p(x),1

) ∈ Yj , if x ∈ p−1(U)∩Xi, s = 1,

x, if x ∈ Yj , 06 s 6 1.

ThenH is a nearly stratum preserving deformation of[p−1(U) ∩ Xi ] ∪ Yj to Yj in
[Xi × [0,1)] ∪ Yj relYj .

To show thatq : holink((Xi×[0,1))∪Yj ,Yj )→ Yj is a fibration, consider first the case
thatYk = Yj . Note that([Xi ∪[0,1)] ∪Yj ,Yj )= (cyl(p| :Xi→ Yj ),Yj ) and Theorem 3.1
implies thatq : holink(cyl(p| :Xi→ Yj ),Yj ) is controlled homotopy homotopy equivalent
to a bundle projection. It follows thatq is an approximate fibration [14, 12.8] and hence,
a fibration [10, 8.6] (cf. [13, 4.8]). Now consider the caseYj ⊆ Yk , Yj 6= Yk and suppose
given a lifting problem:

Z
f

×0

holink((Xi × [0,1))∪ Yj ,Yj )
q

Z × I F Yj

.

There is an induced map
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p∗ : holink
((
Xi × [0,1)

)∪ Yj ,Yj )→ holink(Yk ∪ Yj ,Yj );
p∗(ω)(t)= pYp

(
ω(t)

)
and a stratified lifting problem

Z
p∗f

×0

holink((Yk ∪ Yj ,Yj )
q

Z × I F Yj

which has a solutionG :Z× I→ holink(Yk ∪Yj ,Yj ) (sinceY is homotopically stratified).
In turn, this gives rise to a commuting diagram

Z× (0,1] f̂

×0

Xi

p|

Z × I × (0,1] Ĝ
Yk

,

where f̂ (z, s) = pX(f (z)(t)) and Ĝ(z, s, t) = G(z, s)(t). Sincep| :Xi → Yk is a fibre
bundle, there exists a solutionH :Z × I × [0,1) of this ‘half-open’ homotopy lifting
problem. Finally define a solutioñF :Z×I→ holink((Xi×[0,1))∪Yj ,Yj ) of the original
problem by

F̃ (z, s)(t)=
{
(H(z, s, t), cI (f (z)(t))), if 0 < t 6 1,

F(z, s), if t = 0. 2
Corollary 7.4 (Cappell and Shaneson [2]).Let X, Y be Whitney stratified subsets of
smooth manifoldsM, N , respectively. Letp :X → Y be a proper map which is the
restriction of a smooth mapM→N such that for each stratumYj of Y , the inverse image
p−1(Yj ) is a union of strata ofX, each of which is mapped submersively ontoYj . Then
cyl(p) with the natural stratification is a homotopically stratified space.

Proof. Combine Remark 7.2(1) with Theorem 7.3.2
Corollary 7.5. SupposeX andY are

subanalytic
real semialgebraic
complex analytic
complex algebraic

subsets of


real analytic
real algebraic
complex analytic
complex algebraic

smooth manifoldsM andN ,

respectively. Ifp :X→ Y is a proper
subanalytic
real algebraic
complex analytic
complex algebraic

map,

then there are Whitney stratifications ofX and Y such thatp becomes a stratified
approximate fibration.
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Proof. There are Whitney stratifications ofX andY so thatp satisfies the hypothesis of
Theorem 7.3. See the references in [8, Part I, 1.7].2
Remarks 7.6.

(1) Cappell and Shaneson point out [2] that in the setting of Corollaries 7.4 and 7.5,
cyl(p) need not be Whitney stratified. In particular, homotopically stratified spaces
naturally arise in the setting of algebraic maps between algebraic varieties. The new
point here is that stratified approximate fibrations also arise naturally.

(2) Cappell and Shaneson proved more in [2] than in Corollary 7.4, namely that cyl(p)

is a ‘manifold homotopy link-stratified space’. However, one of their main steps
was showing that cyl(p) is homotopically stratified. Our proof of this step might be
considered more elementary than the one offered in [2] because our proof relies only
on Thom’s First Isotopy Lemma whereas [2] uses both the First and Second Isotopy
Lemmas (the Second Isotopy Lemma is usually reserved for situations where Thom
regularity holds [17,24]).

(3) A topological treatment of Thom’s Isotopy Lemmas is expected to appear in [11],
cf. [9].

(4) The assumption of path connectivity of the strata in Theorem 7.3 can usually be
avoided by passing to finer stratifications, cf. [1] and [10, §10].

(5) There is an obvious definition of ‘stratified collection of fibrations’ for which the
proof of Theorem 7.3 generalizes.

Stratified collections are different from stratified systems (cf. [20,10]) as the final
example shows.

Example 7.7. Let X be the unit square{(x, y) | 06 x 6 1, 06 y 6 1} in R2, and let
Y = [0,1] be the unit interval. StratifyX andY so that they each have exactly two strata
with lower strataX0 = {(0, y) | 0 6 y 6 1} and Y0 = {0}, respectively. Define a map
p :X→ Y with the following properties. First,p−1(Y0) = X0 andp| :X \ X0→ Y \ Y0

is a fibre bundle projection with fibre the closed interval. However,p is not to be first
coordinate projection. Instead insist for eachn= 2,3,4, . . . thatp−1(1/n) is a smooth arc
in X running from the bottom edge ofX to the top edge ofX. The arcp−1(1/n) is to
be the graph of a smooth mapfn defined on a small closed neighborhood[an, bn] of 1/n
with image[0,1] such thatfn(an)= 0,fn(bn)= 1 andfn has exactly two local extrema in
(an, bn). The local extrema occur atcn anddn with an < cn < dn < bn, fn(cn)= 2/3, and
fn(dn) = 1/3. Then there is no deformation of a neighborhoodU of Y0 to Y0 in Y relY0

which is covered by a deformation ofp−1(U) to X0 in X relX0. Thus,p is a stratified
collection of bundles, but not a stratified system of fibrations (or bundles).
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