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Topology with Control and Approximate Fibrations

C. Bruce Hughes

§1. Introduction. Since approximate fibrations were first introduced in the mid-19705,
they have appeared both as the object of study and as a tool in that modern branch of
geometric topology called “controlled topology.” The purpose of this paper is to illuminate
that connection by giving a survey of the recent classification theorem for approximate
fibrations between manifolds. This classification theorem represents joint work with Larry

Taylor and Bruce Williams.

Approximate fibrations were first defined by Coram and Duvall [2] (see [1] for a sur-
vey). Their intention was to generalize Hurew;vicz fibrations as cell-like maps generalize
homeomorphisms. They defined a map p: E — B to be an approziruate fibration if given
aspace X,amap G: X xI— B,amapg:X — E such that pg(z) = G(z,0) for each z
in X, and an open cover ¢ of B, there exists a map & : X x I — E such that a(z) = G(z,0)
for each z in X and pé’ is e-close to G. When approximate fibrations arise in geometric
applications, they are often proper maps between manifolds. In that case they are called
manifold approzimate fibrations and those are the maps that are classified in [7]. In order
to find a model for a classification theorem, we will first review the related classical theories

of bundles and fibrations.

§2. Classical Theories. Fibre bundles and fibrations have both been classified in some
sense and we want to review those theories here. A map p: E — B is a fibre bundle over B

with fibre F if for each z in B there is a neighborhood U of z in B and a homeomorphism
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h:U x F — p~1(U) such that

UxF LR p~ (V)

AN /s

commutes where p; is projection onto the first coordinate. The following theorem is due

to Milnor [10] and is based on work of Steenrod [12].

Theorem (Milnor). There ezists a “classifying space” BTOP(F) such that equivalence
classes of fibre bundles over B with fibre F are in one-to-one correspondence with (B, BTOP(F)),
the set of homotopy classes of maps of B into BTOP(F).

The significance of this theorem is that it reduces a geometric problem (classification
of fibre bundles) to a problem in algebraic topology (understand the homotopy type of
BTOP(F)).

Of course, one needs to know which equivalence relation is referred to in the statement
of the theorem. Two fibre bundles p : E — B and p’ : E/ — B are equivalent if there exists

a homeomorphism h : E — E’ such that

E LN E'

\p / 4
B
commutes.
It is also important to notice that the fibre F is only well-defined up to homeomorphism
" and is homeomorphic to p~!(z) for each z in B. The classifying space BTOP(F) is
constructed from the (simplicial) group TOP(F) of self-homeomorphisms of F.
Next recall Stasheff’s classification theorem for fibrations [11]. A map p: E — B

is a fibration if given a space X, amap G: X xI — B, amap g : X — E such that
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pg(z) = G(z,0) for each z in X, there exists a map G : X xI — E such that 9(z) = G(z,0)
for each z in X and pé = G. If B is path-connected, (as we will always assume it to be),
then the homotopy fibre F of p is defined to be p~!(z) for some z in B. It is a theorem
that the homotopy fibre is well-defined up to homotopy. One can consider the (simplicial)
monoid G(F) of self-homotopy equivalences of F and form a “classifying space® BG (F).
In order to classify fibrations, one needs the correct notion of equivalence. Two fibrations
p: E — Bandp': E' — B are fibre homotopy equivalent provided there exist maps
f:E — E' g: E' - E and homotopies gf =~ idg, fg = idg:, such that all maps
and homotopies commute over B. By a result of Dold, this is equivalent to requiring a

homotopy equivalence f : E — E' such that
E R E'
\p / '
B

commutes.

Theorem (Stasheff). Fibre homotopy equivalence classes of fibrations over B with homo-
topy fibre F are in one-to-one correspondence with [B, BG(F)), the set of homotopy classes
of maps of B into BG(F).

In both of these theorems it is important to have the appropriate definitions of “fbre”
and “equivalence.” In addition, fibrations and bundles both satisfy a pull-back property
which is crucial in the proofs of these theorems. For example, in order to go from a map
f:B — BTOP(F) to a bundle over B with fibre F, one forms a pull-back diagram

E — ETOP(F)
pl !
B L Brop(F)
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where ETOP(F) — BTOP(F) is a “universal” fibre bundle with fibre F. The pull-back
property referred to above asserts that p : E — B is indeed a fibre bundle with fibre F'. To
show that the equivalence class of p is determined by the homotopy class of f, one needs
to know that if 5: E — B x I is a fibre bundle, then § |: 5~!(B x 0) — B is equivalent
topl]:p~ (B x1) — B.

Fibrations satisfy analogous properties. In classifying manifold approximate fibra-
tions, we will look for similar properties. However, a more fundamental problem is to find

the appropriate category in which to work.

§3. The controlled category. For a space B we now define a category Cp, called
the controlled category over B. The objects of Cpg are spaces over B; that is, an object
consists of a space E and a map p: E — B. A morphism of Cp from p: £ — B to
p' : E' — B is called a controlled map, denoted f¢, and consists of a continuous family
of maps f;: E — E’, 0 <t < 1, (that is,F the induced map f: E x [0,1) — E' x [0,1)

is continuous) such that

f=(p xidp)fup: Ex[0,1] — B x[0,1]
is continuous.
To understand what a controlled map is note that if B is compact metric, f is con-

tinuous if and only if lnm1 p’'fi = p. Thus we don’t require that

e A F
\p /p’
B

commutes for any value of t, but we do require that the degree of noncommutivity goes

to 0 as ¢t goes to 1. Also, under mild conditions on p’ (or a change of topology for
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mapping cylinders), f is continuous if and only if the induced map on mapping cylinders
fUidg : M(p) — M(p') is continuous.

Note that if f : E — E' is a fibre map (i.e., p’f = p), then f X idjo,1) is a controlled
map. But not all controlled maps arise this way. For example, let E, E’ and B all be the
disk B?, let p = id, and let p’ be a cell-like map with a nondegenerate point inverse. Then
there does not exist a fibre map from E to E’, but there is a controlled map.

A controlled map f° is a controlled homeomorphism if the map f : E x [0,1) —
E' x [0,1) is a homeomorphism and if f~! defines a controlled map from p’ to p. Thus,
controlled homeomorphisms are the isomorphisms in the category Cp.

In order to talk about controlled homotopy equivalences we simply have to note that
if p: E — B is a space over B, then E X I becomes a space over B by considering the

composition

ExI2 E-L B

Using the notion of controlled map, we can give a new definition of approximate
fibrations. We say p : E — B is an approzimate fibration if given a space X, a map
G:X xI— B,and amap g: X — E such that pg(z) = G(z,0) for each z in X, there
exists a controlled map G* from G : X x I — B to p : E —» B such that Gi(z,0) = g(z)
for each z in X and 0 < ¢ < 1. It is shown in [7] that this definition is often equivalent to
the original one of Coram and Duvall. The advantage of the new definition is that there

are not different lifts corresponding to each open cover of B.

§4. Controlled homeomorphisms of manifold approximate fibrations. Recall that
we are looking for the appropriate equivalence relation to put on manifold approximate
fibrations in order to prove a classification theorem. According to the comments in §2 we

should examine 1-parameter families of manifold approximate fibrations. For this we have
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the following theorem from [7].

Theorem (Hughes-Taylor-Williams). Let po : Mg — B and p; : M; — B be manifold
approzimate fibrations. Assume Mgy, M; and B are closed and that dim M; > 5, 1 =0, 1.
The followsng are equsvalent: '

1) There exists a manifold approzimate fibration p : E — B X I such that p equals
p; over B x {i} for { = 0,1 and the composition E -2+ B x I -2 I is a fibre bundle.

2) For every € > O there exists a homeomorphism h : My — M, such that p,h is
e-close to po. |

3) There exzists a controlled homeomorphism from po to p;.

It follows that the reasonable equivalence relation is that of controlled homeomor-
phism. The equivalence of conditions 1) and 2) follows from earlier work on approximate
fibrations [5). A proof that 2) and 3) are equivalent can be found in [7]. The following

result is the basic principle which is used in the proof of this theorem.

Theorem (Hughes). If M and B are closed manifolds and dim M > 5, then the space of
all approzimate fibrations from M to B in the compact-open topology is locally n-connected

for every n > 0.

This theorem was proved in [4] for M a Hilbert cube manifold and in [5] for finite dimen-

sional manifolds,

§5. Fibre germs for manifold approximate fibrations. In order to get an analogue
of the classification theorems for bundles and fibrations, we need the appropriate notion
of fibre of a manifold approximate fibration. First recall the result of Coram and Duvall

which says that if p: E — B is a proper approximate fibration between ANRs and B
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is connected, then p~!(z) and p~!(y) are shape equivalent whenever z and y are in B.
At first it might seem that the fibre shou_ld be defined to be a point inverse up to shape
equivalence. However, it turns out that if one fattens up the point inverses then one gets an
object well-defined up to homeomorphism, in fact, controlled homeomorphism. To make
this precise, let p : M — B be a manifold approximate fibration and assume that M and
B are closed and B is connected and of dimension ¢. For convenience we will only consider
the case where B is oriented. Let R* C B be an orientation-preserving embedding. By
restricting p over R® we get a manifold approximate fibration ¢ : V. —» R (V = p~}(R)

and ¢ = p|). Then ¢: V — R! is called the fibre germ of p.

Theorem (Hughes-Taylor-Williams). If dim M > 5, then the fibre germ is well-defined up
to controlled homeomorphism.
The proof of this theorem appears in (7] and is based on engulfing and the annulus

theorem.

§6. The classification theorem. ~Now that we have the notion of controlled home-
omorphism and fibre germ, we can state the ma@n res;ult. However, there-is one more
problem that we need to discuss. Namely, approximate fibrations may fail to pull-back
to approximate fibrations. This fact prevents the existence of a simple classifying space.
Nevertheless, approximate fibrations do pull back to approximate fibrations over open em-
beddings [1] (this was used implicitly in defining the fibre germ). It follows that, unlike
the bundle and fibration cases, we can construct a classifying space twisted by the tangent
" bundle of B.

Let B be a closed manifold of dimension ¢ and assume that B is oriented. We want
to classify all manifold approximate fibrations over B with a given fibre germ. Thus, let

g : V — R’ be a manifold approximate fibration where V is without boundary and of
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dimension greater than 4. Let M(q) denote the mapping cylinder of g and let TOPlevel(q)
denote the (simplicial) group of all self-homeomorphisms of M(g) which preserve the lev-
els of the mapping cylinder (i.e., preserve the [0, 1]-coordinates) and which restrict to an
orientation-preserving homeomorphism of the base Rf. Then restriction defines a homo-
morphism TOPlevel(q) —+ TOP; where TOP; is the (simplicial) group of orientation-
preserving homeomorphisms of R®. The kernel of this homomorphism is TOP*(q), the
(simplicial) group of controlled homeomorphisms from ¢ to g. Thus, on the level of classi-
fying spaces, there is a fibration

BTOP<(q) — BTOP!evel(q)

!

BTOP;
Now B has a topological tangent bundle which is classified by a map r : B — BTOP;.

The following result is our main classification theorem.

Theorem (Hughes-Taylor-Williams). The controlled homeomorphism classes of mansfold
approzimate fibrations over B with fibre germ q : V — R* are in one-to-one correspon-

dence with vertical homotopy classes of liftings

BTOPlevel (q)
x
.7 l
4
B 5D BTOP;
This theorem was first proved in (7], but there the description of the space BTOP'evel(q)
was more abstract. The more concrete description presented here appears in [8].
In some sense BT OP¢(q) is the classifying space for manifold approximate fibrations
with fibre germ q. However, it is twisted over BTOP; and the twisting appears because

the tangent bundle of B might be twisted. When B has a trivial tangent bundle, then 7

is homotopic to a constant and we get the following result.
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Corollary. If B is parallelizable, then controlled homeomorphism classes of manifold
approzimate fibrations over B with fibre germ q are in one-to-one correspondence with
(B, BTOP<(q)].

For example, if B is parallelizable, then there exists a manifold approximate fibration

over B with any given fibre germ.

§7 Applications. The classification theorem for manifold approximate fibrations meshes
well with the classification theorems for bundles and fibrations. Hence, the various theories
can be compared. For example, if p : E — B is a fibration, then we can identify
the obstructions to finding a manifold approximate fibration over B which is controlled
homotopy equivalent to p. Likewise, if ¢ : M — B is a manifold approximate fibration,
then we can identify the obstructions to finding a fibre bundle over B (with closed manifold
fibre) which is controlled homeomorphic to g. It follows that most of the original questions
posed in the 1970s concerning the relationship between fibrations, bundles and approximate
fibrations can now be answered. These applications appear in [7].

Another application concerns controlled surgery theory. If p: E — B is a fibration"
and f : M — E is a normal map, then in [9] we identify the obstructions to finding
a normal cobordism from f to a controlled homotopy equivalence. The obstructions are
reduced to bounded surgery over R’ and then to algebra.

One of the early motivations for the work in [5] was to study controlled homotopy
topological structures. Specifically, let p : E — B be a fibre bundle between closed
manifolds. A controlled structure on p is a map f : M — E where M is a closed manifold
of the same dimension as E and f is a p~!(¢)-homotopy equivalence for every ¢ > 0. An
obstruction theory was developed in [6] which answers the question: when is f homotopic to
a homeomorphism, with arbitrarily small metric control measured in B? The result is that

one can suitably define a space of controlled structures on p and that space is homotopy
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equivalent to a space of sections of a bundle associated to the Whitney sum of p and the
tangent bundle of B. The fibre of the associated bundle is the space of bounded structures
on F x R* where F is the fibre of p and ¢ = dim B. The point is that this sectioning theorem
is obtained as a corollary in [7] by comparing the classifications theorems of fibrations and
manifold approximate fibrations over B. Moreover, the obstruction groups are identified
in [3] in the infinite dimensional case and [9] in the finite dimensional case.

Our (Hughes, Taylor, Williams) current work involves using our theory of manifold
approximate fibrations to study controlled topology over Riemannian manifolds of nonpos-
itive sectional curvature. In addition, in a joint project with Shmuel Weinberger, we are
applying our theory to study germs of neighborhoods of singular sets in singular manifolds.
The main source of examples for this study comes from the theory of finite groups acting

topologically on a manifold.
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