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GEOMETRIC TOPOLOGY OF STRATIFIED SPACES

BRUCE HUGHES

(Communicated by Walter Neumann)

Abstract. A theory of tubular neighborhoods for strata in manifold stratified
spaces is developed. In these topologically stratified spaces, manifold strati-
fied approximate fibrations and teardrops play the role that fibre bundles and
mapping cylinders play in smoothly stratified spaces. Applications include a
multiparameter isotopy extension theorem, neighborhood germ classification
and a topological version of Thom’s First Isotopy Theorem.

1. Introduction

Often spaces are studied which are not manifolds, but which are composed of
manifold pieces, those pieces being called the strata of the space. Examples include
polyhedra, algebraic varieties, orbit spaces of many group actions on manifolds,
and mapping cylinders of maps between manifolds.

The purpose of this note is to announce recent progress in understanding the
structure of neighborhoods of strata in certain spaces, namely, the stratified spaces
proposed by Frank Quinn [18] and called by him ‘manifold homotopically stratified
sets’. Quinn’s objective was ‘to give a setting for the study of purely topological
stratified phenomena’ as opposed to the smooth and piecewise linear phenomena
previously studied.

Roughly, the stratified spaces of Quinn are spaces X together with a finite fil-
tration by closed subsets

X = Xm ⊇ Xm−1 ⊇ · · · ⊇ X0 ⊇ X−1 = ∅,

such that the strata Xi = Xi \ Xi−1 are manifolds with neighborhoods in Xi ∪ Xk

(for k > i) which have the local homotopy properties of mapping cylinders of
fibrations. These spaces include the smoothly stratified spaces of Whitney [28],
Thom [24] and Mather [16] (see e.g. [9]) as well as the locally conelike stratified
spaces of Siebenmann [21] and, hence, orbit spaces of finite groups acting locally
linearly on manifolds.

Smoothly stratified spaces have the property that strata have neighborhoods
which are mapping cylinders of fibre bundles, a fact which is often used in argu-
ments involving induction on the number of strata. Such neighborhoods fail to
exist in general for Siebenmann’s locally conelike stratified spaces. For example, it
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is known that a (topologically) locally flat submanifold of a topological manifold
(which is an example of a locally conelike stratified space with two strata) may
fail to have a tubular neighborhood [20]. However, Edwards [7] proved that such
submanifolds do have neighborhoods which are mapping cylinders of manifold ap-
proximate fibrations (see also [14]). On the other hand, examples of Quinn [17] and
Steinberger-West [23] show that strata in orbit spaces of finite groups acting locally
linearly on manifolds may fail to have mapping cylinder neighborhoods. In Quinn’s
general setting, mapping cylinder neighborhoods may fail to exist even locally.

Our main result (Theorem 3.2) gives an effective substitute for neighborhoods
which are mapping cylinders of bundles. Instead of fibre bundles, we use ‘man-
ifold stratified approximate fibrations,’ and instead of mapping cylinders, we use
‘teardrops’. This result should be thought of as a tubular neighborhood theorem
for strata in manifold stratified spaces.

Applications are discussed in Section 5. They include a classification of neighbor-
hood germs, a multiparameter isotopy extension theorem, the local contractibility
of the homeomorphism group of a compact stratified space, a topological version
of Thom’s First Isotopy Theorem, and a generalization of Anderson-Hsiang pseu-
doisotopy theory.

In related recent work, Weinberger [27] has developed a surgery theoretic clas-
sification of manifold stratified spaces. In fact, one of the proofs envisioned by
Weinberger for his theory relies on our main result (Theorem 3.2). The main result
was first discovered in the case of two strata in the course of joint work with Tay-
lor, Weinberger, and Williams [15] where the application to Weinberger’s surgery
theory is mentioned. The book by Hughes and Ranicki [12] contains a proof of
the main result in the special case of two strata with the lower stratum consisting
of a single point, and should be consulted for further background, examples, his-
torical remarks and applications. The work of Steinberger and West [22], [23] has
been very influential on the stratified point of view. Other important recent work
includes the thesis of Yan [29], the speculations of Quinn [19] and the paper by
Connolly and Vajiac [5].

Complete proofs will appear elsewhere, most notably in [11].

2. Stratified spaces and stratified approximate fibrations

We begin by recalling some definitions from Quinn [18] (see also [12], [15]). A
subset Y ⊂ X is forward tame in X if there exist a neighborhood U of Y in X and
a homotopy h : U × I → X such that h0 = inclusion : U → X, ht|Y = inclusion :
Y → X for each t ∈ I, h1(U) = Y , and h((U \ Y ) × [0, 1)) ⊆ X \ Y.

Define the homotopy link of Y in X by

holink(X, Y ) = {ω ∈ XI | ω(t) ∈ Y iff t = 0}.

Evaluation at 0 defines a map q : holink(X, Y ) → Y called holink evaluation.
Let X = Xm ⊇ Xm−1 ⊇ · · · ⊇ X0 ⊇ X−1 = ∅ be a space with a finite filtration

by closed subsets. Then Xi is the i-skeleton, the difference Xi = Xi \Xi−1 is called
the i-stratum, and X is said to be a space with a stratification. A subset A of a
space X with a stratification is called a pure subset if A is closed and a union of
components of strata of X. For example, the skeleta are pure subsets.

The stratified homotopy link of Y in X, denoted by holinks(X, Y ), consists of all
ω in holink(X, Y ) such that ω((0, 1]) lies in a single stratum of X. The stratified
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homotopy link has a natural filtration with i–skeleton holinks(X, Y )i = {ω|ω(1) ∈
Xi}. The holink evaluation (at 0) restricts to a map q : holinks(X, Y ) → Y .

If X is a filtered space, then a map f : Z × A → X is stratum preserving along
A if for each z ∈ Z, f({z} × A) lies in a single stratum of X. In particular, a map
f : Z × I → X is a stratum preserving homotopy if f is stratum preserving along I.

A filtered space X is a manifold stratified space if the following four conditions
are satisfied:

(i) Manifold strata. X is a locally compact, separable metric space and each
stratum Xi is a topological manifold (without boundary).

(ii) Forward tameness. For each k > i, the stratum Xi is forward tame in
Xi ∪ Xk.

(iii) Normal fibrations. For each k > i, the holink evaluation q : holink(Xi ∪
Xk, Xi) → Xi is a fibration.

(iv) Finite domination. For each i there exists a closed subset K of the stratified
homotopy link holinks(X, Xi) such that the holink evaluation map K → Xi

is proper, together with a stratum preserving homotopy

h : holinks(X, Xi) × I → holinks(X, Xi),

which is also fibre preserving over Xi (i.e., qht = q for each t ∈ I), such that
h0 = id and h1(holinks(X, Xi)) ⊆ K.

For x ∈ Xi, the subset q−1(x) ⊆ holinks(X, Xi) is called the stratified local
holink at x. Note that condition (iv) implies that the stratified local holinks are
finitely dominated.

Quinn [18] calls a filtered space satisfying (ii) and (iii) a ‘homotopically strat-
ified set’, and he calls such a space a ‘manifold homotopically stratified set’ if it
additionally satisfies (i) (he also allows the manifold strata to have boundaries).
These four conditions are not independent; in fact, (iv) follows from the other con-
ditions assuming some fundamental group properties. Quinn implicitly assumes
these properties so that our manifold stratified spaces are essentially the same as
Quinn’s manifold homotopically stratified sets (cf. [12, 9.15–18, 10.13–14]).

Next we generalize the definition of an approximate fibration (as given in [13]) to
the stratified setting. Let X = Xm ⊇ · · · ⊇ X0 and Y = Y n ⊇ · · · ⊇ Y 0 be filtered
spaces and let p : X → Y be a map (p is not assumed to be stratum preserving).
Then p is said to be a stratified approximate fibration provided given any space Z
and any commuting diagram

Z
f−−−−→ X

×0

y yp

Z × I
F−−−−→ Y

where F is a stratum preserving homotopy, there exists a stratified controlled so-
lution, i.e., a map F̃ : Z × I × [0, 1) → X which is stratum preserving along
I × [0, 1) such that F̃ (z, 0, t) = f(z) for each (z, t) ∈ Z × [0, 1) and the function
F̄ : Z×I×[0, 1] → Y defined by F̄ |Z×I×[0, 1) = pF̃ and F̄ |Z×I×{1} = F ×id{1}
is continuous.

A stratified approximate fibration between manifold stratified spaces is a mani-
fold stratified approximate fibration if, in addition, it is a proper map (i.e., inverse
images of compact sets are compact). The following result suggests that there is a
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relationship between manifold stratified spaces and manifold stratified approximate
fibrations.

Proposition 2.1. Let p : X → Y be a map between manifold stratified spaces.

Then the open mapping cylinder
◦

cyl(p) is a manifold stratified space if and only if
p is a manifold stratified approximate fibration.

If Y = Y n ⊇ · · · ⊇ Y 0 and X = Xm ⊇ · · · ⊇ X0, then in the proposition above
◦

cyl(p) is filtered so that the strata are given by

(
◦

cyl(p))i =

{
Yi if 0 ≤ i ≤ n,

Xi−n−1 × (0, 1) if n + 1 ≤ i ≤ m + n + 1.

Note that Y is a pure subset of the open mapping cylinder
◦

cyl(p).

3. Teardrop structure on neighborhoods

Given spaces X, Y and a map p : X → Y × R, the teardrop of p (see [15]) is the
space denoted by X ∪p Y whose underlying set is the disjoint union X q Y with
the minimal topology such that

(i) X ⊆ X ∪p Y is an open embedding, and
(ii) the function c : X ∪p Y → Y × (−∞, +∞] defined by

c(x) =

{
p(x) if x ∈ X,

(x, +∞) if x ∈ Y ,

is continuous.
The map c is called the tubular map of the teardrop or the teardrop collapse. The
tubular map terminology comes from the smoothly stratified case (see [16], [25],
[6]). This is a generalization of the construction of the open mapping cylinder of a

map g : X → Y . Namely,
◦

cyl(g) is the teardrop (X × R) ∪g×id Y . The following
result is an analogue of Proposition 2.1 for teardrops.

Theorem 3.1. If X and Y are manifold stratified spaces and p : X → Y × R is a
manifold stratified approximate fibration, then X ∪p Y is a manifold stratified space
with Y a pure subset.

In this statement, Y × R and X ∪p Y are given the natural stratifications.
The main result is a kind of converse to this proposition. First, some more

definitions. A subset Y of a space X has a teardrop neighborhood if there exist a
neighborhood U of Y in X and a map p : U \ Y → Y × R such that the natural
function (U \ Y ) ∪p Y → U is a homeomorphism. In this case, U is the teardrop
neighborhood and p is the restriction of the tubular map.

Theorem 3.2 (Teardrop neighborhood existence). Let X be a manifold stratified
space such that all components of strata have dimension greater than 4, and let Y
be a pure subset. Then Y has a teardrop neighborhood whose tubular map c : U →
Y × (−∞, +∞] is a manifold stratified approximate fibration.

Note that it follows that the restriction c| : U \ Y → Y × R is also a manifold
stratified approximate fibration. This is what was established for the two strata
case in [15], so that 3.2 is a slight improvement of [15] even for two strata. Recall
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from the introduction that Y need not have a mapping cylinder neighborhood in
X.

4. The main tools

There are two tools which are important in the proof of the Teardrop Neighbor-
hood Existence Theorem, ‘stratified sucking’ and ‘stratified straightening.’ These
generalize unstratified results of Chapman [4], Hughes [10], and Hughes-Taylor-
Williams [13]. Stratified sucking gives a condition for a map to be close to a
manifold stratified approximate fibration, whereas stratified straightening can be
thought of as a uniqueness result which gives a condition for two manifold stratified
approximate fibrations to be controlled homeomorphic.

Let X = Xm ⊇ · · · ⊇ X0 and Y = Y n ⊇ · · · ⊇ Y 0 be filtered spaces. Let β be
an open cover of Y . Then a map p : X → Y is a stratified β–fibration provided
given any space Z and any commuting diagram

Z
f−−−−→ X

×0

y yp

Z × I
F−−−−→ Y

where F is a stratum preserving homotopy, there exists a stratum preserving ho-
motopy F̃ : Z × I → X such that F̃ (z, 0) = f(z) for each z ∈ Z and pF̃ is β -close
to F .

For the remainder of the section, suppose X and Y are manifold stratified spaces
such that all components of strata have dimension greater than 4. For undefined
terms related to the controlled category see [13].

Theorem 4.1 (Stratified sucking). For every open cover α of Y there exists an
open cover β of Y such that if p : X → Y is a proper stratified β-fibration, then p
is properly α-homotopic to a manifold stratified approximate fibration.

We remark that there are also relative and ∆k-parameter versions of stratified
sucking.

Theorem 4.2 (Stratified straightening). Suppose p : X × ∆k → Y × ∆k is a map
which is fibre preserving over ∆k and stratum preserving along ∆k. Suppose further
that for each t ∈ ∆k, pt : X × {t} → Y × {t} is a manifold stratified approximate
fibration. Then there exists a homeomorphism h : X ×∆k × [0, 1) → X ×∆k × [0, 1)
such that

(i) h is fibre preserving over ∆k × [0, 1),
(ii) h is stratum preserving along ∆k × [0, 1),
(iii) h(x, 0, s) = (x, 0, s) for each (x, s) ∈ X × [0, 1),
(iv) h is a controlled map from p0 × ∆k to p where 0 ∈ ∆k is a vertex; i.e.,

the function h̄ : X × ∆k × [0, 1] → Y × ∆k defined by h̄|X × ∆k × [0, 1) =
(p0 × id∆k) ◦ proj ◦h and h̄|X × ∆k × {1} = p is continuous.

A useful consequence of the straightening principle is the fact that manifold
stratified approximate fibrations have an isotopy covering property which we now
state.

Corollary 4.3 (Controlled stratified isotopy covering). Let p : X → Y be a man-
ifold stratified approximate fibration, and let H : Y × ∆k → Y × ∆k be a stratum
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preserving isotopy; i.e., H is a homeomorphism such that H is fibre preserving over
∆k, stratum preserving along ∆k, and H0 = id : Y × {0} → Y × {0}. Then there
exists a homeomorphism

H̃ : X × ∆k × [0, 1) → X × ∆k × [0, 1)

such that
(i) H̃ is fibre preserving over ∆k × [0, 1),
(ii) H̃ is stratum preserving along ∆k × [0, 1),
(iii) H̃(x, 0, s) = (x, 0, s) for all (x, s) ∈ X × [0, 1),
(iv) H̃ is a controlled map from p × id∆k to H ◦ (p × id∆k).

Proof. Apply Theorem 4.2 to the map H ◦ (p × id∆k).

In the two stratum case the proof in [15] of the Teardrop Neighborhood Exis-
tence Theorem relied on the sucking principle whereas the corresponding uniqueness
result relied on the straightening principle, both principles in the manifold (unstrat-
ified) case. The proof of 3.2 in the multiply stratified case involves a complicated
induction on the number of strata in the pure subset Y ⊆ X and the number of
strata in the complement X \ Y , and the stratified straightening principle must be
proved as part of the induction.

5. Applications

One of Quinn’s main results in [18] is an isotopy extension theorem for manifold
stratified spaces, a result which is quite useful for the theory of group actions
(see [26] and [2]). Quinn’s methods only apply to a single isotopy at a time. On
the other hand, Siebenmann [21] had earlier established a multiparameter isotopy
extension theorem for locally conelike stratified spaces. Our first application is a
generalization to manifold stratified spaces.

Theorem 5.1 (Multiparameter isotopy extension). Let X be a manifold stratified
space such that all components of strata have dimension greater than 4, let Y be a
pure subset of X, let U be a neighborhood of Y in X, and let h : Y ×∆k → Y ×∆k be
a k-parameter stratum preserving isotopy. Then there exists a k-parameter stratum
preserving isotopy h̃ : X × ∆k → X × ∆k extending h and supported on U × ∆k.

Siebenmann’s main goal in studying locally conelike stratified spaces was to
provide a setting for generalizing the Edwards-Kirby [8] and Cernavskii [3] result
on the local contractibility of the homeomorphism group of a compact manifold.
Siebenmann’s proof is adequate for manifold stratified spaces in general, so we have
the following result.

Theorem 5.2 (Local contractibility). Let X be a compact manifold stratified space
such that all components of strata have dimension greater than 4. Then the group
of all stratum preserving self-homeomorphisms of X is locally contractible in the
compact-open topology.

The next result is a topological analogue of Thom’s First Isotopy Theorem [24].
This can be viewed as a first step towards a topological theory of topological sta-
bility.

Theorem 5.3 (First topological isotopy). Let X be a manifold stratified space and
let p : X → Rn be a map such that
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(i) p is proper,
(ii) for each stratum Xi of X, p| : Xi → Rn is a topological submersion,
(iii) for each t ∈ Rn, the filtration of X restricts to a filtration of p−1(t) giving

p−1(t) the structure of a manifold stratified space such that all components of
strata have dimension greater than 4.

Then p is a bundle and can be trivialized by a stratum preserving homeomorphism;
that is, there exists a stratum preserving homeomorphism h : p−1(0) × Rn → X
such that ph is projection.

The next application concerns the classification of neighborhoods of pure subsets
of a manifold stratified space. Given a manifold stratified space Y , a stratified neigh-
borhood of Y consists of a manifold stratified space containing Y as a pure subset.
Two stratified neighborhoods X, X ′ of Y are equivalent if there exist neighbor-
hoods U, U ′ of Y in X, X ′, respectively, and a stratum preserving homeomorphism
h : U → U ′ such that h|Y = id. A neighborhood germ of Y is an equivalence class
of stratified neighborhoods of Y .

Theorem 5.4 (Neighborhood germ classification). Let Y be a manifold stratified
space such that all components of strata have dimension greater than 4. Then the
teardrop construction induces a one-to-one correspondence from controlled, stratum
preserving homeomorphism classes of manifold stratified approximate fibrations over
Y × R to neighborhood germs of Y .

When Y has just one stratum (i.e., Y is a manifold), one can use the following
result (which generalizes [13], [14]) to give a classifying space description of the
manifold stratified approximate fibrations which occur in the theorem above. For
notation, let B be a connected i-manifold and let q : V → Ri be a manifold stratified
approximate fibration where all components of strata of V have dimension greater
than 4. A manifold stratified approximate fibration p : X → B has fibre germ q
if there exists an embedding Ri ⊆ B such that p| : p−1(Ri) → Ri is controlled,
stratum preserving homeomorphic to q. Fibre germs are unique up to controlled
homeomorphism if the embedding Ri ⊆ B is orientation preserving in the case B
is orientable. Let TOPlevel(q) denote the simplicial group of self-homeomorphisms
of the mapping cylinder cyl(p) which preserve the mapping cylinder levels and are
stratum preserving with respect to the induced stratification of cyl(q). Note that
there is a restriction homomorphism TOPlevel(q) → TOPi.

Theorem 5.5 (MSAF classification). Controlled, stratum preserving homeomor-
phism classes of manifold stratified approximate fibrations over B with fibre germ q
are in one-to-one correspondence with homotopy classes of lifts of the map τ : B →
BTOPi which classifies the tangent bundle of B, to BTOPlevel(q).

Actually, Theorems 5.4 and 5.5 are just corollaries of deeper theorems which
give homotopy equivalences between simplicial sets. Then 5.4 and 5.5 are just the
statements of the results on the π0 level.

Finally, we mention that the teardrop technology announced in this paper allows
the stratified pseudoisotopy theory of Anderson-Hsiang [1] (which is valid in the
locally conelike case) to be generalized to manifold stratified spaces. Like those of
Anderson-Hsiang, our results are valid for the full space of pseudoisotopies, whereas
Quinn’s work [18] only gives information about π0 of that space.
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