
Bundle Theories for Topological Manifolds
Author(s): C. B. Hughes, L. R. Taylor, E. B. Williams
Source: Transactions of the American Mathematical Society, Vol. 319, No. 1 (May, 1990), pp. 1-
65
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2001336
Accessed: 21/06/2010 16:51

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to
Transactions of the American Mathematical Society.

http://www.jstor.org

http://www.jstor.org/stable/2001336?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ams


TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 319, Number 1, May 1990 

BUNDLE THEORIES FOR TOPOLOGICAL MANIFOLDS 

C. B. HUGHES, L. R. TAYLOR AND E. B. WILLIAMS 

ABSTRACT. Manifold approximate fibrations arise in the geometric topology of 
manifolds and group actions on topological manifolds. The primary purpose of 
this paper is to classify manifold approximate fibrations in terms of the lifting 
problem for a certain bundle. Our classification meshes well with the classical 
classifications of fibrations and bundles and, hence, we are able to attack ques- 
tions such as the following. When is a fibration controlled homotopy equivalent 
to a manifold approximate fibration? When is a manifold approximate fibration 
controlled homeomorphic to a bundle? 

Let B' be a topological manifold. Recall that a manifold approximate fibra- 
tion over B is a proper map q: M -- B such that M is a manifold (topological 
or Hilbert cube) and such that q satisfies an approximate lifting condition (see 
[8] or ? 1.D). This "bundle" theory plays an important role in the study of topo- 
logical manifolds. Consider the following examples. 

Embedding theory. Edwards [13] and Quinn [31] have shown that a locally flat 
submanifold B c V (dim V > 6) has a mapping cylinder neighborhood M(q), 
where q: M -- B is a manifold approximate fibration. Quinn [31] and Chap- 
man [6] have applied approximate fibration theory to give local homotopical 
criteria for local flatness. 

Group actions on topological manifolds. Quinn [32], [34] and [35] has used this 
theory to study group actions. 

Existence of homeomorphisms. Suppose q: E+' - B is a fibre bundle with 
manifold fibre F, n + i > 5, and suppose f: Nn+i -- En+i is a homotopy 
equivalence. If q o f is an approximate fibration, then the obstruction to de- 
forming f to a homeomorphism can be expressed in terms of surgery theory on 
F x tori (see Chapman [6], Farrell-Hsiang [14], Hughes [20], and ?1). Farrell 
and Hsiang have applied this idea to prove the Novikov conjecture for certain 
groups. They were able to use differential geometry to verify that the map q o f 
was an approximate fibration in their case. 
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In this paper we give a classification of manifold approximate fibrations 
which is analogous to the classical classification of fibrations and fibre bun- 
dles. Indeed, we repeat both those classifications here. This allows us to discuss 
the relationships among these various theories as well as the individual theories 
themselves. Roughly speaking we show that each of these theories is a "bundle" 
theory with a certain structure group. In the case of approximate fibrations, 
the groups are the simplicial groups TopC(qo), where qo: V -? R' is a manifold 
approximate fibration, and TopC(qo) denotes the simplicial group of controlled 
homeomorphisms of qo (these terms are defined in ? 1). 

Suppose p: E -- B is a fibration with fibre F. The problem of finding a 
manifold approximate fibration which is controlled homotopy equivalent to p 
is equivalent to finding a manifold approximate fibration qo: V -) Ri where 
V is homotopy equivalent to F and then showing that certain obstructions in 
H* (B; 7*_1 (G(F)/TopC(qo))) vanish (see ?1.E). 

Suppose q: M -- Bi is a manifold approximate fibration and qo = qIq 1 (U) 
where U Ri is an open subset of B. The problem of finding a fibre 
bundle with closed manifold fibre which is controlled homeomorphic to q is 
equivalent to finding a closed manifold P where P2: P x R i - Ri is con- 
trolled homeomorphic to qo and then showing that certain obstructions in 
H*(B; 7c*_l(ToPC(p2)/Top(P))) vanish (see ?1.F). 

We would like to thank W. Dwyer for numerous invaluable conversations. In 
particular, the proof of Lemma 7.10 was worked out in conjunction with him. 

1. BACKGROUND AND STATEMENT OF RESULTS 

Let B' be a topological manifold of dimension i. First recall the classifica- 
tion of Hurewicz fibrations and fibre bundles over B. 

1.A. Fibrations. Let F be a locally-finite CW complex. There exists a bijection 

{ fibre homotopy equivalence classes of fibrations [B, BG(F)], 
over B with fibre homotopy equivalent to F f 

(p:E -- B) -- p:B -* BG(F), 
where G(F) denotes the simplicial monoid of homotopy automorphisms of 
F. We also use B to denote the singular complex of B so we may think of 
[B, BG(F)] either as the set of simplicial homotopy classes of simplicial maps 
or as the set of ordinary homotopy classes of maps between the two geometric 
realizations. 

Furthermore, for any fibration p: E -- B, there is a homotopy equivalence 

BG f(E ,+ B) ,{path component of Map(B, BG(F)) } 
which contains pi: B -- BG(F) 

where Gf (E P B) denotes the simplicial monoid of fibre homotopy automor- 
phisms of p:E -- B. (See Dror, Dwyer and Kan [10] for the Kan fibration 
analogue.) 
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1.B. Fibre bundles. Suppose F is a compact manifold (Hilbert cube or finite 
dimensional). There exists a bijection { fibre homeomorphism classes t 

of fibre bundles over B with > - [B, BTOP(F)], 
fibres homeomorphic to F ) 

(p: E t- B) ) p: B - B TOP (F) , 
Furthermore, for any fibre bundle p: E -- B there is a homotopy equivalence 

BTOPf'E - B) path component of Map(B, BTOP(F)) { which contains p: B -- BTOP(F) | 

where TOPf(E P B) = the singular complex of the group {h E TOP(E) I = 

p oh}. 
Given a fibration with fibre homotopy equivalent to F, then there exists a 

fibre bundle p3: E - B with fibre F and a fibre homotopy equivalence E F 
iff we can lift fi: B -+ BG(F) thru BTOP(F) -+ BG(F). 

1.C. Approximate fibrations. Suppose that we have two spaces over B, qj: Xj - 

B, j = 0, 1 . A controlled map from qo to q1 is given by a level-preserving map 
F:X0 x [0, 1) - X1 x [0, 1) such that the map (qxx id) oF Uqoxx1::XXxx[[0, 1]- 
B is continuous (see Definition 12.1). When we want to indicate that we have 
a controlled -map from qo to q, we will write FC: XO - AX . We will write Ftc 
to denote the map induced by F on XO x t. 

Recall that the mapping cylinder of qj, denoted M(qj), is the quotient 
space of Xj x [0, 1] HL B in which we identify x x 1 with qj(x). Notice that 
M(qj) = Xj x [0, 1) U B. A level-preserving map between mapping cylinders 
M(qo) -M(ql) isamap Ft whichtakes X0xt into XIxt foreach t in [0, 1). 
A level-preserving map M(qo) -? M(ql) which is the identity on B always 
induces a unique controlled map. The converse is true if q1 x id: Xl x [0, 1] - 
B x [0, 1] is a closed map (see Lemma 12.2). 

A second controlled map He is controlled homotopic to Fe if there exists a 
controlled map Gc from XO x [0, i] q0pl B to Xi x [O,1] 5 B such that 
GCIXO x 0 = Fc and GcIX1 x 1 = Hc (here p1 denotes projection onto the first 
coordinate). 

Any map f: X0 -- Xl such that q1 o f = qo can be considered a controlled 
map by letting the family of maps be f at each level. In particular, the identity 
map is naturally a controlled map. Hence we may define the notion of controlled 
homotopy automorphisms and controlled homeomorphism in the usual way. 

A space over B, q: X -- B is an approximate fibration if given any commu- 
tative diagram of continuous functions 

Z xO X 

n I q 
Z X[0, 1] 4 B 
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there exists a controlled map fC from /8:Z x [0, 1] - B to q:X -- B such 
that f(z, 0, t) = a(z) for all z E Z and 0 < t < 1 . 

Definition 1.1. Suppose q: X -- B is an approximate fibration. We define the 
simplicial monoid of controlled homotopy equivalences of q, denoted GC(q) as 
follows: a k-simplex of GC(q) is given by a controlled map hc from q opl: X x 
Ak -, B to itself such that 

(i) hc is a controlled homotopy equivalence, and 
(ii) for each 0 < t < 1, the following diagram commutes 

k hc 
X X A X XxAk 

P2 X / P2 
k 

In the definition above, pi denotes projection onto the ith factor in a product. 

For any map q:X -- B, we let E(q):E(X) -- B denote the associated 
Hurewicz fibration. To fix notation, E(X) = {(x, A) E X x B'l q(x) = A(0)} 
and E(q)(x, A) = A(l1). Our first result states that for many purposes an ap- 
proximate fibration is equivalent to its associated Hurewicz fibration. 

Theorem 1.2, Let B be a separable metric space. 
(i) We get a bijection { cantrolled homotopy classes of f(ibre-homotopy classes 
approximate fibrations over B offibrations over B with , 
with separable metric total space J separable metric total space J 

(q: X -- B) -- (E(q): E(X) -- B). 

(ii) For any fibration q: X -- B with X separable metric, we get a homotopy 
equivalence 

BGf(q) -- BGC(q). 

1.D. Manifold approximate fibrations. A map q: M -, B is a manifold approx- 
imate fibration if M is a manifold (Hilbert cube or finite dimensional); q is 
a proper map which is an approximate fibration; and AM = q 1 (aB). We let 
TOPC(q) denote the simplicial group where a k-simplex is given by a controlled 
homeomorphism from q o p1: M x Ak -, B to itself which is fibre preserving 
over Ak . Notice that TOPC(q) is a subsimplicial monoid of GC(q). 

Suppose qo: V -- R' is a manifold approximate fibration. Then q0, the 
conjugate of q0, is given by the composition 

Vqo i RRi-1 (-1)xid i-i V__R = xR _+R xR R. 
If qo and Wo are controlled homeomorphic, then we say that qo is self-conju- 
gate. Notice that if V is homeomorphic to X x R' for any space X, then qo 
is self-conjugate. 
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Definition 1.3. Suppose that q: M -- B is a manifold approximate fibration and 
that a:R' -- Bi is an embedding. Then ql: q1 (a (Ri)) -- Ri is a manifold ap- 
proximate fibration (see Corollary 12.14) which we call the fibre germ of q over 
a . We say that q has fibre germ qo iff there is a controlled homeomorphism 
between qo: V -- R' and q . 

If B is path connected and dim M > 5, then we will show in Corollary 
14.6 that the fibre germ of q over a is independent of a up to controlled 
homeomorphism and conjugacy. We also show there that, if q has fibre germ 
q0, and qo is not self-conjugate then B is oriented by requiring that a have 
degree 1. 

Let TOPi denote the singular complex of the topological group of origin 
preserving homeomorphisms of R' and let STOPi denote the subgroup of 
orientation preserving elements in TOPi. 

Given a manifold approximate fibration, q0: V -? R', there is an associated 
bundle constructed in ?4, MAF(/) -? BTOPi. If qo is self-conjugate, let 
q: MAF(qo) -? B TOPi also denote this bundle. If qo is not self-conjugate, 
then the bundle map MAF(/) -- BTOPi factors thru BSTOPi and we let 
q: MAF(qo) -- BSTOPI denote this bundle. 

Theorem 1.4 (Classification of manifold approximate fibrations). Suppose that 
dim V > 5 and that aB = 0. Given any manifold approximate fibration 
qo: V -? R', there exists a universalfibration 

q: MAF(q0) f BTOP1 if qo is self-conjugate, 
? BSTOPi if qo is not self-conjugate 

such that 
(a) the fibre of q is BTOPC(qo) 
(b) if qo is self-conjugate we get a bijection { controlled homeomorphism classes of a homotopy classes of 
manifold approximate fibrations over - > liftings of B B TOP. 
B with fibre germ qo ) thru MAF(qo) ) 

(q: M -- B) - (q:B - MAF(qo)) 
with a similar diagram if qo is not self-conjugate except that the B TOPI 
is replaced by BSTOPI and where TB denotes the tangent bundle of B 
and tB denotes its classifying map into BTOPi if qo is self-conjugate 
or into BSTOPi if qo is not self-conjugate and we have oriented B 

(c) for any manifold approximate fibration q: M -- B with self-conjugate 
fibre germ qo: V - R', we get a homotopy equivalence 

path component of ( MAF(q0) 

BTOPC(q) - Lift l 

B B TOP I 
which contains q 
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(if qo is not self-conjugate then we replace BTOPi by BSTOPi and the 
result still holds). 

Example 1.5. Suppose that B = S1 . Then q: M -? S1 is classified by a lift 
into MAF(qo) using 1.4(b). Since the tangent bundle of S1 is trivial, this lift 
is given by a map 

j: S1 , BTOPc(V R'). 
Theorem (1.4(c)) says that BTOPC(q) is homotopy equivalent to the space 
of unbased loops of BTOPC(V ? R1). For any simplicial set X, the space 
QMap(S , X) is homotopy equivalent to Q 2X x QX. We then get 
(1.5.1) TOPC(q) is homotopy equivalent to 

QTOPC(V -- R') x TOPC(V x R'). 

If V is homeomorphic to N x R' for some compact manifold N, then qo: V 
RI is controlled homeomorphic to P2: N x R- R1; 

TOP (qo) TOPb (N x R), 
the simplicial group of bounded homeomorphisms; and 

QTOPC(qo) TOP(N x [O, 1]; rel a). 

(See Anderson-Hsiang [2] or Hsiang-Sharpe [1 5].) 

Thus, in the special case where q = p2:N x S1 -- S1, result (1.5.1) above 
and the above remarks yield 

(1.5.2) TOPC(N x S -S) TOP(N x [O, 1], rel a) x TOPb(N x R'). 
Using the above equivalences and forgetting control, we get a map 

TOP(N x [O, 11], rel a) x TOPb (N x R') - TOP(N x Sl) 
which was originally constructed by Burghelea, Lashof and Rothenberg [3], [4]. 

In the case in which N is a Hilbert cube manifold, the forgetting control 
map is the analogue in Waldhausen K-theory of the map in ordinary algebraic 
K-theory K(Z7r) x Q 1K(Z7r) -- K(Z[7r x Z]) which gives the Fundamental 
Theorem of algebraic K-theory. 

The proof of (1.4) is based on showing that any manifold approximate fibra- 
tion can be "fattened" into a fibre bundle. 

Definition 1.6. Suppose q: M -- Bi is a fibre bundle. Shrinking data for q (if 
it exists) is given by a commutative diagram 

M TB 
q X , O 

B' 

where, for each b E B, s: q (b) - 7 l(b) R' is a manifold approximate 
fibration. 
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Example. Suppose M = Mx XBTB, where Ml -- B is a fibre bundle with closed 
manifold fibres. Then the projection map M -' TB iS shrinking data for the 
fibre bundle M -, B. 

Definition 1.7. Suppose that we have two fibre bundles qj: M. - B, j = 0, 1, I 
with shrinking data sj: M. -? TB . The two pairs (q0, so) and (q1, Sl) are 
concordant if there exists a fibre bundle over B x [0, 1] with shrinking data 
that extends q0o q1 and s0 H1 s over (B x 0) H (B x 1). 

Our proof of (1.4) uses a parametrized version of the following result which 
should be of independent interest. 

Theorem 1.8. There exists a bijection { controlled homeomorphism classes J concordance classes of fibre a 
of manifold approximate fibrations - bundles with shrinking data > 
over B ) over B J 

i.E. Making fibrations into manifold approximate fibrations. Assume that B' is 
a topological manifold of dimension i, aB = 0, and that F is a locally-finite 
CW complex. Suppose that qo: V -- R' is a manifold approximate fibration, 
where V is homotopXy equivalent to F. If qo is self-conjugate, we get a com- 
mutative diagram 

BTOPC(q0) MAF(qo) B TOP, 

1 
BGC(qo) lDqo 

BG(F) - BG(F) x BTOP, - BTOP, 
where the top row is the fibration from (1.4); the bottom row is the trivial 
fibration which comes from our proof of the classification of fibrations; and the 
vertical maps come from the naturality of our constructions. If qo is not self- 
conjugate there is a similar diagram with the B TOPi 's replaced by BSTOPi 's. 

Theorem 1.9. Suppose that p: E -- Bi is a fibration with fibre F. Then, p is 
controlled homotopy equivalent to a manifold approximate fibration with self- 
conjugate fibre germ qo: V - R' if we can solve the following lifting problem 

MAF(qo) 

B - BG(F) x BTOPi, 
There is a similar result for non-self-conjugate fibre germs with BTOP, re- 
placed by BSTOPi. Notice that the fibre of 'Dqo is homotopy equivalent to 

G(qo)/TOPC(qo), which is the same as GC(qo)/TOPc(qo) by Proposition 9.2. 

Corollary 1.10. Suppose that F x T' is homotopy equivalent to a closed, compact 
manifold of dimension > 5. Then, for any parallelizable manifold B' with 
aB = 0, F x B' is homotopy equivalent to a manifold. 
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Remark. From this and the or- 7r Theorem of Wall [40] it follows that if B' 
is oriented bordant over its fundamental group to a parallelizable manifold, 
F x B' is homotopy equivalent to a manifold. 

Proof. The Kirby torus trick [26] converts the homotopy manifold structure 
on F x T' into a bounded, and hence controlled (see [24] or the proof of 
Proposition 3.2 in [19] plus ? 13 of this paper), homotopy structure on F x R'. 
Then fp x ? is trivial in (1.9) so we can certainly solve the required lifting 
problem. o 

At the start of ? 11, we give the definition of the controlled structure set for 
any fibration q:E -* B, where B is a manifold with OB = 0. We denote this 
simplicial set by Y5(q: E -* B) . Roughly, a k-simplex is a manifold approxi- 
mate fibration M -- B x A k (which is a fibre bundle over Ak ) together with a 
fibre map f: M -- E x Ak which is a controlled homotopy equivalence (fibred 
over Ak ). This extends the definition given in [22]. 

Theorem 1.11. Let q: E -* B' be a fibration with closed Poincare space fibre of 
dimension n. Then, if n + i > 5, 

(q: E -- B) = I|GC(q)/ Topc (4) 

where, on the right, we take the union over all homeomorphism classes of manifold 
approximate fibrations d: Mn+i -* B' which are controlled homotopy equivalent 
to q (if n = ox then M is a Hilbert cube manifold). 

Remarks. Just as in the uncontrolled case, there is no natural map of monoids 
Topc(4) -* GC(q) for which GC(q)/Topc(4) is the quotient. In ?9 we de- 
scribe a map BTopc(c) -4 BGC(q), and its homotopy fibre is what we mean by 
GC(q)/TopC(q) . 

The reader might have expected us to define the controlled structure set a 
bit differently. An equally attractive definition would be to replace the fibre 
map f in the above definition by a controlled map fc. We show in Theorem 
1 1.1 that we get homotopy equivalent simplicial sets. The monoid GC(q) acts 
naturally on this last definition, and it is a corollary of Proposition 8.2 that 
this action is equivalent to the homotopy action coming from the definition of 
Gc(q)/Topc(4) as a homotopy fibre. 

Consider the map 

Tn: IU MAF (v) -- BG(F) x B TOPi 

where we take the disjoint union over all the homeomorphism classes of mani- 
fold approximate fibrations qo: Vn+i -- R' with V homotopy equivalent to F. 
Notice that the fibre of Tn is 5?(P2: F x R R') . 
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Theorem 1.12. For any fibration q: X -- B' with n + i > 5, there exists a 
homotopy equivalence 

MAF(W) 
5?1(q: X -- B) -+Lift 1 Tn 

iB , BG(F) x BTOP, 

where F is the homotopy fibre of the map q . 

Remark. This is an improvement of the main result in [22] in that it applies in 
more general situations and in that it gives existence of structures iff there exist 
lifts. 

In order to apply (1.12) we need results about 5?(P2: F x R- R') where F 
is a compact Hilbert cube manifold. Results of Chapman [5] and Hughes [18] 
imply that for j < i, 

Whl(7rF) if j-i + I 1, 
rj (9(P2: F xR' - R )) -Whj_i+1(7rI(F)) = ko(DZlF) if 

j 
i + I 0, 

tKj i+l(z7lF) if] - i + 1 < 0. 

Corollary 1.13. Suppose that p: E -- B' is a fibration with fibre F such that F 
is dominated by a finite CW complex. If Whk(7r IF) - 0 for k < 0, then there 
exists a Q-manifold approximate fibration which is controlled homotopy equiva- 
lent to p: E -B. If we further assume that WhI (7rF) 0, then the resulting 
Q-manifold approximate fibration is unique up to controlled homeomorphism. 

One natural way to try to study the controlled structure set would be to use 
some sort of controlled surgery theory. We intend to do this in a sequel [24]. 

1.F. Making approximate fibrations into fibre bundles. Assume that B' is a 
topological manifold of dimension i, 9B = 0. Suppose that N is a compact 
space such that N x Ri is a manifold without boundary of dimension n + i > 
5. Then p2: N x R' - Ri is a manifold approximate fibration, and we get a 
commutative diagram 

BTOP(N) -, BTOP(N) x BTOP,- BTOP, 

t xR' tTn 
BTOPC(N x R) MAF(p2) - B TOP 

where the bottom row is the fibration from (1.4). The fibre here is clearly 
self-conjugate. 

Theorem 1.14. Suppose that p: M -- B' is a manifold approximatefibration with 
fibre germ controlled homeomorphic to P2: N x R' -- R'. Then, p is controlled 
homeomorphic to a fibre bundle with fibre homeomorphic to N if we can solve 
the following lifting problem: 

BTOP(N) x BTOP, 
BMn 

Bi MAF(P2) 
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Notice that the fibre of Tin is homotopy equivalent to TOPC(N x Ri)/TOP(N). 

The following result is proved in [41] (for the equivalence of bounded and 
controlled homeomorphisms see [23]). 

Theorem 1.15. If N is a compact, closed, finite dimensional manifold then 
TOPC(N x Ri)/TOP(N) is homotopy equivalent to Q(S+j A1Z/2 5"(N x Q)0) 
through the concordance stable range for N, where 9(N x Q)0 denotes the 
component of 9(N x Q) containing the identity. 

In the case where N is a Hilbert cube manifold one also has the following 
results. 

Theorem 1.16. If N is a compact Hilbert cube manifold, then, for any i > 0, 
the map 

'(P2: N x R'--+ Rix R' ,5?pNxxR i+1 + Ri+1 

is homotopy trivial. 

Corollary 1.17. If N is a compact Hilbert cube manifold and i > 0, then 
TOPC(N x R')/TOP(N) is homotopy equivalent to the union of certain com- 
ponents of the homotopy fibre of the map 5"(N) -? 59(P2: N x R -i+ Ri+? 

which is just 59(N) x 5(P2: N x R'+ --4 R'+') 

1.G. Outline of proofs. In this section we give a brief guide to the overall strat- 
egy of the proofs and indicate how the results in the introduction follow from 
the results proved in the remainder of this paper. Our first step is to introduce 
simplicial sets Bun(B), MAF(B), Hur(B). Roughly speaking these are sim- 
plicial sets where the k-simplices are maps E -- B x Ak which are bundles, 
manifold approximate fibrations, Hurewicz fibrations respectively. The actual 
definitions are given in ?2 and involve a few technical wrinkles, but the above 
is basically correct. 

The bulk of this paper is devoted to proving two sorts of theorems. In ??2- 
4, we prove that our simplicial sets can be described as spaces of lifts or as 
spaces of maps. These results culminate in Examples 4.8 and 4.9. In ??5-7 we 
prove that path components of our simplicial sets are homotopy equivalent to 
the classifying space of the appropriate simplicial monoids.; These results are 
summarized in Corollaries 7.12, 7.13, 7.14 and 7.15. From these results one can 
easily deduce the results in 1.A on Hurewicz fibrations. ?9 shows that controlled 
homotopy equivalences are sufficiently like fibre homotopy equivalences that 
the results in ?L.A on approximate fibrations also follow. Moreover, the same 
strategy also shows the results in ?? 1.B and 1.D. 

The material on shrinking data is introduced along the way in ??2 and 3. 
The simplicial sets of shrinking data arise as an intermediate step in the proof 
that the simplicial set of manifold approximate fibrations is a space of lifts, and 
they seemed sufficiently interesting in their own right to warrant treatment in 
the introduction. 
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Finally, we have taken some trouble to derive our results for these various 
simplicial sets in a uniform manner, so that it is easy to compare the differ- 
ent classifications. The material in 1.E and 1.F follows as indicated there by 
comparing the different classifications. 

2. SIMPLICIAL SETS AND SIMPLICIAL CATEGORIES OF BUNDLES, 

APPROXIMATE FIBRATIONS AND FIBRATIONS 

Let 12 denote the usual Hilbert space of sequences of real numbers (xo, xl, 
...) such that 0 xr2 < x. Let vi(x,...,x,...) = xi . We say that a 
subset, X, of 12 has small capacity provided there exist integers r and m 
such that vi(x) = 0 for all i r (mod m) and all x E X. We say that a 
subset, X, of 12 x Y has small capacity provided that the image of X in 12 
under the projection has small capacity. 

Define a countable collection of points, vi, i = 0, 1,..., by vi(vj) = osi j+ . 
We let Ak denote the convex set spanned by {vO, ... , Vk} (which of course is a 
k-simplex). Finally, we will have occasion below to mention Ak x [0, 1]. This 
is just the subset of 12 consisting of points whose 0 th coordinate lies between 

k O and 1, and whose other coordinates correspond to a point in A 
Let B be a topdlogical i-dimensional manifold without boundary. In this 

section we define various simplicial sets which consist of bundles, approximate 
fibrations or- fibrations over B and discuss a differential from these sets to 
various simplicial sets of lifts. Let n > 0 be a fixed integer such that i + n > 5. 
Fix a topological tangent bundle for B, p1: TB -k B, where TB c B x B is a 
neighborhood of the diagonal and p1 is the projection onto the first coordinate. 

2.1 Manifold bundles over B. A k-simplex of the simplicial set Bun(B) con- 
sists of a subset M of 12 x B x Ak of small capacity such that 

(i) the projection p: M -- B x Ak is a fibre bundle projection with compact 
fibres, and 

(ii) the fibres of the composition M P B x Ak Ak are (n + i)-dimensional 
manifolds without boundary. 

A k-simplex of the simplicial set Bun(B) consists of a subset M of 12 X 

TB x Ak of small capacity such that the following hold. 
(i) the projection p: M -- TB x A k is a fibre bundle projection with com- 

pact fibres, and 
(ii) the fibres of the composition M P TB x Ak ,A Ak are (n + 2i)- 

dimensional manifolds without boundary. 
Boundary and face operations on Bun(B) and Bun(B) are induced from 

those on Ak in the obvious way. 
Define a simplicial map d: Bun(B) --+ Bun(B), called the differential, as 

follows. If M C 12 X Ak is a k-simplex of Bun(B), then 

d(M) = {(x, b1, b2,y) E 12 x TB XAkI (x, b2,y) E M}. 
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Proposition 2.1. The differential d:Bun(B) -? Bun(B) is a homotopy equiva- 
lence. 

Proof. There is a map f: Bun(B) --+ Bun(B) which takes a bundle over TBxAk 
and restricts it over AB x Ak (where AB is the diagonal). Clearly, f o d = id. 
It is not too hard to construct a homotopy from d o f to the identity. o 
2.2 Manifold approximate fibrations over B. A k-simplex of the simplicial set 
MAF(B) consists of a subset M of 12 x B x Ak of small capacity such that 

(i) the projection M Ak is a fibre bundle projection with fibres (n + i)- 
dimensional manifolds without boundary, and 

(ii) the projection p: M -- B x Ak has the property that for each x e Ak, 

pI: p 1 (B x x) -- B x x is a manifold approximate fibration. 
A k-simplex of the simplicial set MAF(B) consists of a subset M of 12 x 

TB x Ak of small capacity such that 

(i) the composite M 'i TB x Ak p1d B x Ak is a fibre bundle projection 
with fibres (n + 2i)-dimensional manifolds without boundary, and 

(ii) the projection p: M -- TB x Ak has the property that for each (x, y) E 
B x Ak, pj:p- (p7 l(x) x y) -p7 1(x) x y is a manifold approximate 
fibration. 

As i-n the bundle case there is a differential d: MAF(B) -? MAF(B), but in 
this case it takes a bit of work to see that d actually takes values in MAF(B). 

Lemma 2.2.1. If M c 12 x B x Ak is a k-simplex of MAF(B), then d(M) is 
a k-simplex of MAF(B). 

Proof. Siebenmann's Technical Bundle Theorem [27] (Theorem 1.1, p. 60) 
implies that d(M) -? B x Ak is a bundle projection (see [22, Lemmas 4.1, 8.1]). 
The projection d(M) -? TB x A k is a family of approximate fibrations because 
each slice is the restriction of M -? B x Ak over (an open subset of B) x Ak 
(see Corollary 12.13). o 

The following theorem is the main result of ?3. 

Theorem 2.2.2. The differential d: MAF(B) - + MAF(B) is a homotopy equiv- 
alence. 

2.3 Fibrations over B. A k-simplex of the simplicial set Hur(B) consists of a 
subset of 12 x B x Ak of small capacity such that the projection p: M -- B x Ak 
is an Hurewicz fibration. 

A k-simplex of the simplicial set Hur(B) consists of a subset of 12 x TB x A k 

of small capacity such that the projection p: M -- TB x Ak is an Hurewicz 
fibration. 

As above, there is a differential d: Hur(B) -* Hur(B) and as in the bundle 
case the following proposition is not hard to prove. 
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Proposition 2.3.1. The differential d: Hur(B) -* Hur(B) is a homotopy equiva- 
lence. 

3. THE DIFFERENTIAL d: MAF(B) -- MAF(B) 

In this section we extend the definition of MAF and MAF to certain sub- 
sets of B and use this "sheafification" to prove that d: MAF(B) -) MAF(B) 
is a homotopy equivalence. 

We first define the simplicial set MAF(U) where U is the interior of a 
compact codimension 0 submanifold of B. A k-simplex of MAF(U) is given 
by a subset M of 12 X U X Ak of small capacity where 

(i) p: M -+ U x Ak is an approximate fibration and is the restriction to M 
of the projection 12 x U x Ak U x Ak 

(ii) the composition M P U x Ak Ak is a fibre bundle projection whose 
fibre is an n-manifold without boundary. 

If U1 c U2 are both interiors of compact codimension 0 submanifolds of 
B, there is a restriction map r: MAF(U2) -? MAF(U1) defined as follows: if 
p:M -) U2 xAk is a' k-simplex of MAF(U2), then r(p) is pI:p (Ul xAk) 
U1 x Ak. Another application of Siebenmann's Technical Bundle Theorem 
shows that the composition p-l (Ul xSk A U1 x Ak > Ak is a bundle projection 
(see [17, Lemma 4.1]). This is the reason that we restrict attention to the 
interiors of compact submanifolds rather than to all open subsets of B. 

The next step is to define MAF over open subsets of B. However, in order 
to get a differential and to have restriction maps, it turns out to be necessary 
to pass to germs over neighborhoods of the diagonal in U x U . The resulting 
simplicial set is denoted by GMAF(U). The precise definition follows. 

If U is any open subset of B, then a k-simplex of GMAF(U) is an equiv- 
alence class [f] represented by a diagram 

k fk 
12 xTUxA DM L TUxA 

4pi xid 

U x Ak 

where: 

(i) TU is a tangent bundle neighborhood about the diagonal AU in U x B 
with p1: TU -- U the projection onto the first factor, 

(ii) p = (p1 x id) o f is a fibre bundle projection whose fibre is an (n + i)- 
manifold without boundary, 

(iii) f is an approximate fibration, 
(iv) f is the restriction of the projection 12 x TU x Ak - TU x Ak 
(v) M is a subset of small capacity . 
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Another such diagram 

l2 XT1UXAk DM f T kUxAk 
p1, x id 

U x Ak 

is equivalent to f provided that there is an open neighborhood W of AU in 
UxB suchthat WcTUnT'U and f =f' over WxAk. 
Lemma 3.1. The simplicial sets MAF(B) and GMAF(B) are Kan. 

Proof. We extend these simplicial sets to simplicial categories and prove the 
result as a corollary of Lemma 7.2. Of course the reader can verify this di- 
rectly. o 
Proposition 3.2. The quotient map y:MAF(B) -- GMAF(B) is a homotopy 
equivalence. 
Proof. We will show that y induces an isomorphism on homotopy groups. 
Suppose that k > 0 and that we are given a k-simplex [f] of GMAF(B) 
represented by f: M -- T'B x Ak where T'B is some tangent bundle neighbor- 
hood. By passing to a smaller neighborhood, we can assume that T'B c TB, 
the fixed tangent bundle neighborhood. Suppose that we are additionally given 
a union of k -+ 1 (k - 1)-simplices of MAF(B) described by a diagram 

k gk 
2 x TB x OA : DN TB x OA 

tP, xid 

B x OAk 
such that y(g) = 0([f]). We need to show that there is a k-simplex k in 
MAF(B) such that 0k = g and y (k) [f] rel 0 . 

By the Kister-Mazur Theorem there is a bundle isomorphism j: T'B -) TB 
which is the identity on some neighborhood of the diagonal. Then the compo- 
sition 

:MLf T'B xAk j+d TB xAk 
describes a k-simplex of MAF(B) such that y(f) = [f]. Now g is easily 
constructed using ? 14 to build a collar between Of and g . o 

For V c U we have a restriction r: GMAF(U) -- GMAF(V). 
We now define the differential d: MAF(U) -- GMAF(U) whenever U is 

an open subset of B. Let 12 x U x Ak D m u x Ak describe the k-simplex 
p of MAF(U). Consider the map id x p: U x M - U x U x Ak and let 
TU c U x U be a tangent bundle neighborhood. Let M = (id x p l )(TU x Ak ) 
and f = (id xp)IM:M - TUx A k . Now M c UxM C Ux12 X UXAkA but 
we rewrite this (by interchanging the first two factors) as M C 12 x U x U x Ak. 
Then we have the diagram 

2 x U xB XAk DM f TUxAk 
tP, xid 

U xAk 
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it follows from Corollary 12.14 that f is an approximate fibration and p = 
(p1 x id) o f is a bundle projection. Thus f represents a k-simplex [f] in 
GMAF(U) and we define d(p) = [f]. 

Note that whenever V c U C B and V and U are the interiors of compact 
codimension 0 submanifolds of B, then the following diagram commutes 

U)d MAF(U) d GMAF(U) 

U)d 
MAF(U) d_ GMAF(U) 

By passing to direct limits we define MAF(X) and GMAF(X) for any com- 
pact subset X c B. The differential d: MAF(X) -- GMAF(X) is also defined. 

The next step is to prove that the differential is a homotopy equivalence by 
applying Gromov's immersion theoretic machine as delineated by Siebenmann 
in [27, Essay V]. Thus, we need to verify certain properties of the restriction 
maps for MAF and MAF and show that d:MAF(x) -- GMAF(x) is a 
homotopy equivalence for each point x E B. 

Proposition 3.3. If X and Y are compact subsets of B, then the following 
diagrams of restriction maps are fibre products (i.e. pull-back diagrams): 

MAF(XU Y) MAF(Y) GMAF(XU Y) - GMAF(Y) 

1 1 _ _ _ 

MAF(X) -- MAF(X n Y) GMAF(X) - GMAF(X n Y) 

Proof. Suppose that X and Y are open neighborhoods, in B, of X and Y 
respectively, and suppose that 12 x X x Ak D M1 - X x Ak and 12 x Y x 

k : 2P2 k A D M2 P2 y x A represent k-simplices in MAF(X) and MAF(Y) such 
that p1 = P2 over (X n Y) x Ak. Since p1 and p2 are the restrictions of 
projections, it follows that M1 n M2 = pi (X n Y) x Ak for i = 1, 2. Let 
M=M1uM2 and let p:M-* (XUY)xAk be defined by pIlMi =pi for 
i = 1, 2. Then p is an approximate fibration (see [7]) and 12 x (X U Y) x Ak D 

M + (X U Y) x Ak represents a k-simplex in MAF(X U Y) . Since uniqueness 
is clear, this construction shows that the first diagram above is a fibre product. 

An analogous argument works for GMAF. 0 

Proposition 3.4. If Y c X are compact subsets of B, then the restrictions 
r: MAF(X) -- MAF(Y) and r: GMAF(X) -* GMAF(Y) are Kan fibrations. 

Proof. We first show that r: MAF(X) -- MAF(Y) is a Kan fibration. To 
this end, let a be a (k + 1)-simplex of MAF(Y) which is represented by a 
(k + 1)-simplex of MAF(V) described by 

12xVx[0,1l]DN1 q VxAkx [0,1] 

where Y c V and V is the interior of a compact codimension 0 submanifold 
of B and we have identified Ak+l with Ak x [0, 1]. 
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Suppose that we are given a lift of the 0-level of a to a k-simplex ,B of 
MAF(X). Thus ,B is represented by a k-simplex of MAF(U) described by 

12 x U x A D M U x Ak 

where X c U and U is the interior of a compact codimension 0 submanifold 
of B. By passing to a smaller neighborhood of Y we can assume that V c U 
and that q = p over VxAk x {} . 

Let h: M' x Ak -- M be a trivializing homeomorphism for the bundle M 
k k A where M' = M n (l2 x U x {vo}) and vo is the O vertex of A . Let 

N' = N n (12 x V x {vo} x {0}) and choose a trivializing homeomorphism 
g: N'X Ak X[O, 1] N for the bundle N Ak x [0, 1] such that gIN' X Ak x 
{O}-=h . Consider the compositions 

k h k k k p':M' x A U x A and q':N' x A x [0, 1]g N V x A x [0, 1]. 

Use the homotopy extension property for manifold approximate fibrations (? 14) 
to get an approximate fibration :M' x A 4X[0, 1] Ux Ak x[O, 1] suchthat p 

k ' k is fibre preserving over A x [0, 1] ; PO = p; and p = q' over V' x A x [0, 1], 
where V' c V is an open neighborhood of Y. 

Let A= M' x Ak X {} Up- 1(V' X Ak X [O, 1]) and note that the following 
diagram commutes 

A - 12 x U x Ak x [0, 1] 
16I 1 projection 

U x Ak x [0, 1] U x Ak x [0, 1] 

where ilM' x Ak X 0} = h-1 and ilj-1(V' x Ak x [0, 1]) = g . Also 
i: A 12 X U X Ak X [0, 1] is a closed embedding of small capacity. It follows 
from elementary arguments that there is a closed embedding of small capacity 
j: M' XAk X[O, 1] -' 12X UXAk x [0, 1], extending i, which makes the following 
diagram commute 

M x kx[O, 1] 12x UxA x[O, 1] 
Pil I projection 

U xA X [O, 1] = UxA X [O, 1]. 

It follows that 2 x U xA kx [O, 1] c iM xAk x [O, 1 U xAk x [O, 1] 
describes a (k + 1)-simplex of MAF(U) representing a (k + 1)-simplex of 
MAF(X) which is the required lift of a. 

We now show that r: GMAF(X) -- GMAF(Y) is Kan. Let U and V be 
open as above and assume additionally that TV C TU. Let T1 U be a tangent 
bundle neighborhood for U such that for some neighborhood V, of Y with 
V,cU, wehave TUlVIVcTV. 
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Suppose we are given a lifting problem. Thus we have a (k + 1)-simplex of 
GMAF(Y) represented by 

12xTV, xAkx[O,1I D N q TJV/xAkx[O,1] 

VI XAk X[O, 1] 

and a k-simplex of GMAF(X) represented by 
X k __ k 

12 x TUxA D N P TUxA 

k k 
U X A 

where p = q over TJ Ix Ak X {o}. 
Let E=(Mx{O})uNc12 x TU1 x AkX [0, 1] and define 

f:E -(T1U x A x{O}) U(T1UVJ x Ak X [0, 1]) 

by using p and q. 
Let R: UxA X[O, 1] -, (UxAk xf{0})U(YXA x[O, 1]) bearetraction,fibre 

preserving over Ak, where Y is some closed neighborhood of Y contained in 
VI . Let k TxU xAk x [O, 1] -(T1UxA x {0}) U (T1Ul Ix Ak X [0, 1]) be 
a bundle map covering R. Form the pull-back 

ELf T1UxAkxOl 1,UXA x[O,1] 
t R 

f (Tl UxAk x{})u (TIUI/xAk x [0, 1]). 

Then f:E -+T1U x Ak x [0, 1] represents a (k + 1)-simplex in GMAF(X) 
which is the appropriate lift. Q 

Proposition 3.5. Let X c B be a PL cell and let x E X. Then the restric- 
tions r: MAF(X) -- MAF(x) and r: GMAF(X) -? GMAF(x) are homotopy 
equivalences. 

Proof. We first show that r: MAF(X) -, MAF(x) induces an isomorphism on 
homotopy groups. Suppose we have a k-simplex a of MAF(x) represented 
by 

12 xUxA DM-m + UxA 
where U is an open neighborhood of x in B. Suppose also that we have a 
lift ol Oa to (k + 1) (k - 1)-simplices ,I of MAF(X) represented by 

12 x V x OAk N V x OAk 

where V is an open neighborhood of X in B containing U and p = q over 
k 

U X OA 
Choose an open neighborhood UO of x such that cl(Uo) c U . Let ht: B 

B O<t 1,be an isotopy such that ho=id; XchI(U); htIUo=id and 
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htIB - V = id for each t. This isotopy defines a homeomorphism h: B x 
[0, 1] -+ B x [0, 1], and also a self-homeomorphism of B x Ak x [0, 1] which 
we also denote by h. 

The diagram 
I x h(U xA Ak X [0,1]) idxh 2 X U X Ak X [0, 1] Mx[,1] 

pxid{ 

UxAk x[0, 1] 

ht 

h(UxAk x[0, 1]) 
represents a (k + 1)-simplex y of MAF(x) . Over h(U x Ak X {O}) = U X Ak X 
{0}, this diagram represents a. Over 

(hI(U) X ak X [0, 1]) u (h,(U) x A x {1}), 
this diagram represents a k-simplex 3 of MAF(X) such that 03 = ,B. More- 
over, y shows that r(3) a a rel a . 

We now show that r: GMAF(X) -- GMAF(x) induces an isomorphism on 
homotopy groups. Let U and V be as above, but assume additionally that 
TVI U = TU . Let ht: B - B, 0 < t < 1, be the isotopy given above. Lift this 
isotopy to an'isotopy ht: TV -- TV, 0 < t < 1 . Thus piht = htp1 . Suppose 
we are given a k-simplex a of GMAF(x) represented by 

X k M _ k 
12 x TUxA D M P TUxA 

U x Ak 

and suppose that we have a lift of 0a to ,B in GMAF(X) represented by 
12 x TV xAk D N q TV x ak 

V x 9A 

where q = p over TU x aAk . As before we can construct a (k + 1)-simplex of 
id k hxid k 

GMAF(X) representedby Mx[O, l]Pxi* TUxA x[0, 1] -_id TVxA x[O, 1] 
and this (k +1)-simplex will show that r induces an isomorphism on homotopy 
groups. 0 

Proposition 3.6. For each x E B, d:MAF(x) -- GMAF(x) is a homotopy 
equivalence. 
Proof. We show that d induces an isomorphism on homotopy groups. Let U 
be an open subset of B containing x such that U is homeomorphic to R' and 
TU = U x U. Suppose we are given a k-simplex a of GMAF(x) represented 
by the following k-simplex of GMAF(U): 

IxUxUxAk D M f UxkUxA 2 
t pxid 

U x A 
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Suppose also that we have a (k + 1)-simplex /B of MAF(x) represented by 

12 X U X a D N P+ U X gAk 

such that d(,B) = aa. We can assume that p17(U x OAk) = U x N and that 
k f = idu x p over U x U x a . 

Let Mx = p1({x} x A k) and find a homeomorphism h: U x Mx lM such 
that 

U x Mx h M 

idxp\ 4P 
U x Ak 

commutes; hl{x} x Mx = id; and hlU x p 
I ({x}xX aAk) is id: U x N -+U x N. 

Let rs: U x [0, 1] -- U, 0 < s < 1, be a strong deformation retraction of 
U to x,anddefine f:UxMx UxUxA,0 <s< 1,by fs(y,z)= 
(y, proj(fh(r5(y) , z))) where proj: U x U x Ak -+ U x Ak denotes projection 
onto the last two factors. Use fs, 0 < s < 1, to define f: U x mx x [O, 1] 
U x U x Ak x [0, 1] in the obvious way. 

Let j: U x Mx,x [0, 1] - 12 x U x Ak x [0, 1] be an embedding such that 
jlU x Mx{O}= h; jlU x Mx x{1}=id;and jlU x Nx[0, 1]=id. Let M 
be the image of UxMx x [0, 1] in 12 x UxAk x [0, 1] via j. Thenwehave 
a (k + 1)-simplex of GMAF(x) represented by 

k .7'k 
12 x U x U x A X [0, 1] M U x U x A x [0, 1] 

UxA x[0, 1] 

which shows that there is a k-simplex y of MAF(x) such that ay = /3 and 
d(y) -- a rel O. o 

From Gromov's immersion theoretic machine we conclude that d: MAF(X) 
GMAF(X) is a homotopy equivalence for each closed subset of B. In 

particular we have 

Theorem 3.7. The differential d: MAF(B) --+ GMAF(B) is a homotopy equiv- 
alence. 

4. DISASSEMBLY 

In this section we give conditions under which a simplicial set is homotopy 
equivalent to a simplicial set of lifts. The simplicial sets to which this applies 
are those which are the images of our differentials. 

We first recall some standard notation. The k-simplex is the span of {vo0..., 
Vk} where vo, ... , vk are linearly independent points in 12 (which we actu- 
ally fixed in ?2 but the particular choice is irrelevant here). Define boundaries 
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and degeneracies as usual as the linear maps 3i Aki -? Ak and a: Ak+l -? Ak 
defined by setting 

5i (vi) = i {J if j < i, and ai(v.)= {VJ if] ?1, 

The simplicial set A[k] has q-simplices of the form (ao, ... , aq) where ai E Z 
and O<ao?< <aq<k (see [28,p. 14]). 

Next we fix some notation which will be used throughout this section. Let 
U be a space and let G be a simplicial group of homeomorphisms of U; i.e., 
G is the singular complex of a group of homeomorphisms of U. 

Suppose K(U) is a Kan simplicial set with the following properties: 

(i) each k-simplex of K(U) is a nonempty subset of 12 X U x Ak 
(but not all subsets need be simplices) 

(ii) if M C 12 X U XAk is a k-simplex of K(U) and 0 < i < k, then 
&iMc 12 x U x AklI and s,M c 12 x U x Ak+l are defined by i.M = 
{(x,Y, z)l (x,y,3i(z)) E M} and siM= {(x, Y, z)l (x, y, ai(z)) E 

(iii) if h:UXAk __ UxAk isa k-simplexof G and Mc12XUXAk isa 
k-simplex of K(U), then (id1 x h)(M) is a k-simplex of K(U). 

Note that property (iii) describes a simplicial action of G on K(U). 

Examples. Let U = R' and G = TOPi (where TOPi is the simplicial group of 
homeomorphisms of R' which preserve the origin). Then MAF(R'), Bun(R') 
and Hur(R') are all examples of simplicial sets satisfying the three conditions 
above. 

Let BG denote the classifying space for G (denoted W(G) in [28, p. 87]). 
Let T:[BG]q -Gq- be the twisting function for the universal G-bundle 
BG x T G over BG (see [28, p. 88], but note that we are reversing the order of 
base and fibre in the notation for twisted cartesian products). Since G acts on 
K(U) we can form the associated twisted cartesian product BG x T K(U) over 
BG. 

Suppose that p: E -- X is a bundle with fibre U and group G (for the 
examples mentioned above, X will be a neighborhood of the i-dimensional 
manifold B and p: E --+ X will be the tangent bundle of B pulled-back). We 
assume that X is an ordered simplicial complex and also think of X as a 
simplicial set with exactly one nondegenerate simplex for each simplex of X. 
That is, we think of X as a subsimplicial set of its singular chain complex 
sX. There is a classifying map p: X --+ BG for p: E -- X, but its definition 
depends on a choice of atlas for the bundle. We assume that our atlas is regular 
[28, p. 77], and normalized [28, p. 75], and fix some more notation. For each 



BUNDLE THEORIES FOR TOPOLOGICAL MANIFOLDS 21 

q-simplex a: Ak X, form the pull-back 

Ea , E 

1, Pa 1, P 

'AqX - + x 
and fix a trivializing homeomorphism ha: U x -q Ea. 

Normality and regularity tell us how these homeomorphisms behave under 
boundary and degeneracy operations. To describe this behavior, consider the 
pull-back diagrams which define 3ia and sic: 

E *E a, E Es a Ea, E 

&~a: Aq 
I q A A X sAq+ 

1 AA q a X 

Note that Eq E a " Ea Ii = q 
Pa (OiAq) is a homeomorphism. Regularity 

means that the composition 

q- Iidx6 Uhj qX h aq 
U x A Ux a i 4EI&iA E0a a uxA { id if i > O, 

i 
T(P(c)) if i = O. 

Normality means that the following diagram commutes: 

UXq+ idxa Xq ha E 

hsi "It , a 

E a E s,a 

We introduce yet more notation. If d = (a, p) is a q-simplex of X x A[k], 
say -: q - X and p = (ao, ..., aq), define the linear map pAq_ Ak by 
setting p3(vi) = Va . Define e :Aq _+ X Ak by setting ed(t) = (a(t), p(t)) 
and define ed: Ea -? E x Ak by ed(x) = (O(x) p/(pPa(x))) . Thus, the following 
diagram commutes 

Ea d E x Ak 
Pa t {pxid 

'Aq ed X k + XxAk 

If Mc2 x U x Aq,define Md=(idl xedha)(M) cl2xExAk. If Mc 

12xE x UXAq. 
The goal of this section is to give a workable model for 

BG x TK(U) 
Lift( 

kX P BG 
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We are now in a position to define a simplicial set K(p: E -? X) which will turn 
out to be simplicially isomorphic to the space of lifts, at least for the examples 
that we have in mind. The k-simplices of K(p: E -- X) are those subsets M of 

X k Md 
12 XE x A which have the property that M is a q-simplex of K( U) whenever 
d is a q-simplex of X x A[k]. Boundaries and degeneracies are defined as for 
K(U). Note that K(p:E-- X) is Kan. 

The next step is to define the disassembly map 

DK E ) Lf BGXTK(U)) 
D: K (p: E --+X) Lift|l|. 

x PI BG J 

First note that a k-simplex of the lift space is a simplicial map f: X x A[k] 
BGxTK(U) oftheform f=(,p, g) where g:Xx A[k]J-K(U) isagraded 
map of degree 0, but not necessarily simplicial. In fact, the following lemma 
gives necessary and sufficient conditions on g for (p, g) to be simplicial. The 
proof is a straightforward chase through the definitions in [28] and is left to the 
reader. 

Lemma 4.1. If g: X x A[k] -- K(U) is a degree 0 graded function, then (p, g): 
X x A[k] -+ 1G XT K(U) is simplicial iff 

(i) gai =Aig for i > O, 
(ii)- g0o = T(p(x)) o aog(x) for x E X x A[k], and 
(iii) gsi =sig for i > 0. 

We will call a function g: X x A[k] -? K(U) satisfying the conditions of 
Lemma 4.1. T-simplicial and confuse lifts with T-simplicial functions. 

Now define 
BG xTK(U) 

D: K(p: E -X) -V Lift ) 
x PI BG 

as follows. If M c I X E x Ak is a k-simplex of K(p: E -- X), then D(M): X x 
A[k] -+ K(U) is the T-simplicial function defined by setting D(M)(d) = Md 
for each q-simplex d of X x A[k]. Verification of the following lemma is left 
to the reader. 

Lemma 4.2. D(M): X x A[k] -+ K(U) is a T-simplicial function and 
BG X T K(U) 

K(p: E -- X) Lift B is a simplicial map. 
kx PI BG 

Define the assembly map 

BG xTK(U) 
A: Lift ( l E: E -X) 

VX I BG 
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as follows: if g: X x A[k] -* K(U) is a T-simplicial function, define A(g)= 
U{[g(d)Idj d e Xx A[k]} C12 x E x Ak. Of course, we need to see that A(g) 
is a k-simplex of K(p: E -- X). We do this via two lemmas. 

Lemma 4.3. If f is an r-simplex of X x A[k], then ([g(f)]f)f = g(f). 

Proof. In general, g(f) c ([g(f)]f)f so we only need show that ([g(f)]f)f c 
g(f). This is clear if f is nondegenerate, so assume that f = sid. For i > 0 
we have 

([g(f)IS d) = ([O1g(f)]d)) = ([g(0if)Id) = Si([g(aif)Id) = Si([g(d)Id)d 
which is contained in sig(d) = g(sid) = g(f) by induction. If i = 0, then the 
proof above has a twist in it, but nevertheless works. o 

Lemma 4.4. A(g) is a k-simplex of K(p: E -- X). 

Proof. We need to show that (Ud g(d)d)f is an r-simplex of K(U) whenever 
f is an r-simplex of X x A[k]. For this we will show that (Ud g(d)d )f = g(f) . 
It suffices to show that [g(d)d]f c g(f) for each q-simplex of X x A[k]. By 
Lemma 4.3 we just need to show that [g(d)d]f c [g(f)f]f . This is left to the 
reader. n 

We also leave the proof of the following lemma to the reader. 

Lemma 4.5. The assembly map A is a simplicial map. 

We are now ready for the main result of this section. 

Theorem 4.6. The assembly map A is a simplicial isomorphism with inverse the 
disassembly map D. 

Proof. To see that AD(M) = M whenever M c 12 x E x Ak is a k-simplex of 
K(p: E -- X), simply note that M = Ud [Md Id . 

To see that DA(g) = g whenever g: X x A[k] -* K(U) is T-simplicial, we 
have to show that DA(g)(f) = g(f) for each r-simplex f of X x A[k]. This 
amounts to showing that (Ud g(d)d)f = g(f), which was done in the proof of 
Lemma 4.4. El 

Before describing our principal examples, we pause to introduce a construc- 
tion that we shall need to compare the MAF situation with the Hur situation. 

Definition 4.7. Let p: M -- B x X be an approximate fibration for which the 
projection to the X factor is a fibration . Let M = {(m, A) E M x B'l p(m) = 

(A(0), px(m))}, where px denotes p followed by the projection to X. It fol- 
lows from Lemma 16.3 that p(m, A) = (A(l), px(m)) is a Hurewicz fibration. 
In Definition 9.1, we show how to embed M in 12 x B x X so that this con- 
struction actually induces a simplicial map from MAF(B) to Hur(B). We 
refer to this construction as the fibrewise associated Hurewicz fibration. 
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Example 4.8. Let U = R', G = TOP., and let K(U) be MAF(R'). Let 
B be an i dimensional manifold and let p: TB -+ B be the tangent bundle. 
Then K(p: TB -- B) is MAF(B). Let N be the total space of a normal disc 
bundle for B. Then N is PL and we have maps i:B -- N and r:N --+ B 
with ro i = idB and i o r idN . The following composition is a homotopy 
equivalence: 

(N 

, MAF(Z/i) 
D:MAF(B) rL K(p: r TB -- N) -- Lift B 

N P BTOPi 
z ~~MA F (2/,) AMA F (9)A 

Lift ( 1 Lift MAF(| 

VsN P BTOPi ksB A BTOPi J 
where sB or sN denotes the singular complex of B or N and where MAF(?i) 
denotes the total space of the bundle BTOPi XTMAF(U). 

To see this, recall that 
MA F (4) 

Lift1 
.X P BTOPi 

is a homotopy functor, so that a simplicial homotopy equivalence induces a 
homot.opy equivalence between the simplicial sets of lifts. Hence all the maps in 
the above composition after D are equivalences, and D is also an equivalence. 
Hence we need only show that r* is an equivalence. We show that i* is the 
homotopy inverse. 

Clearly i* o r* is the identity on MAF(B) so we need only show that r*o i* 
is an equivalence on K((T: r* TB -- N) . It is easy to see that K(p: E -+X) has 
maps induced by maps X -+ Y, so it is a standard argument that r* o i* is 
an equivalence since it is homotopic to the identity once we show that the two 
inclusions N --+ N x [0, 1] induce equivalences on MAF . 

To see this, observe that D is natural for simplicial maps and that these 
inclusions are simplicial. Since the result is clear on the spaces of lifts, we get 
it for MAF. 

Example 4.9. Let U = R', G = TOPi, and let K(U) be one of Bun(R') 
or Hur(R i). Let B be an i-dimensional manifold. Let p: TB -- B be the 
tangent bundle. Then K(p: TB -- B) is Bun(B) or Hur(B), respectively, and 
as above, we have homotopy equivalences 

Bun(Wi)A 
D: Bun(B) Lift B (| ( sB p BTOPiJ 

___ Hur( ) 
D:Hur(B) Lift( 

sB - BTOP. 
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where Bun(Z?i) denotes the total space of the bundle BTOPi x TBun(U), with 
a similar definition for Hur(i). We also have a commutative diagram 

( Bun(/) A 
Bun(B) - Lift 

sB - BTOP1 

( MAF(i) 
MAF(B) - Lift l 

sB - BTOPi, 

( ,Hur(Wi) 
Hur(B) - Lift l 

sB - BTOPi1 

The maps from MAF to Hur and MAF(Zi) to Hur(ti) are given by the 
fibrewise associated Hurewicz fibration after we notice that the fibrewise asso- 
ciated Hurewicz fibration MAF(Ri) -+ Hur(Ri) is TOPi-equivariant. 

Finally, Theorem 10.1 shows that Bun(B) and Hur(B) are homotopy func- 
tors. In particular, the restriction maps Bun(R') -? Bun(pt) and Hur(R') 
Hur(pt) are homotopy equivalences which are TOPi equivariant where TOP, 
acts trivially on Bun(pt) and Hur(pt). Hence the bundle Bun(Zi) -+ BTOPi 
is homotopy equivalent to the trivial bundle with fibre Bun(pt), so the lift sim- 
plicial set can be replaced by the space of simplicial maps, Map(sB, Bun(pt)). 
By Corollary 7.14, the components of Bun(pt) are just BTOP(N) for various 
manifolds N. A similar discussion shows that we may replace the simplicial 
set of lifts in the Hur case by Map(sB, Hur(pt)), and that the components 
of Hur(pt) are just BG(F) for the various spaces F. These results are well- 
known, but we have rederived them to better understand their relation with the 
MAF case. 

5. SIMPLICIAL CATEGORIES AND BI-SIMPLICIAL SETS 

We begin by recalling the definition of a simplicial object. There is a category, 
A/, whose objects are 0, ..., n, .... The morphisms from n to m consists of 
the set of all nondecreasing maps from the ordered set 0, ... , n to the ordered 
set 0, ..., m. A simplicial object in the category D is a functor A0p -, D. A 
simplicial category is a functor A0p -+ cat, where cat is the category of small 
categories. A bisimplicial set can be regarded either as a simplicial object in the 
category of simplicial sets, or as a functor A0p x A?P --+ sets, where sets denotes 
the category of sets. 

From a simplicial category, &, we can derive a bisimplicial set *, For 
each r we have a category, F9(r). The set &o r is the set of objects in F(r). 
If s > 1 , then the set we want for F,,r is an ordered collection of composible 
morphisms in F(r) with s elements in the collection. 
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The horizontal r-line, &' is the simplicial set obtained by taking the nerve 
of the category '(r) . The vertical 0-line is the easiest of the vertical lines to 
describe. It is the simplicial set obtained by just considering the objects in the 
simplicial category. 

There are boundary maps 0 -, Fr_l * for 0 < i < r with the cor- 
responding degeneracies sV going back the other way. We call these maps the 
horizontal boundaries and degeneracies because they connect the vertical lines. 
There are corresponding maps a h and sh connecting the horizontal lines, called 
the vertical boundaries and degeneracies. 

We can now describe the sort of result for which we are heading. We consider 
the simplicial set 4 *, the vertical 0-line, and fix a vertex, say v. We would 
like to be able to identify the path component of % * containing v as follows. 
Associated to v there is a simplicial monoid, End(v), defined as follows. For 
each k > 0 there is a unique object vk in &O k defined by applying a k-fold 
composition of degeneracies to v. (In a simplicial set the object that one gets 
is independent of which k-fold composite one chooses to apply.) A k-simplex 
in End(v) is now defined to be a map in F ,k from Vk to itself. 

Recall the construction for BEnd(v) as the diagonal of a bisimplicial set. 
The k-simplices of End(v) form a monoid under composition and we can 
convert End(v) into a simplicial category with objects vk and with the mor- 
phisms from vk to itself being the k-simplices in End(v). Then BEnd(v) is 
just the diagonal of the bisimplicial set associated to this simplicial category. 

Since the simplicial category associated to End(v) has an obvious inclusion 
functor to F, there is always a simplicial map 

(*) BEnd(v) --+ * 

Under this map, the unique vertex in BEnd(v) is sent to the image of v in 
AF* * 

One goal is to prove that, for the examples which interest us, the map (*) 
induces a homotopy equivalence between BEnd(v) and the path component 
of AF* * which contains the image of v. The second major goal is to prove 
that, again for the examples which are of interest to us, the natural map 
(**) % * AF* * 

is a homotopy equivalence. We can then combine these two results to see that 
the component of F * containing v is homotopy equivalent to BEnd(v). 

We will show that these two results hold provided that our original simplicial 
category satisfies three additional properties described below. Before taking up 
the argument, we pause to introduce our examples. 

6. GEOMETRIC EXAMPLES OF SIMPLICIAL CATEGORIES 

We let 12-Top denote the category of subspaces of Hilbert space of small ca- 
pacity, where the morphisms are just the continuous functions. As before define 
a countable collection of points, vi, i = 0, 1, ...., by vi(vj) = J, X + . There is 
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a functor from the category of finite sets and nondecreasing maps, A, to 12-Top 
given by sending {O, ... , k} to the convex set spanned by {v, . .. , Vk} (which 

of course is a k-simplex and will be denoted Ak ). We send a nondecreasing 
map to the corresponding linear map between the two convex sets. 

If we begin with a functor J?: 12-Topop -+ cat, where cat is the category of 
small categories, the composite, A0p -+ 12-Topop -+ cat, is a simplicial category, 
F(J7). As we shall see, all the simplicial categories that we will consider in this 
paper arise from this procedure. It is not true that all such categories satisfy the 
theorems that we want. To achieve this we will have to demonstrate that our 
categories satisfy certain additional properties listed below. 

We conclude this section with a short guide to applying these results in the 
cases of interest to us. In all of our categories, the set of objects will be some 
subset of the following. Fix some space B, and consider B-Space: 12-Topo 
cat defined as follows. 

An object of B-Space(X) is a subspace M C 12 x B x X of small capacity 
and a map p: M -+ B x X such that the following hold. 

(i) 
M C 12 x B x X 

BxX = BxX 

commutes where the right-hand vertical map is just projection on the 
last two factors. 

(ii) Let px M -+ B x X -+ X denote the obvious composite. Then px 
is a regular fibration [11]. (Note that every fibration is regular if B is 
reasonable: e.g. metric.) 

The morphisms in B-Space(X) from (M1, p1) to (M2, P2) are just the con- 
tinuous functions f: M1 -+ M2 which satisfy rsx o p, = ox ?P2 o f, where 
7'x B x X -+ X is the evident projection. 

Given a map 0: Y -+ X, the induced functor 0*: B-Space(X) -+ B-Space(Y) 
is defined as follows. We define /* first on objects, so let (M, p) be an object 
as above. Define a subspace of M x Y, M, as usual: (mi, y) E M iff px(m) = 
q(y)). There is certainly a map M -+ B x Y. 

There is also a map M x Y - 12 x B x Y defined as the product of two maps: 
the first M -+ 12 x B being the inclusion M C 12 x B x X followed by the 
projection on the first two factors; the second being the projection M x Y -+ Y. 
Define 0* (M) to be the subspace which is tne image- of M under this map. 
The required properties are easily checked. 

Given a morphism f: Ml -+ M2 define 0*(f): S*(MI) -+ 0 *(M2) by just 
restricting the obvious map M1 x Y -+ M2 x Y to the q*(Mi) . 

It is easy to check that these constructions induce a functor from 12-Top'p 
to cat. We need only note that (q, o 02) = (01 o O2) and that (id)* = id. 

We extend the simplicial set MAF(B) to MAF(B): 12-Topop -+ cat as fol- 
lows. An object in MAF(B)(X) is an object in B-Space(X) for which the 
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projection Px is a fibre bundle with compact manifold fibre and for which 
pl:p 1 (B xx) -+ B xx is an approximate fibration for each x E X. A morphism 
from (M, , P1) to (M2, P2) in MAF(B)(X) is a controlled homeomorphism 
hc: M1 - M2 such that each map h1 is a fibre map. Given a map 0: Y -+ X, 
the functor q*: MAF(B)(X) --+ MAF(B)(Y) is defined just as above. Again, 
the needed verifications are straightforward. 

We can also extend the simplicial set Bun(B) to Bun(B): 12-Topop -+ cat. 
We require that p be a fibre bundle. We require that a morphism be a fibre 
map which is a homeomorphism. 

Similarly, we can extend the simplicial set Hur(B) to Hur(B): H2-Topop 
cat. This time we require that p as well as px be a regular fibration. We 
require that a morphism be a fibre map for the projections into B x X (not just 
for the projections into X) which is a fibre homotopy equivalence. 

Finally, we can define HAF(B): 12-Top p -+ cat. An object in HAF(B)(X) 
is an object in B-Space(X) for which p is a fibration, and a morphism is a 
controlled homotopy equivalence. Of course, we require that each level of the 
controlled map, ]t, be a fibre map with respect to the projections to X. 

Notice that Hur(B)(X) is a subcategory of HAF(B)(X) if we agree to con- 
sider a fibre map in Hur as the same thing as a controlled map which is constant 
at each level. Indeed, these two categories have the same objects. 

We have introduced HAF to facilitate the construction of various maps. 
Finally' notice that there is an obvious extension of the simplicial sets 
K(TB: TB -+ B) to MAF(B): 12-Topop -+ cat. 

7. PROPERTIES OF GEOMETRIC SIMPLICIAL SETS 

We suppose that we have a functor 9: 12-Topop -+ cat. The first property 
that we wish our functors to satisfy is: 
(7.1) Amalgamation Property. We say that 7 has the amalgamation property 
provided the following condition holds for any two subsets X1 and X2 of 12 
of small capacity such that the pair (X, U X2, X1 n X2) is a strong NDR-pair 
with X, and X2 closed in X, U X2 . If the functors in the following square are 
the ones induced by the inclusions, then the following square commutes and is 
a pull-back: 

(X1 UX2) -* 

t (X, n X2) 
Being a pull-back means that given objects E. in ?(Xi) which are equal when 
restricted to 7(X1 nX2) , there is a unique object in 7(XI uX2) which restricts 
to each Ei . There is a similar condition on morphisms. In the sequel we will 
often speak of an object E over X when we mean that E is an object in the 
category Y(X): we will also speak of morphisms over X. The terminology 
comes from our bundle/fibration examples where the terminology is standard. 

For the notion of an NDR-pair, the reader may consult [42, Chapter 1, ?7J. 
Our first result is the following lemma. 
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Lemma 7.2. If 7 has the Amalgamation Property each of the vertical simplicial 
sets 0F(Y)k * is a Kan complex. 

Proof. Let us begin by showing F(F)0 * is Kan. The Kan condition requires 
that we can do the following. We begin with k objects, say Eo, . .. , Ei1I, Ei+I, 
..., Ek over the (k - l)-simplex which satisfy the compatibility condition 
9nEj = aj_,E,, n < j, n 54 i, j $ i. We must construct an object over 
the k-simplex, say E, such that O)nE = En for n $A i [28, Definition 1.3, p. 2]. 

Let w Ak denote the subcomplex of Ak consisting of all faces that do not 
contain the ith vertex. Then the compatibility condition on the Ei and the 
Amalgamation Property guarantee that there is an object E over W-Ak so that 
the restriction to the face &nAk of Ak is just En . 

There is a map r: Ak -+ w Ak which is a retract for the natural inclusion. 
If we let E denote the object induced over Ak from E using r, E clearly 
satisfies the required properties. 

To show that F( )k * k > 1, is Kan is a similar argument complicated 
only by the notation since now we must amalgamate and induce maps and their 
ranges and domains. o 

The next result'that we want is that one of the 07 is a Kan fibration. This 
needs some additional properties of l(Y). We say that objects in Y can be 
straightened provided the following property holds. 

(7.3) Straightening Property. Let E be an object in F(Ak X [0, 1]). We can 
restrict E to Ak x 0, getting say Eo. Then we can apply the projection Ak X 

[0, 1] +Ak x O to Eo to get another object over Ak X [0, 1], say Eo x [0, 1]. 
We require that there exist maps F:E -+ Eo x [0, 1] and G:Eo x [0, 1] -+ E 
such that F and G restricted to A k x 0 are both the identity map. We say 
that Y has the Strong Straightening Property if, whenever EI(OA k x [0, 1]) is 
equal to (Eo0IAk) x [0, 1], we can chose the F and G above so as to be the 
identity when restricted over OAk x [0, 1]. 

Remark. The reason for the terminology can be found by considering an exam- 
ple. If we consider the category of bundles over B, where objects over X c 12 
are just bundles over B x X, we have a functor S: 12-Topop -- cat. In this 
case, the Straightening Property just says that any bundle over B x X x [0, 1] 
is bundle isomorphic to the bundle restricted to B x X x 0 crossed with [0, 1]. 

The next result gives the needed Kan fibrations. 

Lemma 7.4. Let 9: 12-Top0P -+ cat have the Amalgamation and Straightening 
Properties. Then the map 00: (l ) 1 -* -'( )0 * is a Kan fibration. 

Proof. Since we have the Amalgamation Property we can replace the usual 
statement of the Kan condition by starting with two objects over w AAk, say E1 
and E2, together with a map f:El -- E2. Moreover, the object El has an 
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extension to an object E over all of Ak . We must find an extension of E2 to all 
of Ak, say E, and a map F: E -+ E which when restricted to w Ak is just f. 
This is not the usual way to state the Kan fibration condition [28, Definition 7.1, 
p. 25], but it is equivalent to it in the presence of the Amalgamation Property 
by an argument similar to that used to prove Lemma 7.2. 

There is a homeomorphism h: Ak , w Ak x [0, 1] which takes w Ak to 
w Ak x 0 by the identity. By the functorial nature of Y there is an object E 

k over wiA x [0, 1] and an isomorphism from E to E which is the identity 
when restricted to w Ak x 0. Hence it suffices to produce the extension over 
WiAk x [0, 1] and then use h to induce the result back over Ak. 

For E we can take E2, now over w Ak x 0 and induce it up to w Ak x [0, 1] 
using the projection. If we let E1 denote the result of performing the same 
construction on E1, now over wiAk x 0, then the map f extends to a map f 
which restricts to f over w A x 0. By the Straightening Property we can find 
a map F: E -+ E1 which is the identity when restricted to wiAk x 0. Clearly 
the composite 7 o F is the required map. o 

We need a further property of the map 00: &(Y7 * o* Given a 
vertex v in & (Y)o 0 we define a simplicial set 0(- 1(v) as follows. A k-simplex 
in 00 1(v) consists of a k-simplex E in F(Y)o * and a map f:E -+ Vk where 
vk denotes the k-fold degeneracy applied to v. Our next goal is to prove that 
00 1(v) is contractible. To do this we need to assume that Y has another 
property. 

(7.5) Fill-in Property. Suppose given three objects Eo, E1, E2 over Ak, and 
two maps fi: Ei -+ E2, i = 0, 1 . Let E2 x [0, 1] denote the result of pulling 
E2 back to Ak x [0, 1] via the projection to Ak X 0. We say that 7 has the 
Fill-in Property provided we can find an object E over Ak x [0, 1] such that 
E1 restricted over 0 is Eo and E1 restricted over 1 is E1. Moreover, we 
require a map F:E1 - E2 x [0, 1] such that F restricted over 0 is fo and 
F restricted over 1 is f, . Finally, the process needs to be mildly functorial. 
Specifically, suppose we are given two sets of initial data, say the data above and 
another set of initial data, three objects Eo El, E over Ak, and two maps 

fi: Ei -+ E2, i = 0, 1. Suppose that Ei and Ei are equal when restricted 
to a collection of faces of Ak . Moreover, suppose that fi and fi agree when 
restricted to this collection. Then the two extensions and the two extended maps 
agree when restricted to this collection x [O, 1]. Notice that we are given both 
sets of data before we have to produce either extension and the range object for 
both sets of maps is the same. 

One useful result is 
Lemma 7.6. Let Y: 12-Topop -- cat have the Amalgamation Property. Let Eo 
and E1 be two k-simplices such that E ilOAk is "trivial": i.e. there exists an ob- 
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ject over a point which, when pulled-back to 9Ak, is equal to Ei1OAk . By Lemma 
7.4, F(9)O * is Kan, so such simplices represent elements in tk(K(,)0,*) . 

(a) If Y satisfies the Strong Straightening Property and [E0] = [E1 ] in 7rk, 
then there exist maps f: Eo -* E1 and g: E1 -* Eo suchthat f and g 
are the identity when restricted over OAk. 

(b) If 7 has the Fill-in Property and if there exists a third object E2 over 
Ak (with no conditions on the OAk ) and maps fi: Ei - E2, i = 0, 1, 
such that fI0IA =fI|OAk then [E0] =[E1] in 7rk 

Proof. For part (a), the fact that 0(,))0 * is Kan implies that we can find an 
object over Ak+' which is Eo when restricted to one face, E1 when restricted 
to another, and "trivial" when restricted to the remaining faces. There is a map 
Ak x [0, 1] -Ak+ which takes Ak x {0} to the face under Eo and Ak x {1} 
to the face under E . Consider the induced object over Ak x [0, 1]. Clearly 

k k it is E over A X {i} i = 0, 1 and "trivial" over OAk x [0, 1]. The Strong 
Straightening Property supplies the maps. 

For part (b), use the Fill-in Property to construct objects over Ak x [0, 1]. 
There is a map A&+1 -Ak X [0, 1] which takes one face of Ak+ to Ak X {0} 

homeomorphically; which sends another face of Ak+l to A X { 1 } U 9A X [0, 1] 
homeomorphically, and which collapses the other faces onto lower dimensional 
simplices in 0A . If we pull-back the fill-in for 1 along this map, we see 
a homotopy from [Ei] to E2 U (the fill-in construction for Ji restricted to 
OAk x [0, 1]). By the uniqueness property for fill-ins, we can arrange for both 
these constructions to be equal. 0 

The key result that we need is 

Lemma 7.7. Let St: 12-Topop -* cat have the Amalgamation and Fill-in Proper- 
ties. Then the simplicial set 00( 1(v) is a contractible Kan complex. 

Proof. Extend 0( l(v) to 12-Topop -+ cat by requiring that an object over X 
be an object in Y over X, say E, together with a map f: E -* vx, where vx 
denotes our object over a point induced back to X. A map between (Eo, fo) 
and (E1, f f) is a map g: Eo -E1 in F such that f1 o g = fo . It is not hard to 
see that this extended functor satisfies the Amalgamation and Fill-in Properties. 

By Lemma 7.2, 0(0 1(v) is Kan. To show that it is contractible, we show that 
the homotopy groups are 0. Let f: E ) Vk be a k-simplex which is "trivial" 
along the boundary. Notice that id: vk V vk is another object in 0- 1(v), and 
f extends to a map in 0( 1 (v) between these two objects. The identity extends 
to a map from id: vk -+ v k to itself and hence Lemma 7.6(b) shows that our 
original element represents the same element in homotopy as id: vk -+ Vk , which 
is the trivial element. o 

We can now prove one of our two main results. 
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Proposition 7.8. The natural map F(7 * -+ A)'(Y)* * is a homotopy equiv- 
alence if 9Y has the Amalgamation, Straightening and Fill-in Properties. 

Proof. This result follows from standard nonsense [39] once we prove that the 
k-fold composite of degeneracies, &O * - * + F2 * *-- - ' k*, is a 
homotopy equivalence. To do this, consider the following square 

Fk, ' k-1, 

F1, *O F0,* 

This square is a pull-back: i.e. a k-fold collection of maps is equivalent to 
the first map together with the last k - 1. By Lemma 7.4, the bottom v1 is 
a Kan fibration, so in the pull-back, the top 0 is a homotopy equivalence iff 
the bottom vOg is. But the bottom 0v is a homotopy equivalence because the 
homotopy fibre over a vertex v is 0j I(v), which is contractible by Lemma 7.7. 

Since 0v is a homotopy equivalence, sv is the homotopy inverse because 
Sv 0 v is the identity. Therefore, any k-fold iterate of degeneracies from ?O* 
to 'k, * is also a homotopy equivalence. o 

Remark. Once' we know that these iterated degeneracies are homotopy equiva- 
lences, we can easily show that any sv>, and hence any 07 is also a homotopy 
equivalence. 

Lemma 7.9. Let Y:12-Topop --+ cat have the Amalgamation, Straightening, and 
Fill-in Properties. Then the map 09: 00 

1 (v) - ()0 * is a Kan fJbration. The 

fibre 07 '(v) is the simplicial monoid End(v), and End(v) acts on 0 1(v) by 
composition. 

Proof. All of these statements are obvious except the statement that 01 is Kan. 
The proof of this is rather similar to the proof of Lemma 7.4. After the same 
reductions as we did there, we are left with showing the following. We have 
an object over A k, say E1 v x Ak (where v x Ak represents our vertex v 
induced up by the only map from Ak to a point). We also have an extension of 
E1 to Ak x [0, 1], say E, . We must construct a map of E to v x Ak x [0, 1] 

which extends our map over Ak x 0. 
To begin, use the Fill-in Property to get an object over Ak x [0, 1], say E2, 

which extends v x A k and a map of E1 to it which is our map at the O-end. 
Then use the Straightening Property to get a map of E2 to v x Ak x [0, 1] 
which is the identity over the O-end. The composite of these two gives the 
desired map. o 

Next we want to describe the individual components of F(Y)0 * as dis- 
cussed at the beginning of this section. We begin with a technical lemma which 
will enable us to use the conclusions of Lemma 7.9. The goal of this lemma is to 
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show that, under certain hypotheses, a map p: E -- B is homotopy equivalent 
to the standard loop-path fibration QB -- PB -, B. Our standard is the Moore 
model: i.e. fix a point b E B; PB = {i: [O, r] -- BI r > O, A(O) = b} with 
QB = {A E PBI A(r) = b}. 

Lemma 7.10. Let p: E -, B be a simplicial map. Suppose that there exists a 
simplicial monoid M and an action ,u: E x M -- E which commutes with the 
map p. In particular, the action map plus a choice of point in E gives a map 
of M into E and hence of M into the homotopy fibre of p. Finally, suppose 
that E is contractible and that the map of M to the homotopy fibre of p is a 
homotopy equivalence. Then there is a monoid M1 and monoid maps M1 -- M, 
ml - QB which are homotopy equivalences. Moreover there is a contractible 
space E1 with a monoid action of M1 on it and equivariant maps E1 - E and 
El - PB. The two composites E1 -- B are equal and Ml -- El- B is a 
homotopy fibration. 

Proof. We begin by proving that our monoid M is group-like: i.e. that 7ro(M) 
is a group. This is equivalent to showing that right translation by m E M 
as a map from M to M is a homotopy equivalence. But this is an easy 5- 
lemma argument since there is a right translation by m on the whole homotopy 
fibration M -- E -* B. 

For the purposes of this proof, a pseudo-principal fibration is a homotopy 
fibration with fibre a monoid, an action of this monoid on the total space com- 
muting with the projection, and a contractible total space. All three homo- 
topy fibrations in the conclusion of the lemma are pseudo-principal. A pseudo- 
principle map is a map between two pseudo-principal fibrations for which the 
map on the total spaces covers the map on the base; the induced map of fibres 
is a monoid map; and the map on the total spaces is equivariant. In the conclu- 
sion of the lemma we are also promised two pseudo-principal maps which are 
homotopy equivalences. 

We will leave it to the reader to check that we can achieve the conclusion 
of the lemma by merely exhibiting a sequence of pseudo-principal fibrations 
beginning with M -- E -, B and ending with QB -, PB -, B together 
with pseudo-principal maps between successive pseudo-principal fibrations in 
the sequence (not all the maps will go the same way or will be over the same 
base space). When there is a pseudo-principal map from one pseudo-principal 
fibration to another which induces homotopy equivalences on the bases, total 
spaces and fibres, we say that we may replace one pseudo-principal fibration by 
the other. The usual 5-lemma argument shows that if two of the three maps are 
equivalences, then so is the third. 

Our first goal is to replace M -+ E -+ B by a more tractable object. Given 
a monoid M and a space E on which M acts, there are two simplicial con- 
structions we may perform. The first, denoted W(E, M), is the simplicial 
set E ExM ExMxM x M; the second, denoted W(E, M), 
is the simplicial set E x M ExMxM ExMxMxM (see 
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[28, Chapter IV]). There is an obvious action of M on W(E, M) and a map 
W(E, M) -+ W(E, M). Moreover W(E, M) is contractible and there are 
maps W(E, M) -+ E and W(E, M) -+B. The map W(E, M) -+ E is 
M-equivariant and induces the identity map on a fibre. 

There is an equivariant map E -+ * where * denotes a point. Hence we 
can replace M -+ W(E, M) -+ W(E, M) by M -+ W(*, M) -+ W(*, M). If 
M is group-like, M -+ W(*, M) -+ W(*, M) is a homotopy fibration. This 
is the "group completion theorem" of Quillen [29]. Hence, M -+ W(E, M) ) 
W(E, M) is also a homotopy fibration and an easy 5-lemma argument shows 
that the map W(E, M) -+ B is a homotopy equivalence. 

Given any monoid M, there is a free monoid, F, and a monoid map 
F -+ M which is a homotopy equivalence (see lemma below). Hence we may 
replace M - W(*, M) - W(*, M) by F W(*, F) W(*, F). 

Given any free monoid F there is a monoid map to the group G = GW(*, F) 
obtained by adding inverses. If M, and hence F, is group-like, the map F -+ G 
is a homotopy equivalence [28, Remarks 27.5], or [25]. Hence we may replace 
F -+ W(*, F) -+ W(*, F) by G -+ W(*, G) -+ W(*, G), where this last 
sequence of simplicial sets is actually a principal G-bundle. 

There are many different models for the path space fibration over B and 
we may start with any of them in which QB is a monoid and acts on PB, 
preserving the projection. If we apply the above construction in this case we will 
eventually arrive at another principal bundle, say G1 -- W(*, G1) -- W(*, G1). 
Both W(*, G1) and W(*, G) are homotopy equivalent to B, so we can induce 
both these bundles back over B, where each will be a principal bundle with 
contractible total space. 

There is a model for the path fibration over B in which the fibre is Kan's 
simplicial group on B, G(B). Furthermore, there is a group map G(B) -+ G 
and an equivariant map of total spaces [28, Corollary 27.3]. Hence we may 
replace each of our principal bundles by this model for the path fibration. 0 

Because we were unable to find a reference in the literature we include a 
proof of the following result. The proof follows Quillen [30, Proposition 3, p. 
4.5], rather closely. 

Lemma. Let M be a simplicial monoid. Then there exists a free simplicial 
monoid F and a simplicial monoid homomorphism, p: F -+ M, such that the 
underlying map of simplicial sets is a Kan fibration with contractible fibres. 

Proof. Before beginning the proof proper, we recall two useful results. The first 
is that any map of simplicial sets f: X --+ Y is a Kan fibration with contractible 
fibres iff given any commutative square 

( A -k X 

A - y 

there exists a map Ak -+ X making the obvious two triangles commute. 
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The second result we need is that OAk is "compact" in the sense that, for 
any filtered direct system of simplicial sets, the natural map 

hom (<Ak, limXi) - lim hom(OAk, Xi) 

is an isomorphism of simplicial sets. 
To begin the construction of F, let Fo be the free monoid {e}, and let 

Po: Fo - M be the map which sends e to the identity element of M. Given 
pi: Fi M, define pi+,: F+j - M as follows. Let S denote the set of all 
commutative diagrams 

OAk F- 

t tp, 
Ak M 

and form the pushout 

1H FreeSimpMonoid (OAk) k F. 
s~~~~~~~~ Jr 

HLKs FreeSimpMonoid (A k) F + 
where FreeSimpMNonoid (X) denotes the free monoid on the simplicial set X, 
and the top horizontal map is the map induced by the simplicial set map OA -* 

Fi, which is part of the structure of an element of S. There is a monoid 
homomorphism pi+1: Fj+I M given by using the rest of the structure of each 
element of S, and one can verify easily that F>+1 is a free simplicial monoid. 

Let F = lim1F.. There is a map p:F -+ M which we show satisfies our 
criterion for a map to be a Kan fibration with contractible fibres. Given 

OAk F 
tP 

A k M 
there exists an i such that our square comes from 

aAk Fi 
t tP, k A M 

by our second remark above. But our construction guarantees that the required 
map Ak -+ F actually exists already at the (i + l)st level. z 

We can now prove one of the main results of this section. 

Theorem 7.11. Let -7: 12-Topo' -+ cat have the Amalgamation, Straightening, 
and Fill-in Properties. The Kan fibration a: 0j 1(v) --+ f- ()0 ,, has contractible 
total space and is acted on by End(v). Hence the component of l(-X)0 * 

containing v is homotopy equivalent to BEnd(v). Indeed, the natural maps 
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F(,5V)0 * ---+ * and 11 BEnd(v) -* * are homotopy equiva- 
lences. 

Proof. Lemmas 7.7 and 7.9 show that 01: 0a 1 (v) -+ () * is a Kan fibration 
with contractible total space acted on by End(v), which is the fibre of 01. 
Hence, by Lemma 7.10, the component of (9)0 * containing v is homotopy 
equivalent to BEnd(v). 

As we saw in the proof of Lemma 7.7, we can extend the simplicial set, 
0( I(v), to an 12-Topop -+ cat functor. An object in 0a7l(v)(X) is an object 
over X, say E, and a map E - vx where vx represents our vertex induced 
up by the unique map from X to a point. A morphism in 0j I(v)(X) between 
fl:El -+vx and f2:E2 -+vX isamap g:El -*E2 suchthat f2og = f. Notice 
that 0a 1(v) (X) has a terminal object so the nerve of this category is contractible. 
This means that A0a7 l(v)* * is contractible. Notice that the monoid End(v) 
continues to act on A0a l(v) * * and the map from 0a 1(v)0 * to A07 l(v)* ,* 
is equivariant. Another application of Lemma 7.10 shows that 11 BEnd (v) 

('7) *' * is a homotopy equivalence. 
It follows from Proposition 7.8 that the map F(,)c * AW(') ,* is a 

homotopy equivalence. o 
We wish to show that our categories satisfy our three properties. 

Amalgamation. Hur satisfies the Amalgamation Property by Lemma 16.2. The 
fibration condition is also the key point to check for HAF. 

In the bundle category Bun, the Amalgamation Property holds since we can 
reduce to the trivial bundle case and then patch the trivializations together. 
This bundle condition is also the only condition that needs to be checked in 
MAF. The simplicial functor MAF also has the Amalgamation Property since 
the result can be easily reduced to the Bun case. 
Straightening. The Strong Straightening Property for Bun is classical if the 
bundle is numerable. This is always the case if B c 12. For MAF it is the Ap- 
proximation Theorem of [20, p. 168], after we apply Lemma 12.11 to show that 
the s- 3 condition there is equivalent to our definition here (see ? 14). Notice 
that the dimension of the total space manifold must be at least 5. For Hur and 
for HAF, the Strong Straightening Property is a straightforward consequence 
of the homotopy lifting property. 
Fill-in. In Bun, fill-ins can be constructed using mapping cylinders. For Hur, 
the Fill-in Property is checked by Lemma 1T.3. For MAF, it is checked by 
Lemma 17.4. For HAF it is checked by Lemma 17.5. These results require 
that B be reasonable: B C 12 will certainly do. 

We apply the previous material to our examples. The proofs are the same. 
Theorem 7.11 identifies the path components and Lemma 7.6 gives the equiv- 
alences. There is even a version of the equivalence statements that is true over 
k 
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Corollary 7.12. Let p: M -+ B be an approximatefibration with M and B man- 
ifolds, with the dimension of M at least 5. Then the component of MAF(B) 
containing p is homotopy equivalent to BTopC(p: M -+ B) via the maps dis- 
cussed above, where Topc denotes the simplicial group of controlled homeo- 
morphisms from p: M -- B to itself. Given two manifold approximatefibrations 
pO: MO -+ B and p1: M1 -+ B, they are in the same path component of MAF(B) 
if they are controlled homeomorphic. 

Corollary 7.13. If p: E -? B is a fibration with B a manifold, then the compo- 
nent of HAF(B) containing p is homotopy equivalent to BGC(p: E -- B) via 
the maps discussed above, where Gc denotes the simplicial group of controlled 
homotopy equivalences of p: E -+ B to itself. Given two fibrations po: Eo -? B 
and P1: E, -+ B, they are in the same path component of HAF(B) iff they are 
controlled homotopy equivalent. 

Corollary 7.14. If p: E -+ B is a fibre bundle with B a manifold, then 
the component of Bun(B) containing p is homotopy equivalent to 
BTopf(p: E -* B) via the maps discussed above, where Topf denotes the sim- 
plicial group of fibre homeomorphisms of p: E -+ B to itself Given two fibre 
bundles po: Eo-+ B and p1: E-+ B, they are in the same path component of 
Bun(B) if they arefibrewise homeomorphic. 

Corollary 7.15. If p: E -* B is a fibration with B a manifold, then the compo- 
nent of Hur(B) containing p is homotopy equivalent to BGf(p: E -* B) via 
the maps discussed above, where Gf denotes the simplicial group offibre homo- 
topy equivalences of p: E -+ B to itself. Given two fibrations po: Eo -+ B and 
p1: El -' B, they are in the same path component of Hur(B) if they are fibre 
homotopy equivalent. 

8. FUNCTORS BETWEEN GEOMETRIC SIMPLICIAL CATEGORIES 

The main result in this section is to give a description of the homotopy fibre of 
a simplicial map C: (Y-)1 * .- F (T)0, * for two functors '9: 12-Topop - + cat, 
i = 1, 2. We begin by fixing a vertex v in F(,7)0, and we wish to describe 
the homotopy fibre of ' over v, assuming that it is nonempty. Let vk denote 
the result of inducing v up to Ak via the iterated degeneracy. 

(8.1) The Homotopy Fibre. Define a simplicial set' 5(C, v) as follows. A k- 
simplex in 9?(C, v) consists of a k-simplex, E, in DO(5 )k and a map 
f: C(E) -vk in (9)2k- 

Since C commutes with boundaries and degeneracies, it is not hard to 
check that 59(C, v) inherits boundaries and degeneracies from F(9g)ci * and 

(,72)1 ,* and so it is a simplicial set. There is a natural simplicial map 
59(C, v) -- (9) * defined by sending the simplex (E, f) to E. 
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Proposition 8.2. Let C be a simplicial map C: f()0 * -- f W7)0 * where 
'9: 12-Top -+ cat, i = 1, 2, is a functor. Suppose that 2 has the Amal- 
gamation, Straightening and Fill-in Properties. Then the sequence of simplicial 
maps 

5?'(S', v) - ) - (,+ 0,* W(2)o, 
is a homotopy fibration and 5'S, v) is Kan. The monoid End(v) acts on 
5?(S, v) and this monoid action is equivalent to the usual homotopy action of 
Qfl(7)O. *on 9(C, v). 
Proof. Consider the following diagram 

'(S v) 0-(v) 

ta1 

This diagram clearly commutes and is a pull-back of simplicial sets. By Theorem 
7.11, 01 is Kan; 0' 1(v) is contractible; and End(v) acts. 

Hence the map (, v) + * is Kan and it is easy to see that 5'(C, v) 

(_)0, * -- F(,)0, * is a homotopy fibration. The composition action of 
End(v) on 9?(C, v) is identical to the action of End(v) on the pull-back, 
so Q (7)0 ** acts on S?(', v) via the End(v) action. By [28, Proposition 
7.5(ii), p. 26], 9'(C, v) is Kan. a 

9. THE EQUIVALENCE OF HAF AND Hur 

We begin this section with a definition of a useful variant of the usual 
Hurewicz fibration. 

Definition 9.1. There is a simplicial map from F(MAF(B))o0* to F(Hur(B))O * 
defined as the restriction of a transformation, T, from the objects in 
MAF(B)(X) to the objects in Hur(B)(X), which is natural for maps 0: X -+ Y. 
Given (M, p) an object in B-Space(B x X), form M c M x B' where 
(m, A) E M iff p(m) = (A (0),px(m)). Define a map p3:M --+ B x X by 
p3(m, A) = (A(1), px(m)). There exists an embedding of 1I into 12 which we 2 
fix once and for all. This induces an embedding of B, into 12 since B is a 
manifold and hence has an embedding into 12 that we also fix. There is then an 
obvious embedding of M in 12x B x X. Let Ex(M) denote the image of M: 
let Ex(p) denote the composite of the homeomorphism Ex(M) -+ M followed 
by i . Then Lemma 16.3 says that pi, and hence Ex(p), is a fibration and this 
is the only part of checking that (Ex(M), Ex(p)) is an object in Hur(B)(X) 
that is not straightforward. It is also not hard to check that Ex ? 0 equals 
q5oEx, so Ex does induce a simplicial map (MAF(B))0 * - (Hur(B))0 * . 
On the vertex level, these two simplicial maps just take an approximate fibra- 
tion to its associated Hurewicz fibration, but over a k-simplex with k > 0 we 
get a variant of the standard construction. We will refer to this variant as the 
fibrewise-associated Hurewicz fibration. 
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Remark. In fact, as long as B embeds in 12, the above discussion defines a 
simplicial map from 

F(B-Space(B))O * -+ F(Hur(B))O * 

Next we prove that controlled homotopy equivalences are equivalent to fibre 
homotopy equivalences for a fibration. To describe one direction of the equiv- 
alence, we introduce the following construction. Let p:E -- B be a fibration 
in Hur(B)(vo). In particular, p is regular, so let us fix a regular solution to 
the universal lifting problem, say F: E(p) x [0, 1] -+ E. Any controlled map 
f: E x [O, 1) E-+ , gives rise to a map f: E -+ E(p) since f completes to a map 
E x [0, 1] --+ B. A quick check shows that the composite F(f( ), 1): E - E is 
a fibre map, hence a fibre homotopy equivalence by Dold's theorem. Another 
check shows that, since F is a regular solution, if f is a constant family of 
fibre maps, then we obtain the same fibre map back from our construction. 

Now consider the fibration p x id: E x A -* B x A . A controlled map over 
Ak is already fibre-preserving over Ak and so gives a map E x Ak - E(p) x Ak 
We can use F x id as above to recover a fibre map from E x A k to itself. 
It has the property that if the original controlled map was a constant family 
of fibre maps theni we recover this map. Furthermore, this construction yields 
a simplicial map from the monoid of controlled self-equivalences of p to the 
monoid of fibre homotopy equivalences of p. 

Warning. We do not claim that this map is a monoid map. 

Proposition 9.2. For a fixed fibration p:E -+ B in Hur(B)(vo), the inclusion 
Gf (p) c Gc(p) is a monoid map and a homotopy equivalence ( Gf (p) denotes 
thefibre-homotopy equivalences of p and GC(p) denotes the controlled homotopy 
equivalences of p). The simplicial map GC(p) -* Gf (p) constructed above is a 
retract for the inclusion and hence a homotopy inverse for it. 

Proof. By Corollary 7.15, BGf (p) is homotopy equivalent to the path compo- 
nent of F(Hur(B))O * containing p. Corollary 7.13 describes BGC(p) as the 
path component of ?(HAF(B))o * containing p. But these two simplicial sets 
are identical. It is a chase through our maps to see that the equivalence given by 
these remarks is also given by applying B to the monoid map Gf (p) c GC(p) . 
The rest of the proposition is clear. o 

10. Bun AND Hur ARE HOMOTOPY FUNCTORS 

Let f: B1 -B2 be a map. We want to define a simplicial map f*: Bun(B2) 
Bun(B1). Given a k-simplex, E2, in Bun(B2) we can form the pull-back to 
get a space El and a map to B1 x Ak which is a fibre bundle. To get a k- 
simplex in Bun(BI) or Hur(BI) we require a subset of 12 x B1 x Ak . There 
is a map of E1 into 12 x B1 x Ak which is just the product of the projection to 
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B1 x A k and the composition E1 -+ E2 -* 12. It is easily checked that this map 
embeds E in 1 x B x Ak, and we define f* (E2) to be this image. It is easy 1 2 1 
to check that this map is simplicial. 

A similar construction works for Hur. We have 

Theorem 10.1 (The Bun Hur Theorem). If B C 12, both Bun and Hur are 
homotopyfunctors: i.e. the induced map f* defined above depends up to homo- 
topy only on the homotopy class of f . In particular, a homotopy equivalence f 
induces a homotopy equivalence f*. 

Proof. The conclusion for Hur follows from formal manipulations if we can 
establish that p: B x [0, 1] -+ B induces a homotopy equivalence p*: Hur(B) 
Hur(B x [0, 1]). Any inclusion i: B -? B x [0, 1] is obviously a retraction, so 
it suffices to prove that p* o i* induces the identity on homotopy groups for a 
fixed i. We choose i so that i(b) = b x {0}. 

All our simplicial sets are Kan, Lemma 7.2, so we can choose a typical 
homotopy element to be E -* B x [0, 1] x A k (with embedding data sup- 
pressed) which is equal to some E2 x aAk -+ B x [0, 1] x aAk when restricted 

k to B x [0, 1] x aA . Since Hur satisfies the Strong Straightening Property 
there is a fibration Eo -+ B x A 

k 
which is trivial along B x aA k 

and a map 
f:E -+ Eo x [0, 1], which is the identity along B x aAk x [0, 1]. Notice that 
p o iK(E) = Eo x [0, 1]. By Lemma 7.6(b), E and Eo x [0, 1] represent 
the same element in lrk(Hur(B x [0, 1])), so p o i* induces the identity on 
homotopy. 

A similar argument works for Bun. o 

We conclude this section with a discussion of the relationship between the 
usual classification theorem for Bun and Hur and our result, Example 4.9. 
Both classifications assert that, say bundles with base B and fibre F, are given 
by maps of B into BTOP(F). We would like to claim that these two ways of 
getting such a map give the same map, at least up to homotopy. The extent to 
which we realize this desire is given in Theorem 10.5 below. 

We begin with a lemma which yields a more direct description of our map 
Bun(B) -*dL Map(B, BTOP(F)). Recall the notation from ?4, where we 
introduced a simplicial set K(U), a simplicial group G which acts on U, and 
a bundle BGxTK(U). We also introduced another simplicial set K(p: E -+X), 
where p is a G-bundle over X and defined a disassembly map 

K(F XV it( BG xTK(U)) 

K(p: E - X) --, Lift | 
x _P+ BG 

whenever X is an ordered simplicial complex. The proof of the following 
lemma is a tedious chase through the definitions and is omitted. 

Lemma 10.2. Suppose V c U is a G-invariant subset. Define K(V) to be the 
simplicial set whose k-simplices are of the form a k-simplex in K(U), which 
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is a subset of 12 x U x Ak, intersected with the subset 12 X V X Ak . Associated 
to the bundle p, there is a subbundle Eo C E with projection denoted p0 and 
fibre V. From the definition of K(p:E -+ X) there is defined a restriction 
map K(p:E ,-* X) -* K(po: Eo -* X). There is a G-invariant restriction map 
K(U) -+ K(V), and hence a map of bundles and hence of spaces of lifts. The 
following diagram commutes if X is an ordered simplicial complex: 

'BG xTK(U)' 
K(p: E -X) , Lift ( 

X LP BG 

BG XT K(V) 
K(po:Eo F-+ X) ) Lift ( 

x -X P BG 
Suppose that N c G is a normal simplicial subgroup which acts as the identity 
on V. Then po: Eo -+ X is also a G/N bundle; G/N acts on K(V), and the 
following diagram commutes: 

f BG xTK(V) 
K(po: Eo X) , Lift B 

x -X P BG 
It~~~~~~~~ 

K( X L BG/N XT K(V) 
K(po: Eo X) ,Lift I 

x -P+ BG/N 
As an application of this lemma, let K be the K associated with either the 

bundle or fibration case. As in Example 4.9, we take G = TOPi and U = R 
For V we take the origin, and for N we take G itself. The last space of lifts 
in Lemma 10.2 just becomes 

Lift( * XTK(V) 

Liftl 

which is clearly the same as Maps(X, K(V)). Moreover po: Eo -? X is just 
id: X -- X, and K(id: X -+ X) is equal to Bun(X) or Hur(X) . (It is this last 
statement that is false for MAF.) Hence, for an ordered simplicial complex, 
X, we have a direct disassembly which does not go through the tangent bundle, 
but if X is a finite dimensional manifold then our new map is homotopic to 
the one we discussed in Example 4.9. Moreover, the material in ?4 proves 

Lemma 10.3. The disassemblies 

Bun(X) - 11 Maps(X , BTOP(F)) 

and 
Hur(X) -+ IL Maps(X, BG(F)) 

are homotopy equivalences for an ordered simplicial complex X. 
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Next, suppose that X0 c X is a subcomplex which is ordered from the 
ordering on X. We have restrictions Bun(X) --+ Bun(X0) and Hur(X) 
Hur(X0). A chase through the definitions in ?4 shows that 

Lemma 10.4. The following diagram commutes: 
Bun(X) 1 H Maps(X, BTOP(F)) 

Bun(X0) - H Maps(X0, BTOP(F)). 
There is a similar diagram for Hur which also commutes. 

Using the homotopy invariance of Bun and Hur together with the above 
lemmas, it is a standard exercise to extend the definition of the disassembly to 
any space X which is homotopy equivalent to an ordered simpicial complex so 
that it remains a homotopy equivalence. Moreover, given any map between such 
spaces, the diagram analogous to the one in Lemma 10.4 homotopy commutes. 
We record this result in 

Theorem 10.5. Let X0 and X, be subspaces of 12 which are homotopy equivalent 
to CW complexes, and let f: X0 -+ X1 be a map. The diagram below homotopy 
commutes and the horizontal maps are homotopy equivalences: 

Bun(X1) -1 ILMaps(X1, BTOP(F)) 

Bun(X0) - H Maps(X0, BTOP(F)). 
There is a similar result for Hur. 

Remark. If either BTOP(F) or BG(F) is homotopy equivalent to a countable 
CW complex we may take a model for it which is a subspace of 12. Theorem 
10.5 shows that the usual classification theorem is equivalent to ours. The iden- 
tity map BTOP(F) -* BTOP(F) corresponds to a bundle over BTOP(F), 
say ,u, and any bundle p: E -* B with fibre F is equivalent to a map p: B -+ 

BTOP(F) given by our procedure. Theorem 10.5 says that p is also given by 
pulling the bundle ,L back along the map p, which is the usual description of 
the classification procedure. 

11. EQUIVALENCES OF SIMPLICIAL SETS OF STRUCTURES 

Recall the definition of the structure set. Fix a fibration p:E -+ B. A 
k-simplex of the structure set consists of a k-simplex in MAF(B), say M 
BxAk (with the subset data suppressed as usual) together with a fibre map which 
is a controlled homotopy equivalence between M and E x Ak pxid B x Sk. Let 
us denote this structure set by 5"(p: E -+ B). We have 
Theorem 11.1. Let p: E -+ B be a vertex in Hur(B). Then, the homotopy fibre 
of the map 

MAF(B) -* Hur(B) 
is homotopy equivalent to the simplicial set of structures on p. 
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Proof. It follows from Proposition 8.2 that the homotopy fibre of this map 
can be identified with the following simplicial set. A k-simplex consists of a 
k-simplex in MAF(B), say M -+ B x Ak (with the subset data suppressed 
as usual) together with a fibre homotopy equivalence between the fibrewise- 
associated Hurewicz fibration for M, and E x Ak B x Ak. Denote this 
structure set by S>iur(p: E -+ B) . 

Fix a fibre homotopy equivalence from the associated Hurewicz fibration to 
E, say E, to E. It is easy to construct a simplicial inclusion 9(p: E -+ B) -+ 

ur(p:E -+ B) and a simplicial retract r:4ur(p:E -+ B) -- S' I(p:E -+ B) . 
We know that pur(p: E -+ B) is Kan by Proposition 8.2 and S(p: E -* B) is 
Kan since it is a retract of a Kan complex. 

Next consider the composition 

5?'(p: E -? B) -?iur(P: E --+ B) -* MAF(B). 

The image of lrk(S9(p:E -- B)) in 7tk(MAF(B)) is easily seen to be equal to 
the image of 7k'9HUr(P: E-+ B)) in 7tk(MAF(B)) . Furthermore the simplicial 
monoid of automorphisms of p, End(p), acts on 59(p: E -- B) and the sim- 
plicial monoid of automorphisms of the associated Hurewicz to p, End (E(p)), 
acts on 55Hur (p: E -- B) . Since p and its associated Hurewicz are fibre homo- 
topy equivalent, these two monoids are homotopy equivalent. 

Moreover, two elements in 7tk(59Hur (p: E -* B)) which go to the same ele- 
ment in 7rk(MAF(B)) differ by the action of some element from 7rk(End (E(p))). 
It is now easy to see that the map S(p: E -+ B) -+ '9Hur(p: E --+ B) induces 
an epimorphism on homotopy groups. The retraction of 5ur(p: -+ B) onto 
S(p: E -* B) shows that both the inclusion and the retraction are actually ho- 
motopy equivalences. E 

APPENDICES ON FIBRATIONS, APPROXIMATE FIBRATIONS, AND MAF 's 

We collect here the necessary prerequisites concerning approximate fibra- 
tions. 

12. DEFINITIONS AND RESULTS ON APPROXIMATE FIBRATIONS 

Definition 12.1. Let pi: Ei -- B, i = 0, 1 , be two spaces over B. A controlled 
map from po to p1 is a map g:Eo x [0, 1) -+ E x [0, 1) which is fibre- 
preserving over [0, 1) and such that the map -: Eo x [0, 1] -* B, defined by 
glEo x [0, 1) is p1 o projection o g and glEo x 1 is pO, is continuous. We also 
denote this by saying that gc: Eo -* E, is a controlled map. 

We first show that a controlled map is what Quinn calls an approximate fibre 
map [34, 2.7]. 

Lemma 12.2. Let pi: Ei -+ B, i = 0, 1, be two spaces over B. Assume that p1 x 
id[o 1] is closed. Then any controlled map induces a map of mapping cylinders 

M(po) -+ M(p1) which is level-preserving and which is the identity on B. 
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Remarks. The converse is obvious with no conditions on p1 . If p1 is proper 
and B is compactly-generated (e.g. locally-compact) then p1 x id[o l] is closed. 
Some hypotheses are necessary for the conclusion. If we let B be a point, 
E0 = [O, 1] and E, = (O, 1), then there is a controlled map f: Eo x [O, 1) -El 
defined by f(s, t) = (s + 1 - t)/(4 - 3t) . It is not hard to check that this does 
not extend to a level-preserving, continuous function of the mapping cylinders. 

Proof. To fix notation, let 7r:E, x [0, 1] --+ M(p,) and p:M(pl) --+ B x [0, 1] 
be the obvious maps. Let b E B C M(p,) and let W be an open neighbor- 
hood of b in M(p,). The only nontrivial point is to show that there exists a 
neighborhood U of b x I in B x [0, 1] such that p1'(U) c W. 

Since W is open in M(p,), iG I(W) c E x [0, 1] is open and is a neigh- 
borhood of (p1 x id) (b x 1) . Since p1 x id: E, x [0, 1] -- B x [0, 1] is closed, 

(p, x id)(E, x [0, 1]- i-K (W)) is closed in B x [0, 1] and does not contain 
b x 1. Hence B x [0, 1] - (p1 x id)(E, x [0, 1]- IG (W)) is a neighborhood 
of b x 1: call it U. It is easy to check that p lf(U) c W . 0 

Definition 12.3. A map p: E -- B is an approximate fibration if for every com- 
muting diagram 

X 4 E 

F 
Xx[0,1] -F B 

there is a controlled map F:X x [0, 1] x [0, 1) -- E x [0, 1) from F to p 
such that FIX x {0} x [0, 1) = f x id[o 1) . 

Before beginning, it is worth recording the following comments. If p: E -> B 
is given then we can form E(p) = {(e, A) E E x B' I p(e) = Ai(0)}. There 
are maps 7r:E(p) -- E given by projection and ev:E(p) x I -- B given by 
ev((e, A) x t) = A(t). Hence we get a commutative square 

E(p) x{0} A E 
n 1P 

E(p) x I V B 

that we call the universal lifting problem. 
The reason for the name comes from the fact that given any lifting problem 

Xx {O} g E 
n 1P 

XxI B 
there is a map F:X -- E(p) such that g = ir o F and f = ev o F. Fur- 
thermore, if f(x, t) is a constant path for some x E X, then ev(F(x), t) is 
also a constant path. Hence, general lifting problems can be solved (even with 
regularity) iff the universal one can be. 
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Notice that there is nothing in the definition of approximate fibration or 
fibration that requires the map p to be onto and we do not assume that it is 
unless the contrary is stated. For fibrations this causes little concern since if 
p: E -+ B is a fibration then the image of p in a path component of B is 
either empty or the whole path component. Still, it is convenient to be able 
to talk about the associated Hurewicz fibration for any map and have it be a 
fibration. 

The situation for approximate fibrations is slightly more bizarre. If p: E -, B 
is an approximate fibration then the image of p in any path component of B 
is either empty or dense. In particular, the standard inclusion (0, 1) -+ [0, 1] 
is, for us, an approximate fibration. Notice that if p is a closed map (which is 
often the case), then the image of p is closed and hence is either empty or all 
of a particular path component. 

We begin with some useful results on the behavior of approximate fibrations. 

Lemma 12.4. Let q: X -+ B be a map, and let p: E -+ B be a fibration. Let 
A c X be an NDR-pair. Suppose that we are given a controlled map FC: X -+ 
E such that FCIA is a constant family of fibre maps. Then Fc is controlled 
homotopic to a constant family offibre maps. The homotopy can be taken to be 
constant on A. 

Remark. The resulting fibre map is well defined up to fibre homotopy equiva- 
lence, rel A. This follows formally from the relative version. 

Proof. We begin by constructing a commutative square 

Xx[0, l)xO + E 
n 2,p 

X [0, 1] x [0, 1] g B 

where g is defined as follows: Ft: X x [O, 1] -+ B is clearly homotopic to 
(projection) o (q x id[o 1])' and this homotopy can be chosen to be rel X x 1, 
where F: X x [O, 1 ] -+ B is the extension of p o FlC guaranteed in the definition 
of controlled map. Notice that if FtCIA is a fibre map, g can be chosen to be 
constant on A x [O, 1] x [O, 1]. Also notice that gIX x {1} x [O, 1] B is just 
q. 

Since p is a fibration, we can restrict g to X x [O, 1) x [O, 1 ] and then lift to 
get a map G: X x [O, 1) x [O, 1] --+ E which extends FC and which is constant 
on A x [O, 1) x [O, 1]. Notice that G is a controlled homotopy between FC 
and G(x, t, 1), and that G(a, s, t) = Fo (a) for all a E A . 

Clearly G(x, t, 1) is a fibre map for each t in [O, 1), but perhaps not 
constant. It is now easy to find a homotopy of G(x, t, 1) through fibre maps 
(and hence controlled) to the family that is constantly G(x, 0, 1). Moreover, 
this homotopy can be done rel A. o 

Lemma 12.5. Let p: E -+ B be a map, and let i: E E-+ (p) be the inclusion of 
E into its associated Hurewiczfibration. Then p is an approximate fibration iff 
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there is a controlled map RC: E(p) -+ E such that Rc O i is controlled homotopic 
to idE. Moreover, if Rc exists as above, then i and Rc are controlled homotopy 
equivalences with one map the inverse of the other. 

Proof. To begin, suppose that p is an approximate fibration and consider the 
following lifting problem 

E(p) x O E 
n tp 

evaluation E(p) x [0, 1] e + B 

We can find a controlled map FC: E(p) x [0, 1] E F, and we let Rc = Fc(, 1). 
The composite E x [0, 1] E-+ (p) x [0, 1] E is a controlled homotopy 
between the identity on E and Rc O i0. 

Conversely, suppose that an Rc as above exists and that we are given a lifting 
problem 

XxO0 E 
n tp 

Xx[0,1] L B. 
We can compose with i to get a lifting problem for E(p) -+ B, which of course 
we can solve, say by L:X x [O, 1] - E(p) . Let LC: X x [O, 1] -? E (p)- E be 
L composed with Rc. It is a controlled map, but it probably does not extend 
the original map a. Since Rc O i is controlled homotopic to idE, there is a 
controlled homotopy HC: X x [O, 1] -+ E which starts with a and finishes with 
LC( , 0). We can paste Lc and Hc together as follows. 

Define KC:Xx[O, 5 1]E by 

l!Hc( 2s i f s < 1 C 1~~_ _ 1 -t 

Lc .1. ifs? 2 

for 0 < t < 1 . It is not hard to check that since Hc is a controlled homotopy, 
the map p o Kc completes using the map /B, and hence is a solution to our 
lifting problem. oi 

Lemma 12.6. Let p: E -+ B be an approximate fibration; let q: X -+ B be a 
map; let A c X be an NDR-pair; and let FC: A -+ E be a controlled map. Then 
Fc extends to a controlled map X -+ E if the fibre map A E-+ (p) constructed 
in Lemma 12.4 from the controlled map A -+ E -+ E(p) extends to a fibre map 
X -E(p). 
Proof. Let Fc extend to a controlled map X E-+ . The process used in 
the proof of Lemma 12.4 is sufficiently- natural to produce the required fibre 
extension. 

Conversely, given the fibre extension, compose with the controlled map Rc 
from Lemma 12.5. This gives a controlled map X -+ E, but it probably does 
not extend our original controlled map on A. Nevertheless, the two controlled 
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maps A -- E are controlled homotopic. We can now use standard constructions 
with NDR-pairs to adjust our controlled map X -+ E by a controlled homotopy 
to a new controlled map which is our original one on A. o 

Here are some interesting corollaries. We omit the easy proofs. 

Theorem 12.7 (Approximate Dold Theorem). A controlled map Fc between two 
approximatefibrations for which the underlying map of spaces Foj is a homotopy 
equivalence is a controlled homotopy equivalence. 

Theorem 12.8 (Controlled Invariance of Approximate Fibrations). Given two 
spaces over B which are controlled homotopy equivalent, one is an approximate 
fibration iff the other is. 

Remark to the experts. This means that the notions of Hurewicz approximate 
fibration and Dold approximate fibration coincide. 

Next we show that our definition agrees with the definition of Coram and 
Duvall under some restrictions. 

Before beginning, we extend the notion of an approximate fibration. Let 
p:E ,-+ B be given, and suppose that we can solve the usual lifting problem, 
diagram (* * *), for all spaces X in a certain class. Then we say that p is an 
approximate fibratlon for that class. 

Definition 12.9. Let p: E -- B be a map, v an open cover of B, and F 
a class of spaces. We say that p has the ZI-homotopy lifting property for 

' if, for every commuting diagram (* * *) with X E i?, there is a map 
F:X x [0, 1] -+ E such that FIX x {0} = f and po F is V-close to F. We 
say that p has the approximate homotopy lifting property for i? if p has the 
ZV-homotopy lifting property for F for every open cover v/ of B. We say 
that p has the approximate homotopy lifting property if p has the approximate 
homotopy lifting property for the class of all spaces. 

Coram and Duvall [8] originally defined a map to be an approximate fibration 
if it had the approximate homotopy lifting property. That definition seems to be 
inadequate when B is not an ANR or when working categorically. However, we 
show below that the two definitions are equivalent with some mild restrictions 
on E and B. Our definition is a mild extension of the one used by F. Quinn 
in [34], and Quinn knew his definition was equivalent to Coram and Duvall's 
under these conditions. 

Lemma 12.10. If p: E -- B is an approximatefibration for the class of paracom- 
pact spaces, then p has the approximate homotopy lifting property for paracom- 
pact spaces. 

Proof. Suppose we are given a lifting problem 
X fE 

F X x[O, 1] -+ B 
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and an open cover v of B with X paracompact. By hypothesis there is a 
controlled map F:X x [0, 1] x [0, 1) -+ E x [0, 1) from F to p such that 
FlXx{O}x[0, 1) =fxid[O l) * We also have a map F:Xx[0, 1]x[0, 1] - Bx 
[0, 1] definedby FlXx[0, 1]x[O, 1)=(pxid)F and FlXx[0, 1]x{1}=F. 

For each x in X x [O, 1] choose an open subset Vx of X x [O, 1] containing 
x and a real number rx in [O, 1) such that F(VX x (rx, 1]) is contained in 
(some member of ') x [O, 1]. By paracompactness of X x [O, 1] there exists 
a locally (neighborhood)-finite open cover 2 refining { Vx x E X} covering 
X x [0, 1]. For each V in 2 choose an x(V) in X x [0, 1] such that 
V c Vx(v). 

Again using the paracompactness of X x [O, 1], [11, p. 179], there exists a 
map a:X x [O, 1] -+ [O, 1) such that a(x) > min{rX(v) I x E V} for each x 
in Xx[O,1]. Define &:Xx[O,]?Xx[O,1]x[O,1) bysetting (x)= 

(x, a(x)). Then the composition X x [O, 1] X x [O, 1] x [O, 1) -+ E x 
[0, 1 ) 'j E is an approximate i-lift of F. o 
Lemma 12.11. If B is an ANR (an absolute neighborhood retract for the class of 
metric spaces) and p: E -+ B is a map, and if p has the approximate homotopy 
lifting property, then p is an approximate fibration. 

In the proof to follow, we need a version of Theorem 1.2 of Hu [16, p. 112], 
which is slightly different than the stated one. The theorem says that close maps 
from a metric space X into an ANR are closely homotopic, and if we already 
have a close homotopy on a closed subset A, we can extend the homotopy. We 
need a version in which X is arbitrary but A is an NDR subspace of X. We 
indicate the needed changes in the proof (notation as in [16]). Nothing need be 
changed until the top of page 1 13, where we wish to extend a map defined on 
Q to a neighborhood of Q in P. Since (X, A) is an NDR-pair, so is (P, Q) 
so the extension presents no difficulty. If we let u: X -+ [O, 1] be the function 
which displays (X, A) as an NDR-pair, then we easily see that for the C we 
need to choose in the middle of page 1 13 we may take u l ([0, 1/2)). It is now 
no trouble to select the set B and function e as required and finish the proof. 

Proof of 12.1 1. First note that since B is metric, p has the regular approximate 
homotopy lifting property [7, p. 39]. Suppose we are given our usual lifting 
problem 

X f E 

F 

Xx[0,1] F+ B 
We need to define a controlled map F: X x [O, 1] x [O, 1) -+ E x [O, 1) from 
F to p suchthat FIXx{0}x[O, 1)=fxid[O 1) 

Choose a sequence, {Je}j? of positive numbers converging to 0. Since B 
is an ANR, we can find open covers 5,, i = 1, 2, ..., of B so that any two 
maps into B which are di-close are ci-homotopic (rel any NDR subset where 
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they agree). We also assume that the diameter of any member of 3i is less than 
ei-1 (if i > 1). 

We will inductively define maps Fi: X x [0, 1] x [0, 1 - 1/i] -E x [0, 1 - 1/i] 
for i = 1, 2, ... satisfying the following properties: 

(1) Fi is an extension of Fi_ I for i > 1, 
(2) Fi is fibre-preserving over [0, 1 - 1/i], 
(3) JIXXx {0} x [0, 1- l/i]= f xid, 
(4) p oFi X x [O, 1] x {1 - 1/i} is di-close to F, 
(5) p oprojEo FijX x [0, 1] x [1 - 1/(i-1), 1-1/i] is 2ei-close to F x id 

for i > 1. 
To begin the inductive construction, let FP IX x [O, 1] x {0} E-+ x {0} 

be a map such that FPIX x {0} x {0} = f and p o FP is J1-close to F. 
Inductively assume that i > 1 and Fi has already been defined. Since p o 
FiIX x [0, 1] x {1 - 1/i} is 3i-close to F, there is an ei-homotopy between 
p o0Fil and F rel X x {O} x { 1 - 1i}. 

Let Fi+1IXx[0, l]x[1-1/i,l -1/(i+l)]-*Ex[1-/i,- 11/(i+1)] be 
a di+,-lift of this homotopy. By the regular lifting property mentioned above, 
we can assume that Fj+11X x {0} x [1 - I/i, 1 - 1/(i + 1)] = f x id. 

It is clear that the F's piece together to define the required controlled map 
F.D 

Lemmas 12.10 and 12.11 say roughly that there is little difference between 
our definition of an approximate fibration and that of Coram and Duvall. In the 
next few results we explore some of the Coram and Duvall results, taking some 
care to avoid spurious point set assumptions. The first few results culminate 
in the result that Serre approximate fibrations are often approximate fibrations. 
We begin with 

Lemma 12.12. Let p: E -+ B be a map which has the approximate homotopy 
lifting property for cells. Suppose that B is paracompact. Then p has the relative 
approximate homotopy lifting property for pairs (X, A) with X an ANR and 
A a closed ANR subspace. 

Proof. The relative approximate homotopy lifting property for pairs (X, A) 
means that given a commutative square 

XxOUAx[0, 1] g E 
n IAp 

Xx[0,1] f B 

and a cover e of B, we can find a map F: X x [0, 1] E-+ extending g such 
that f and p o F are e-close. 

A standard "fold" argument shows that if p has the approximate homotopy 
lifting property for cells, then p has the relative approximate homotopy lifting 
property for a cell rel its boundary. 
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We also need the e-homotopy extension theorem. This says that if X is 
normal; (X, A) is an NDR-pair; f: X -* B is a map, where B is paracompact; 
and F:A x [0, 1] - + B is an e-homotopy of flA, where e is a cover of B, 
then F has an extension to G: X x [0, 1] - B where G is an e-homotopy. 
The proof is routine. 

We begin our proof by proving the relative approximate homotopy extension 
theorem holds for CW pairs, (K, L). Let K' denote L union the i-skeleton 
of K; K 1 = L. We construct the needed map on the skeleta. For K 1 there 
is nothing to do. 

First choose a cover 3 of B so that 6-close maps are e-homotopic. Next 
choose a cover, denoted 3', so that 3'-close maps are 3/2-homotopic, where 
3/2 is a double star, locally finite, refinement of 3. For K , use the approx- 
imate homotopy lifting property for cells to get a map F1: K0 x [0, 1] -- E 
which is g on L x [0, 1] and such that p o F1 is 3'-close to f . Use the 
e-homotopy extension theorem to get a 3/2-homotopy to fi: K x [0, 1] - B 
rel K 1x[0, 1] where f1=p oF1. 

Next choose a cover, say 3", so that 3"-close maps are 3/4-homotopic, 
where 3/4 is a double star, locally finite refinement of 3'. Use the approximate 
homotopy lifting property for cells to get a map F2: K1 x [0, 1] E-+ which is 
F1 on K? x [0, 1] and such that p o F2 is 3"-close to f, . Use the e-homotopy 
extension theorem to get a 3/4-homotopy of f, to f2: K x [0, 1] B rel 
K0x[0, 1]. 

Continue in this vein to construct Fi+ :K'x[O, 1] -+ E such that Fl+1K A i 1 x 
[0, I] = Fi; and fi+1: K x [0, 1] -B so that p ? fi+J is 3/2'+1-homotopic.to 
P Ofi rel Ki- x [0, 1],where 3/21+1 is a twice star refinement of 3/2'. The Fi 
piece together to give a map G: K x [0, I] -E which extends g on L x [0, 1], 
and we need to see that p o G is e-close to f . Fix a point (x, t) E K x [0, 1 ] . If 
(x, t) eLx[0, l],then poG(x, t) =pog(x, t)= f(x, t) sotheyareclose. If 
(x, t) 0 L x [O, ], then there is some i > 0 such that (x, t) E K'x [0, 1]. But 
then p o G(x, t) = p oFj+j(x, t) and f(x, t) are 6/2 + 3/4 + ..+/21+1 < 3 
close, and hence e-close. (The numerology in the last line is actually correct.) 

If (X, A) is a pair of ANR's, and e is a cover of X, then we can find 
a pair of CW complexes (K, L) and maps of pairs (X, A) (K, L) and 
(K, L) -* (X, A) so that the composite (X, A) -+ (K, L) (X, A) is e- 
homotopic to the identity, as a map of pairs. Now we use the Coram-Duvall 
trick [9, Lemma 2.5, p. 45] to get the required maps. o 

Lemma 12.12 allows us to prove 

Theorem 12.13. Let p: E -+ B be a map between ANR's. If p has the approxi- 
mate homotopy lifting property for cells then p is an approximate fibration. 

Remark. The converse holds by Lemma 12. 10 without any point set conditions 
on E and B. Some conditions on the total space and base are necessary since 
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natural projection from the cone on the Warsaw circle to [0,1 ] is a Serre fibration 
that is not an approximate fibration. 
Proof. We can finish by constructing bridge functions just as Coram and Duvall 
do, [9, Proof of 2.2, p. 45]. Alternatively we remark that it is enough to solve 
the universal lifting problem. By Lemma 12.12 we can do this if E(p) is an 
ANR. This is just Lemma 4.6 on page 246 of Allaud and Fadell [1]. The only 
caveat is that they mean separable ANR when they write ANR, so the careful 
reader needs to check that they really do not need separable. Any ANR is ULC 
by Dugundji [12] so the proof proceeds with no modifications. a 

One use for Theorem 12.13 is 

Corollary 12.14. If p: E -* B is an approximatefibration with E and B ANR 's, 
and if U c B is open, then pI: p-1 (U) -+ U is an approximate fibration. 

Proof. Even if we only assume that B is Hausdorff, pI: p l (U) U has the 
approximate homotopy lifting property for cells. Both U and p I(U) are 
open subsets of ANR's, and hence ANR's. Then Theorem 12.13 shows that 
pj:p-1(U) -+ U is an approximate fibration. o 

Next, we record a consequence of the k-movability criterion of Coram and 
Duvall first noticed by F. Quinn. Given any map of spaces, say p: E -+ B, we 
can form the homotopy fibre of p over any point b E B. It is just the honest 
fibre over b- of the associated Hurewicz fibration E(p) -+ B. Given two maps 
pO:Eo -+Bo and pl:El -+ B and maps g:Eo - El and h:Bo -+ B1 such that 
p1 o g = h op1 , then there is a map from the homotopy fibre of p0 over bo E Bo 
to the homotopy fibre of p1 over h(bo) . 
Theorem 12.15. Let p: E -+ B be given with B an ANR. Let f, be a basis for B. 
Suppose that for every U E /3 the map from the homotopy fibre of po: p (U)- 
U to the homotopy fibre of p induces an isomorphism on homotopy groups for 
all b E U . Then p has the approximate homotopy lifting property for cells. The 
converse is true even if B is merely paracompact. 
Remark. It is no harder to first extend the definition of k-movability due to 
Coram and Duvall to our case. We say that a map p: E -* B is k-movable 
provided it has the following property. For each b E B such that p l(b) is 
nonempty, form lim ij (p (U), e) for a fixed e E p (b). We say that p 
is k-movable provided given any point c E B and neighborhood U of c, 
there exist neighborhoods V c W c U of c and a point b E V with p 1(b) 
nonempty, such that: 

the image of the above inverse limit in 7rj(p 1(W), e) is equal 
to the image of 7rj(p 1(V), e) in 7rj(p 1(W), e) for all e E 
p-1(b) and for all 0<j<k. 

Note that if p is proper and B is compactly-generated, then our definition 
of k-movable coincides with that of Coram and Duvall. 
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Proof. One representation for the kth homotopy group of the fibre is as maps 
a: Sk- -+ E and y: D -+ B such that p o a = yI modulo the appropriate sort 
of homotopies. To show the converse part of the theorem is just a diligent ap- 
plication of approximate homotopy lifting of finite complexes rel subcomplexes. 

To prove Theorem 12.15 it will suffice to prove 

Lemma 12.16. If p: E -* B is k-movable, B an ANR, then p has the approxi- 
mate homotopy lifting property for cells of dimension < k . 

The reason that Lemma 12.16 suffices is that any map satisfying the hy- 
potheses of Theorem 12.15 is clearly k-movable for all k. (This uses B is 
locally-contractible.) 

The proof we present here is cribbed from Coram and Duvall [9, Theo- 
rem 3.3, p. 49]. To begin, we need to adjust Lemma 3.1 on p. 47. With our 
definition of k-movable, the lemma reads just as in Coram and Duvall ex- 
cept that the arbitrary neighborhoods UO and WO are restricted to be of the 
form p1 I(of an open set in B) and the neighborhoods U, V, W and Z con- 
structed in the lemma are also of this form. 

We now follow Coram and Duvall's proof of Theorem 3.3. We take just a 
little care to choose our sets down in B rather than up in E as they do. The 
proof proceeds easily until the next to the last line where Lemma 3.2 is invoked. 
The reader who has followed the proof to this point will see that it is Lemma 
3.1 that is required and the necessary version of that we have. a 

The following proposition is not needed for our results, but it shows that two 
potentially different definitions of a k-simplex in MAF(B) are really the same. 

Proposition 12.17. Let E and B denote locally compact, separable metric ANR 's. 
If p: E x Ak - B x Ak is a proper fibre-preserving map over A k, then p is an 
approximate fibration iff pt: E x {t} -+ B x {t} is an approximate fibration for 
every t E A 

Proof. If p is an approximate fibration, then each Pt is because E x {t} is a 
deformation retract of E x Ak over a deformation retraction of B x Ak into 
B x {t}. 

Conversely, if each pt is an approximate fibration, then it follows from [18, 
Theorem 2.4], that p has a certain "sliced" approximate homotopy lifting prop- 
erty. Using that property, one can see that p is completely movable in the sense 
of [9]. The result now follows from [9]. a 

13. SUCKING FOR MANIFOLD APPROXIMATE FIBRATIONS 

If fi is an open cover of B and p: E -* B is a map, then we say that p is 
a fl-fibration if p has the fl-homotopy lifting property. We record here results 
which say, that under appropriate conditions, fl-fibrations can be deformed to 
nearby approximate fibrations. Thus, approximate fibrations "suck". Chapman 
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[6] had the first results along these lines. The parameterized versions are due to 
Hughes [20]. 

Theorem 13.1. Let B be a manifold, let m > 5, k > 0, and let a be an open 
cover of B. There exists an open cover /B of B so that if M is an m-manifold 
without boundary and f: M x A k B x Ak is a proper map which preserves 
thefibres over Ak such that f,: M B is a fi-fibration for each t E Ak and 
an approximate fibration for each t E a k, then there is a fibre preserving (over 

kc k kc A ) approximate fibration f: M x A -i, B x A such that f is a-close to ft 
for each t in Ak and fIM x aAk = fIM x aAk. 

Remarks on the proof. For the case k = 0 see Chapman [6]. For k > 1, see 
Hughes [20]. However, note that in [20] it is assumed that B has a handlebody 
decomposition or is a polyhedron. It is fairly routine to make the arguments of 
[20] work more generally. Here are the details. 

One uses the handle lemmas in [20] to prove the following lemma from which 
the result follows. 

Lemma 13.2. Let B be a manifold, let m > 5, and let k > 0. Let C and C 
be compact subsets of some chart of B such that C c int C. Let D and D be 
closed subsets of B with D c intb. For every open cover a of B there exists 
an open cover ,B such that: for every open cover ,u there exists an open cover 
v so that if M is an m-manifold without boundary and f: M x Ak -+ B x Ak 
is a fibre-preserving (over Ak) map such that ft: M -+ B is a fi-fibration and 
a v-fibration over 6 for each t in Ak and an approximate fibration for each 
t in aA , then there exists a fibre-preserving map f:M x Ak - B x Ak such 
that ft is a ,u-fibration over C u D for each t in Ak and f is fibre-preserving 

a-homotopic to f rel((M x A k) - 7 I(C - D) x Ak)) U (M x aAk). 

We also need the following version of 13.1 for manifolds with boundary. For 
an indication of proof, see Chapman [6]. 

Addendum 13.3. If, in Theorem 13.1, the manifold M is allowed to have a 
boundary AM and we require that each ft already be an approximate fibration 
over an open subset of B containing ft(aM), then we can additionally require 

f to agree with f on AM x A. 

14. STRAIGHTENING 

A key property is that parameterized families of approximate fibrations can 
be "straightened"; that is, isotoped to be nearly a product family. We begin by 
quoting an a version of this due to Hughes [20] and then derive a "controlled" 
version from the a version and sucking. 

Theorem 14.1 (a Straightening). Let M and B be manifolds, AM = 0, di- 
mension M >5, and let p:M x Ak x [0,] B x A k x [0,1] be a proper 
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fibre-preserving over Ak x [0, 1] map such that p,:M -+ B is an approximate 
fibration for each t in Ak X [0, 1]. For every open cover a of B there exists 
a fibre-preserving homeomorphism H: M x Ak x [0, 1] -+ M x Ak x [0, 1] such 
that HIM x {k X {O} = id and p o H is a-close to pl(M x {k X O0}) x id[o 1] . 

Moreover, if pIM x a/Ak X [0, 1] =(pM x a/ k x {0}) x id[o 1], then we can find 
H sothat HIMx a/k X [0, 1]= id. 

We also need the following version for manifolds with boundary. The proof 
follows from the proof of 14.1 given in [20]. 

Addendum 14.2. Let B be a manifold, U an open subset of B, m > 5, and 
n > 0. For every open cover a of B there exists an open cover /B of B such that 
if M is an m-manifold with boundary O M, p: M x xk X [0, 1] -? B x [ k X[, 1] 
is a proper fibre preserving map over Ak x [0, 1 ] such that 

pt:M --B is an approximate fibration for t in Ak x [0, 1]; 

OM x A x [0, 1] Cp (U x A x [0, 1]); and 
G:p-'(U x A k x [0, 1]) -) M x Ak x [0, 1] is a fibre-preserving open 
embedding so that Glp1 (U x A k x {0}) = id and p o G is fl-close to 

p|p lj(U X Ak X {0}) x id[o 1] 

then there exists a fibre preserving homeomorphism H:M x Ak x [0, 1] 
M x Ak x [0, 1] such that HIM x Ak X {0} = id and p o H is a-close to 
pI(M X Ak x {0} x id[ 1], and H = G in a neighborhood of aM x Ak x [0, 1]. 

Theorem 14.3 (Controlled Straightening). Let M and B be manifolds, OM = 

0, dimension M > 5, and let p: M x Akx [0, 1] --B x A x [0, 1] be a proper 
fibre-preserving map over Ak x [0, 1] such that pt: M -- B is an approximate 
fibration for t in Ak X [0, 1]. Then there exists a homeomorphism H: M x Ak x 
[0, oo) + M x Ak x [0, oo) such that 

(i) HIM x Ak x {0}=id, 
(ii) H is fibre-preserving over Ak X [0, oo), 
(iii) (p1 xid[o0 ))H:Mx Ak x[0, oo) - Bx Ak x[0, oo) extends toa map 

MxAk x [0, oo]- B x A x [0, oo] via pO, where pi = pIM x / x {i}: 
i.e. H is a controlled homeomorphism from po to P1. 

Moreover, if pIM x a/ k x [0, 1] = (plM x a/ X {0}) x id[O Ip then we can 
find H so that HIM x a/Ak x [0, oo) = id. 
Proof. The technique used in this proof comes from Hughes [211. Choose a se- 
quence {ei}l=O of positive numbers converging to 0. For each i = 0, 1, 2, ... 

let 5i be an open cover of B such that any two k-parameter families of approx- 
imate fibrations from M to B which are 5i-close are ei-homotopic through 
k-parameter families of approximate fibrations (Hughes [20]). Assume that the 
diameter of each member of (5 is less than eiI 
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k For each i = 0, 1, 2, ... we will construct a homeomorphism h': M x A x 
[i, i + 1] ___) M X Ak X [i , i + I] such that 

(1) h' is fibre-preserving over Ak x [i, i + 1], 

(2) h IMx/ x {0} = id and if i > 0, h'IM x A x {i}=h I, 
(3) (p1 x id) o h' is (ei + 6j+1)-close to po x id if i > 0, 
(4) p1 o h'IM x Ak x {i + I} is o1 1-close to po. 

It is clear that once the h' are constructed, they piece together to define H. 
The existence of h0:M x A k x [0, 1] - M x Ak x [0, 1] follows directly 

from 14.1. Assume that i > 0 and that h' 1 is already defined. Since p1 o 
hi l M X Ak X {i} iS (5i-close to po, there exists a fibre-preserving map over 
Ak x [0, 1], gi: M X Ak X [0, B x Ak x [0, { ] such that 9} I M X A X {O} = pO , 

IMX X 1 = hiIMXk X {i}, g' is an ci-homotopy, and gt: M - B 

is an approximate fibration for each t in Ak x [0, 1]. 

Use 14.1 on gi to find a homeomorphism kl: M x Akx [0, 1] M x Ak x 

[0, 1] such that k' is fibre-preserving over Ak x [0, 1]; klIM x Ak x {0} = id, 
k and g' o k' is 5i+C-close to (g'IM x A x {0}) x id = po X id. 

Then define hi:M x A k x [i, i + 1] -) M x Ak x [i, i + 1] by setting h= 

hj o k_ for each t in Ak x [i, i + 1]. 
If in addition, we are given that p is straight on M x 9A k x [0, 1 ], then it is 

easy to use the full strength of the results quoted above to construct H so that 
HIMX Ak x[0,oo)= id. o 

The following version of straightening is used to verify the straightening and 
strong straightening properties for MAF as stated in ?7. 

Corollary 14.4. Suppose given the hypotheses of Theorem 14.3. Let po = p 1: M x 
A X {0} - B x Ak x {0}. Then there exists a homeomorphism H from M x 

k 
A x [0, 1] x [0, 1) to itself such that 

(i) H = id on M x \k X [0, 1] x {0} and M x Ak x {0} X [0, 1), 
(ii) H is fibre-preserving over Ak X [0, 1] X [0, 1), 
(iii) H is a controlled homeomorphism from p to po x id[o 1]. 

Moreover, if pIM x a/k X [0, 1] = (pOIM x a k) x id[o 1], then we can find H 
so that HIMxAk x[0, l]x[0, l)=id. 

Proof. It is easy to construct a map q:M x Ak x [0, 1]2 - Mx k x [0, 112 
which is fibre-preserving over Ak x [0, 1]2 and each slice qt: M -- B is an 
approximate fibration such that 

qlMxAk x[0,1]x{o}=p, 

qlM X Ak X [0, 1] X {1} = po x id[o 1], and 

qlM x A x{0} x [0, 1] =po X id [01] - 
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Apply the straightening principles of Theorem 14.3 to the map q. o 

Of course there is a version of 14.3 for manifolds with boundary with hy- 
potheses similar to those of 14.2. 

Corollary 14.5. Let B be a manifold and let p: E -- B x [0, 1] be a proper map 
such that 

(i) the composition 7r: E -P_- B x [0, 1] Pr0j [0, 1] is a fibre bundle projection 
with fibre F which is a manifold of dimension > 5 such that aF = 0, 

(ii) p1: 7K 1(t) -- B x { t} is a proper approximate fibration for each t in 
[0, 11. 

Then pI: 7G l(0) --BBx{0} is controlled homeomorphic to pl:< 1(1) --Bx{l}. 
Proof. Let k: 7 1(0) x [0, 1] -- E be a trivializing homeomorphism for p 
such that ko = ki: 7K I(0) x {O} 1 7 1(0) is the identity. Then pok: 7K I(0) x 
[0, 11] - B x [0, 1] is a family of approximate fibrations to which Theorem 
14.3 applies (with k =0). Let H: GI(0) x [0, oo) -* 7K1(0) x [0, oc) be the 
homeomorphism provided by Theorem 14.3. In particular, (p1 o ka x id) o H 
extends via po 0 ko = p0. Thus, (k, x id) o H is a controlled homeomorphism 
from po top1. E 

As promised in ? 11.D, we now show that the notion of the fibre germ of a 
manifold approximate fibration is well-defined. For notation, let r: R -+ R' be 
defined by r(x1, x2, *..., x) = (-xI, x2 , ... I, x) 

Corollary 14.6. Let B be a connected i-manifold, let p: M - B be a manifold 
approximate fibration such that dimension M > 5 and aM c p 1(aB). Let 
gk: R' - B, k = 0, 1, be two open embeddings. Then pI:p p'(go(R')) -- go(R') 
is controlled homeomorphic to either pi: p 

- 
(g1 (R')) - g1 (R') or Pi: p 

- 
(g1 (R')) 

-* g o r(Ri). If B is nonorientable then pJ:p'1(g0(R')) -? go(R') is con- 
trolled homeomorphic to both p : p (g1(R')) g1(R') and p: p 1(g1(R')) 
g1 ? r(R' ), 

Proof. It follows from the truth of the annulus conjecture that go is isotopic to 
either g, or ga or [26 and 33]. Let ht: R' B, 0 < t < 1 , be such an isotopy; 
that is, ho = go0 h1 is g, or g, r, and ht is an open embedding for each t. 
This isotopy induces a map h: R' x [0, 1] -k B and we form the pull-back 

E M 
4 Pt ' tP 

R'x[0,l] B 

Clearly, the composition p: E - R' x [0, 1 ] Proj [0, 1 ] is a submersion with open 
manifold fibres of dimension > 5. Since Pi1:1 (R' x {t}) -* R i x {t} is an 
approximate fibration for each t in [0, 1], we can use Siebenmann's Technical 
Bundle Theorem [27, Theorem 1.1, p. 60], to conclude that p: E -* [0, 1] is a 
fibre bundle projection (see [22, Lemmas 4.1 and 8.1]). 
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Now Corollary 14.5 implies that Po and PI are controlled homeomorphic. 
The first part follows immediately. If B is nonorientable, then go is isotopic 
to both g, and g, o r . The second part now also follows. o 

15. AN 12-FREE DESCRIPTION OF MAF(B) 

We show that the particular embedding of the total space of a manifold 
approximate fibration over B in 12 x B is unimportant, at least up to homotopy. 
Specifically, we show that MAF(B) is homotopy equivalent to the simplicial 
set MAF*(B), where the k-simplices of MAF*(B) are equivalence classes of 
k-simplices in MAF(B). Two k-simplices in MAF(B), say M C 12 x B x Ak 

and N c 12 x B x Ak, represent the same k-simplex in MAF* (B) provided that 
k 

there is a homeomorphism h: M -- N which is fibre-preserving over B x A 
It is not hard to see that MAF* (B) is Kan. 

Theorem 15.1. The quotient map a: MAF(B) -? MAF* (B) is a homotopy equiv- 
alence. 

Proof. It is clear that a induces a surjection on homotopy groups. To see that 
a induces an injebction on homotopy groups it suffices to consider the following 
situation. Let M C 12 x B x Ak and N c 12 x B x Ak represent classes in 

7ck(MAF(B)) with projections p: M -- B x Ak and q: N -+ B x Ak such that 
M and N represent the same k-simplex in MAF*(B). We need to show 
that M and N represent the same class in rk(MAF(B)). By assumption 
there is a homeomorphism h: M -* N such that p = q o h. Let M(h) be 
the mapping cylinder of h and let r: M x [0, 1] -+ M(h) be the quotient 
map. Let j:M(h) -- 12 x B x Ak X [0, 1] be an embedding of small capacity 
and fibre-preserving over Ak x [0, 1], such that j = Z I on 7r(M x {0}) U 

7r(p 1(B x aAk) X [0, 1]) and j = id on nr(M x {1}). The image of j is an 
object over Ak x [0, 1] which shows that M and N represent the same class 
in 7k(MAF(B)). o 

Similar results are true for the other simplicial sets of interest to us; Bun(B), 
Hur(B) and MAF(B). 

16. SOME RESULTS ON FIBRATIONS 

Lemma 16.1. Let p:E -- B be a regular fibration, and let E(p) -? B be the 
associated Hurewicz fibration. There is a fibre inclusion E c E(p) and this 
inclusion is a strong fibre deformation retract. 

Proof. The associated Hurewicz fibration to p is the subset of E x BI consisting 
of all pairs (e, A) such that p(e) = A(0). The map E(p) -* B sends (e, A) to 
A(l). See e.g. Spanier [36, p. 99, Theorem 9]. The inclusion of E into E(p) 
just sends e to (e, A) where A is the constant path at p(e). 
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Recall that p is a fibration iff we can solve the following universal lifting 
problem: 

E(p)xO - E 
n p 

E(p) x [0, 1] B 
where the top map sends (e, A) to e and the bottom map sends ((e, A), t) to 
A(t) . The fibration p is a regular fibration iff we can find a solution F: E(p) x 
[0, 1] -+ E to the above lifting problem with the additional property that 
F((e, A), t) = e whenever A is a constant path. See [11] for a proof that 
any fibration over a subset of 12 must be regular. 

Since we have a regular fibration, let F denote a solution to the lifting 
problem with the regularity property. Define a map D: BI x [0, 1] -* BI 
by ?D(A)(t) is the path defined by (D(A)(t)(s) = A(t + (1 - t)s). Next define 
R:E(p) x [0, 1] -? E (p) by the formula R((e, A), t) = (F((e, A), t), ?DI(A))(t)) . 
The required properties are easily verified. o 

Lemma 16.2. Let p: M -+ B be given, and suppose that B = B1 U B2, so that 
the pair (B, B1 n B2) is a strong NDR-pair and each Bi is closed in B. Let 
Mi = P-1(Bi) and let pi:Mi -- Bi denote the restriction of p, i = 0, 1, 2. 
Further suppose that pi is a fibration, i = 1, 2. Then p is a fibration. 
Proof. We will prove that p is a fibre retract of its associated Hurewicz fibration. 
This easily proves the result. It also suffices to prove that p restricted to a 
numerable open cover is a fibration, so we may assume without loss of generality 
that (B, Bi) and (Bi, B1 n B2) are strong deformation retracts for i = 1, 2. 

Let r i:B B denote the strong deformation retraction to B1. By Strom 
[37], we can cover rt' by a deformation retraction R': M -+ M of M to Mi. 
We can apply Strom's results to the pair (Mj, MO) and then extend the defor- 
mation via the identity to (M, M) . 

Let E -? B be the associated Hurewicz fibration to p, and let Ei -- Bi 
denote the associated Hurewicz fibration to pi. We first construct a fibrewise 
strong deformation retraction from EIBi to Ei. Now EIBi is the subset of 
MxB, which consists of all pairs (m, ,1) such that p(m) = A(0) and A(l) E Bi . 
Define a homotopy (R'(m), rQ (A(s))) . This keeps EIBB inside itself and defines 
a fibrewise strong deformation retract of EBi into Ei . Since pi is a fibration, 
there is a fibre deformation retract of Ei onto Mi by Lemma 16.1. We can 
compose these to get a deformation Ht:EIB' x [O, 1] E F Bi which is a strong 
deformation retract onto Mi. In particular, we get strong fibrewise retracts of 
EIBi into Mi, i = 1, 2. 

If the retract for i = 1 agreed with the retract for i = 2 when restricted to 
EIBo we would be done. This may not be the case, but they are fibre homotopic. 
Let us fix our retract on EIB1, say D1 and see what we can do on EIB2. 

Now D1 restricted to EIBO is fibre homotopic to our retraction on EIB2 
restricted to EIBO. The fibre homotopy can also be chosen to be the identity 
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on MoA. Use the fibre-homotopy extension theorem to get a new map K: EJB2 - 
EFB2 which is D when restricted to lBO . 

We can glue K and D1 together to get a map H: E -* E. The image of 
H is contained in the subspace M1 u EIB2 of E and is the identity on M. 
Moreover, H is a fibre map. Define a map J: MA1 U EB2 -* M1 U EJB2 by 
requiring it to be the identity on M1 and our original retraction on EIB2 . It is 
clear that J is continuous, a fibre map, and that restricted to M c M1 U EIB2, 
J is the identity. Furthermore, it is clear that the range of J is M. 

Then J o K is the required fibre retract. o 
Lemma 16.3. Let p:E -+ B and r: B -* X be given. Suppose that p and 
g = 7r o p are fibrations. Define E,,(p) c E x BI by (e, A) is in E,,(p) if 
p(e) = A(0) and the path fC o A on X is a constant path. Then the evaluation 
map at 1, E,, (p) - B, is afibration (called the 7c-associated Hurewicz fibration). 

Proof. Let BX C B' denote the space of paths on B such that the path 7r o A 
on X is a constant path. There is an evaluation map Br -- X and this map 
is a fibration since it is just the pull-back over the constant paths of the map 
B' -, XI, and this is a fibration since B -- X is [36, p. 104, Exercise E.3]. 

We begin with,a lifting problem 
Y x 0 f* EX 
n 

F 
Yx[0, 1] F B 

and proceed to solve it in stages. 
The first step is to notice that our map E,(p) -* B maps to the map E 

X, and since this is a fibration, we can find a solution F1: Y x [0, 1] -* E 
extending our map on Y x 0. There is a similar map to B" -- X and hence 
a similar solution L1: Y x [0, 1] -? B7' extending our lift on Y x 0. As a first 
approximation to our solution we take F1 x L,: Y x [0, 1] -E x B%. There 
are only two things wrong with this attempt. The first is that the map need not 
land in E, (p) and the second is that it need not cover our original map into 
B. We repair these defects in two steps. 

Let F1: Y x [0, 1] -- E -+ B and L1: Y x [0, 1] B" -+ B where the 
first map is the obvious composite and the second is the composite of L, and 
evaluation at 0. These two maps agree when restricted to Y x 0 and when 
composed with the map B --* X. By [36, p. 101, Corollary 11], F1 and L1 
are fibre homotopic rel Y x 0. We can adjoint, the homotopy to get a map 
H: Y x [0, 1] -* B" such that, on Y x 0, H gives the constant path at F1 (or 
equivalently at 11). The paths given by H start at F1 and end at L1 . 

Define a new map H * L1: Y x [O, 11 -+ B" by the following formula: 

H(y, ,t) ) 1<.<2 
(H*L1)(yv t)(s) =2s- t t 
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When restricted to Y x 0, H * LI is just L I; in general, H * LI gives a path 
that begins at FI and ends at LI . Let G = H * L1 . 

We try again. Consider the map F I x G: Y x [O, 1 ] - E x B" . This map lands 
in E, (p) and on Y x 0 it is our original lift. Unfortunately, it is still not the case 
that we have lifted our original map F. Let G: Y x [0, 1 ] - EX (p) -- B denote 
the obvious composite. The notation is not bad because the above composite 
really does only depend on G. It is the case that F and G agree when projected 
into X via 7r: B -* X. Moreover, F and G agree when restricted to Y x 0. 
Just as above, there is a fibre homotopy from G to F which adjoints to give a 
map K: Y x [0, 1] -+ B" which yields constant paths when restricted to Y x 0. 

Now consider the map G * K: Y x [0, 11 ] B" defined by the formula: 

G(y, t)( 2s O<s<l ! 2 -t ~~~~2' 
(G * K)(y, t)(s)t ( 2s+t-2 2 t 

This map is just G when restricted to Y x 0, and G * K composed with the 
evaluation at s = 1 is just our original map F. Also, G * K composed with 
the evaluation at s = 0 is given by G evaluated at 0; which is H evaluated at 
s=0;whichis F1 . Now, themap F, x (G*K):Yx [0, liExB'B hasall 
the desired properties. o 

17. THE CONSTRUCTIONS OF FILL-INS 

Next we turn to the construction of fill-ins for Hur. The key to success is a 
construction of Tulley's which we recall. 

(17.1) The Tulley Construction. We begin with two spaces over B x X, say 
pi: Ei -* B x X and a fibre map f: Eo -+ E1 which is an embedding. Each Ei 
is also a subspace of 12 x B x 12. We form the following subspace of 12 x B x 
X X [0, 1] X /2: in 12 x B x X x [ 2, 1] x 12 take f(E0) x 2 U E1 x ( 2, 1 ] and 
in 12xBxXx[O, 2]x12 takethesubsetwhichis Eo over 12 xBxXxOx12 
and f(E0) over 12 X B x X x (0, 2] X 12. Let us use TP(f) to denote this 
subset. There is also a map TP(f) -* B x X x [0, 1] given by applying either 
po or p1 , whichever is appropriate. Denote this map by TP(p) . Notice that if 
A c B, we can restrict the above construction to A. Clearly TP(f), TP(p) 
when restricted to 12 X Ax Xx [O, 1]x12 isjust TP(fIA) with its associated 
TP(p), where flA is the map induced by f from pO1 (A) to pj (A). Finally, 
notice that if we are also given a third map P2: E2 -? B x X, and fibre maps 
fi: Ei F2, i = 0, 1, such that f1 is fibre homotopic to fo ? f, then we 
can also find a fibre map F: TP(f) -? E2 x [O, 1] such that F restricted over 
B x X x 0 is fo and F restricted over B x X x 1 is fi . 

The next result follows from Tulley's proof of Theorem 4 in [38, pp. 613- 
614]. 
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Lemma 17.2. If the map f above is a fibrewise strong deformation retract and 
P1 is afibration, then TP(p): TP(f) -- B x X x [0, 1] is afibration. 

We can now prove 

Lemma 17.3. Hur satisfies the following version of the Fill-in Property. Suppose 
given three objects Eo, E1, E2 in Hur(B x X), and two maps fi:Ei - E2, 
i = 0, 1. Suppose that B x X is metric, so all fibrations are regular. Let 
E2 denote the result of pulling E2 back to B x X x [0, 1] via the projection 
to B x X x 0. We can find an object E1 over B x X x [0, 1] such that E1 
restricted over 0 is Eo and E1 restricted over 1 is E1 . Moreover, we require a 
map F:RE -* E2 such that F restricted over 0 is fo and F restricted over 1 
is f1 . The construction is mildly functorial. Specifically, suppose we are given 
another set of initial data, say three objects Eo, E1, E2 over B x X, and two 
maps f:Ei -- E2, i = 0, 1, and suppose that Ei and Ei are equal when 
restricted to A x X, A a subset of B. Moreover, suppose that fi and fi agree 
when restricted to A x X. Then the two extensions and the two extended maps 
agree when restricted to A x X x [0, 1]. 

Proof. We beginvwith our three fibrations as in the statement of the Fill-in 
Property. Since all our maps are fibre homotopy equivalences, we can find 
a fibre homotopy equivalence, f: Eo - E1, such that f1 is fibre homotopic 
to fo o f . If f could be chosen to be an embedding and a strong fibrewise 
deformation retract, Lemma 17.2 would complete the proof. Unfortunately, 
this need not be the case, so the proof will consist in factoring our initial data 
into a sequence of situations in which we can apply the Tulley construction and 
Lemma 17.2. There is an embedding 12 c 12 which sends the ith coordinate to 
the (i + 1 )st and is 0 in the 0th coordinate. We first use the Tulley construction 
to replace both our E I's in 12 x B x X by copies where the 0th coordinate in 
the first 12 is identically 0. 

Next we consider another fibration 12 x E1 -- B x X which is just the projec- 
tion to E followed by the map p, . As a subspace, it is naturally a subspace 
of 12 x 12 x B x X and we can embed 12 x 12 in 12 so that the 0th coordinate 
stays 0 and take the image. Let p: Eo C 12 x B x X -- 12 denote projection onto 
the first factor. Then p x f: Eo -+ 12 x E1 is an embedding, as is the inclusion 
El ' 12 x El which sends e E E1 to (0, e). The second of these maps is a 
strong fibrewise deformation retract, since 12 is contractible rel 0. Hence we 
may assume that f is an embedding. 

Next we can use Lemma 16.1 and Lemma 17.2 to replace each Ei, i = 0, 1, 
by its associated Hurewicz fibration. Each associated Hurewicz fibration is a 
subset of E x (B x X), and the associated map is just the product of f and 
the identity on (B x X)'. It is easy to check that this map is also an embedding. 
Let E(pi) denote the associated Hurewicz fibration to p, and let E(f) denote 
the induced map on the associated Hurewicz fibrations. 
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Let M(f) denote the following subset of E1 x [0, 1]: M(f) = f(E0) x 
[0, 1) u E1 x 1 . Furthermore, there is a map p: M(f) -- B x X defined as p1 
on E1 x I and p0 otherwise. We make E1 x [0, 1] into a subset of 12 x B x 12 
by letting the 0th coordinate of the first 12 (which is 0 for E1) be z for E1 x z. 
We can do the same construction for the associated Hurewicz fibrations and one 
easily checks that E(') = M(E(f)). 

There is an obvious strong deformation retract of M(f) onto E1 x l, which 
is fibrewise. By applying this remark to M(E(f)) = E(') and then applying 
the Tulley construction and Lemma 17.2, we are reduced to the case where one 
of our fibrations is E(po); the other is M(E(f)); and the map is the composite 
of E(po) into E(f)(E(po)) x 0 on into M(E(f)). 

If we can show that this last map is a fibrewise strong deformation retract, 
then we are done. We begin to do this by studying the map Eo into the "top" of 
M(f). This map is a fibre homotopy equivalence as well as an embedding. Sup- 
pose for now that we can prove that the "top" of M(f) is a strong deformation 
retract. 

Since E(') = M(E(f)), we can use the strong deformation retract on M(f) 
to construct a strong fibrewise deformation retract as follows. Let Rt: M(f) 
M(f) denote the strong deformation retract we are assuming exists. Composi- 
tion with p defines a homotopy which adjoints to a map r: M(f) -- B'. Since 
the deformation is strong, r of any point in f(E0) (the "top") is a constant 
path. Let p: M(f) -? [0, 1] denote the evident projection, and note that the 
"top" is just p l(0). Define a map M(f) x B' x [0, 1] -- M(f) x B' by the 
formula (m, A, t) -? (Rt(m), 4(m, A, t)), where 4(m, A, t) is the path given 
by the formula 

2s 0 ~<p(m) r r(m)( (5 I , <s < <21 

2 - p(m) 2 - - 

One can check that if we restrict this map to E(') x [O, 1], the image is con- 
tained in E(') and the map defines a fibrewise strong deformation retract of 
E(') to its "top". 

We return to the point that we omitted above, namely to show that p- (0) 
is a strong deformation retract of M(f). To do this we first remark that 
(M(f), p (0)) is an NDR-pair. The function that we want is not p, but 
rather j(m) = max(2p(m) , 1). With j as the function, the required deforma- 
tion is easily constructed. It is now a standard argument (e.g. [36, pp. 27-33]) 
to construct the required strong deformation retract from the homotopy equiv- 
alence between f(E0) and E1. 

The lemma is nearly proved. We need to check two further points. We 
have not been very careful to check that we can carry our maps to E2 x [0, 1] 
along with us, but since we have checked this in the Tulley construction, this 
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presents no difficulty for the diligent reader. The second point is to check that 
the answers for two different sets of starting data which are equal over some 
subspace of B x X of the form A x X are equal when restricted over A x X. 
Again this is merely a matter of diligence although it might be useful to point 
out that the Tulley construction in no way uses the strong fibrewise deformation 
retract. It is merely used to prove that some map is a fibration. o 

To construct fill-ins for MAF requires yet another construction. This time 
we have three objects in MAF(B x X), say MO, Ml and M2, and controlled 
homeomorphisms hi: Mi -- M2 for i = 0, 1 . We have suppressed the parame- 
ter t in our notation. It is easy to get a controlled homeomorphism h: Mo 0 Ml 
such that ho = h1 oh. The object we will use to "fill-in" is constructed as follows: 
M(h) is the manifold obtained by gluing Mo x [0, 1) to M, x (0, 1] using the 
map h restricted to Mo x (0, 1), where we have chosen the parameter inter- 
val to be (0, 1]. There is a projection p: M(h) -- B x X x [0, 1] defined on 
M x (0, 1] as the obvious projection and on Mo x [0, 1) as p1 o h(t) for 
0 < t < 1, and as po for t =0. If we compose this map with the projection to 
X x [0, 1], the map M(h) - X x [0, 1] is a bundle map. Clearly, p restricted 
to each copy of b x X x [0, 1] is an approximate fibration. Both Mo and 
Ml are subsets of 12 x B x X: let ei:MMi 12 denote the projection. Then 
Image(ei) c 12 has small capacity. Since M(h) is a finite dimensional mani- 
fold, we caft embed it in 12, by e, so that Image(eo) U Image(e,) U Image(e) has 
small capacity and such that (Image(eo) U Image(e,)) n Image(e) = 0. There 
are retracts ri:M(h) -? Mi , i = 0, 1 , and projections p1:M(h) - [0, 1] and 

Px: M(h) - X. Define a map E: M(h) -' X 12 x B x X x [0, 1] by the formula 
E(w) = (te,(w) + (1 - t)eo(w) + t(1 - t)e(w)) x px(w) x t, where t = p1(w). 
Let M(h) denote the image of M(h) under this embedding. Note that M(h) 
is an object in MAF(B x X x [0, 1]) which restricts to MO at one end and M, 
at the other. 

Lemma 17.4. The functor MAF satisfies the Fill-in Property. 

Proof. In the above paragraph, we constructed the objects we need. To complete 
the proof we need to check that we have the needed maps and the required 
uniqueness. 

To define the needed maps first define a controlled homeomorphism Jt: MO x 
[0, 1] - Mo x [0, 1] for 0 < t < 1 by the formula 

Jt(, f (m, s),t> 
J(m, s) = { (h-1 o ht(m), s), t < s. 

We can use J to construct a controlled homeomorphism J: Mo x [0, 1] 
M(h). Then our map M(h) - M2 x [0, 1] is given by the compcsite h o J. 
The required checks are straightforward. 
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The uniqueness result is clear since the only choice we made in the construc- 
tion was that of e. Given two sets of data, we may embed the two M(h)'s 
in 12 so that they agree on the required subsets and are nonconstant in the 
same coordinates. The two resulting M(h) 's will then be equal on the required 
subsets, and the two maps will likewise be the same. o 

Lemma 17.5. The functor HAF satisfies the Fill-in Property. 

Proof. The object we use is just the Tulley Construction as we did in the proof 
of Lemma 17.3 (Hur Fill-ins). Then we use Lemma 12.4 to change controlled 
homotopies to fibre homotopies and construct the required maps just as we did 
in the proof of Lemma 17.3. Details may be safely left to the reader. o 
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