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BOUNDED HOMOTOPY EQUIVALENCES 
OF HILBERT CUBE MANIFOLDS 

BY 

C. BRUCE HUGHES 

ABSTRACT. Let M and F be Hilbert cube manifolds with F compact. The purpose of 
this paper is to study homotopy equivalences f: M --*Rm X F which have bounded 
control in the Rm-direction. Roughly, these homotopy equivalences form a semi-sim- 
plicial complex #'A(Rm x F), the controlled Whitehead space. Using results about 
approximate fibrations, #'A(Rm x F) is related to the semi-simplicial complex of 
bounded concordances on R' x F. Then the homotopy groups of #VA(RW x F) are 
computed in terms of the lower algebraic K-theoretic functors K_,. 

1. Introduction. Let F be a compact Hilbert cube manifold. We are interested in 
homotopy equivalences f: M -* Rm X F which are controlled in the Rm-direction, 
where M is also a Hilbert cube manifold. To say f is controlled in the Rm-direction 
means that pf: M -* R"' is an approximate fibration, where p: Rm x F -* R"' is 
projection. The collection of all such homotopy equivalences, which are additionally 
given to be retractions onto the collared submanifold Rm X F of M, form the vertices 
of a semi-simplicial complex *fA(Rm x F) (see ?2 for the precise definition). 

The main result of this paper is the computation of the homotopy groups of 
*VA(Rm X F) (see Corollary 1 below). In order to do this we relate *&A(Rm x F) to 
the semi-simplicial complex WJb(Rm X F) of bounded concordances on R' x F. An 
n-simplex of W b(Rm X F) is a homeomorphism 

h: Rm X FX[0,1] X AnLSP Rm x FX[0,1] X An 

such that h is fiber preserving over An, hl(Rm x F x {0} X An) U (Rm x F x [0, 1] x 
a&Xn) is the identity, and h is bounded (that is, there is a constant L > 0 such that ph 
is L-close top, where p is projection to Rm). We can now state our first result. 

THEOREM 1. There is a group isomorphism a: 7Tn*A(Rm X F) -, 7Tnl<b(Rm X> F) 

for each m > 0, n > 1. 

The proof of' this theorem (which is given in ?5), is based on a sharpened version 
of the main result of [24] which shows how to. straighten out certain parameterized 
families of approximate fibrations to be nearly like a product family. This sharpened 
version is Theorem 2.3 in ?2. 
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622 C. B. HUGHES 

The next result illustrates a further relationship between #'A(Rm x F) and 

Wb(Rm X F). 

THEOREM 2. There is a group isomorphism /3: nflT2b(Rm+l x F) -, 7T,'A(Rm x F) 
for each m > 0, n > 0. 

The proof of this theorem (which is given in ?6) is based on a familiar method for 
finding a Whitehead torsion invariant of a bounded concordance on M x R (see [1, 
29 and 30]). In fact, the proof of Theorem 2 is motivated by [1]. 

Together, Theorems 1 and 2 reduce the study of aTn*'A(Rm X F) for m > n to the 
study of 7T5#'A(Rm-> x F). In ?4 we reinterpret a result of Chapman [8] to obtain 
the following 

THEOREM 3. There is a group isomorphism 

(K1-m(Z7TT(F)) if m > 1, 

7TO*'A (Rmn X F) ko (Z -T ( F)) if m = 1, 
1Wh(Z7Tl(F)) if m=O. 

Here Wh denotes the usual algebraically defined Whitehead group functor, Ko is 
the reduced projective class group functor, and K_i (i > 0) denotes the lower 
algebraic K-theoretic functor of Bass [2] (see also Gersten [19]). As usual, Z7T1(F) is 
the integral group ring of the fundamental group of F. For calculations of K_ i see [3, 
4, and 5]. 

Combining Theorems 1, 2 and 3 we get the following corollary which is the main 
result of this paper. 

COROLLARY 1. There is a group isomorphism 

(K1_m+n(Z7T1(F)) if 0 < n < m -2, 

7T#-A (Rm X F) ko(Z7T,(F)) if n = m - 1, 

Wh(Z7T,(F)) if n-=mm, 

7Tn mi1@(F) if n > m. 

Here W(F) denotes the semi-simplicial complex of concordances on F. In 
addition, we also get the following expected Hilbert cube manifold version of the 
Anderson-Hsiang result on bounded concordances [1, Theorem 3]. 

COROLLARY 2. There is a group isomorphism 

K2-m+ n (Z,l ( F)) if 0 < n < m -3, 

nXJR~n b F) k0(Z7T1(F)) ifn = m -2, 
Wh(Z7T,(F)) if n = mn-i,9 

7T,nmW'(F) if n > m. 

In [7 and 8] Chapman has studied controlled homotopy equivalences f: M -* E 
from a Hilbert cube manifold M into the total space E of a locally trivial fiber 
bundle p: E -- B with compact Hilbert cube manifold fiber F and polyhedral base 
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B. (See related work for finite-dimensional manifolds by Chapman [9] and Quinn 
[27, 28].) The main problem is to decide when f can be approximated arbitrarily 
closely by a homeomorphism (with the closeness measured in the base B). Theorem 
3 of [8] says f can be so approximated provided 7r1(F) is "nice enough." It is hoped 
that the results of this paper on controlled homotopy equivalences into the trivial 
bundle p: Rm x F -* R"' can be used to obtain a general answer to this problem. 

This paper is organized as follows. ?2 contains the definition of *"A(Rm x F), 
general preliminaries and the result on parameterized approximate fibrations men- 
tioned above. ?3 gives a geometric understanding of the homotopy relation in 
*KrA(Rm x F). Also in ?3, we define the torsion, for certain n-parameter families of 
homotopy equivalences to Rm x F with only bounded control in the Rm-direction, 
to be an element of 7Tn*&A(Rm x F). In ?4 we discuss the group structure of 

70#`/A(Rm x F) and prove Theorem 3. The proofs of Theorems 1 and 2 are given in 
??5 and 6, respectively. 

The author wishes to express his gratitude to T. A. Chapman for suggesting to him 
that the main theorem of [24] could be used to obtain the results of this paper. 

2. Preliminaries. In this section the spaces *"A(Rm x F) are defined. The key 
property of parametrized families of approximation fibrations needed for the 
constructions in the sequel is established in Theorem 2.3. 

We begin with some notation. The Hilbert cube is denoted by Q and a Hilbert 
cube manifold or Q-manifold is a separable metric space which is locally homeomor- 
phic to Q. The reader should consult [6] for the basic machinery of Q-manifolds 
including the notion of Z-sets. Throughout this paper F will denote a compact 
Q-manifold, Rm euclidean m-space, and A'l the standard n-simplex with combina- 
torial boundary a8LV consisting of the faces a oA1n,... ,an \n If m or n is 0, then 
Rm or AXn will denote a point. 

We will often encounter fiber preserving (f.p.) maps and almost always these will 
be maps which preserve the obvious fibers over A'n. Specifically, if p: X -3n, .: 
Y -- In and f: X -* Y are maps, then f is f.p. if of = p. Often the maps p and a will 
be understood to be some natural projections. The map p will almost always denote 
projection to Rm or Rm x An, depending on the context. The space Rm is given the 
metric induced by the norm llxll = maxtlxJl,. . . ,IxmJ}. For fiber preserving, or 
sliced, Q-manifold results (including the notion of sliced Z-sets) see [12 and 13]. 

A map is proper if the inverse image of every compact set is compact. To say a 
map is a bundle means that the map is the projection map of a locally trivial fiber 
bundle. 

The maps which will make up the space *VA(Rm x F) are defined as follows. Let 
p: M -3 A'n be a bundle with Q-manifold fiber such that Rm X F X An is a closed 
subset of M and the inclusion Rm x F xA _-3 M is f.p. If E > 0 and f: M -R x 
F x AXn is an f.p. proper retraction, then f is said to be an f.p. p-'(e)-sdr provided 
there exists an f.p. homotopy F: M x [0,1] -* M such that Fo = id, F1 = f, FtJRt X 
F x LAn = id for 0 < t < 1, and the diameter of pf F({ x } X [0, 1])) is less than E for 
each x in M. Iff is an f.p. p-'(e)-sdr for some (possibly large) E > 0, then f is an f.p. 
bounded sdr. 
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The space *&A(Rm x F) is defined as a semi-simplicial complex and the reader is 
referred to [26] for information about semi-simplicial topology. A typical n-simplex 
of *"A(Rm x F) consists of the equivalence class of a map f: M -* Rm x F x An, 
where there is a bundle p: M -3 A'n with Q-manifold fiber, M contains Rm X F x A'n 
as a sliced Z-set, and f is an f.p. p-'(e)-sdr for every E > 0. Another such map f': 
M' Rm x F x An is equivalent to f if there exists an f.p. homeomorphism h: 
M M' such thatf'h = f and hIRm x F x An = id. 

The face and degeneracy operations in *'A(Rm x F) are induced by the standard 
operations on An. It follows immediately from the definitions that these operations 
are well defined. 

The bundle p: M -* An and the sliced Z-embedding Rm X F x An _* M will 
always be understood without further mention whenever a representativef: M -Rm 

x F x An of an n-simplex of *VA(Rm x F) is given. 
The following lemma gives an alternative way of recognizing when a map 

represents an element of *fA(Rm x F). First we need some more definitions. If a is 
an open cover of Y, then a proper map f: X -, Y is said to be an a-fibration if for all 
maps F: Z x [0,1] -* Y and g: Z -* X for which fg = Fo, there is a map G: 
Z x [0, 1] - X such that Go = g and fG is a-close to F. If e > 0, then we also use e 

to denote the open cover of Y by balls of diameter e. Thus, we speak of e-fibrations. 
A map f: X -* Y between ANRs is an approximate fibration provided it is an 
a-fibration for every open cover a of Y. This notion was introduced in [14]. If f: 
X x A'- Y x A' is an f.p. map, then f is an approximate fibration if and only if f,: 
X x { t } - Y x { t } is an approximate fibration for each t in A'. This follows from 
[15]. See [23] for the f.p. lifting property of an f.p. approximate fibration. 

LEMMA 2.1. For every E > 0 there exists a 8 = 8(e, m, n) > 0 such that if p: 
M -) An is an ANR bundle, M contains Rm X F X An, the inclusion Rm x F X A"n M 

is f.p., f: M -Rm X Fx An is an f.p. sdr, and pf: M - Rm X An is an fp. 
8-fibration, then f is an f. p. p-'(e)-sdr. 

Conversely, if f is an f. p. p-'(e)-sdr, then pft: M -, Rm is an e-fibration for each t in 
A n 

PROOF. If pf were a Hurewicz fibration, then this would follow from Dold's proof 
that a fiber preserving homotopy equivalence between two Hurewicz fibrations is a 
fiber homotopy equivalence [16]. Just as in [8, Proposition 2.3] we note that Dold's 
proof can be adapted to the present situation by using only the approximate lifting 
property of pf. Note that 8 depends on m and n as well as e because we need to 
deduce that pf has an f.p. approximate lifting property (see [23, Theorem 2.4]). 

The converse is easily verified. e 

The following corollary follows immediately from Lemma 2.1 and the definition 
of #A(Rm x F). 

COROLLARY 2.2. If p: M -, An is a bundle with Q-manifold fiber and M comtains 
Rm X F x An as a sliced Z-set, then a map f: M -, Rm X F x An represents an 
n-simplex of *'A(Rm X F) if and only if f is an f. p. sdr and pf: M -*Rm x An is an 
approximate fibration. a 
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The next theorem is an improvement of the main result of [24] in the special case 
when the base is euclidean space. This theorem describes an important property of 
parametrized families of approximate fibrations. This property can be summarized 
by saying that these families can be straightened out to be nearly like a product 
family. 

THEOREM 2.3. Let M be a Q-manifold, q: M x A'n X [0,1] -* Rm X A'n X [0,1] an 
approximate fibration which is f. p. over A' X [0, 1], and let E > 0. Then there exists an 
f.p. homeomorphism H: M x A'n X [0,1] -* M x A'n X [0, 1] such that 

(i) HIM x A\n X {0) = id; 
(ii) qHIM X {s} ><X t} is --close toqlM>X {s} X to) for each(s, t)in An X [0,1]. 

Moreover, there exists a 8 = 8(c, m, n) > 0 such that if we are additionally given an 
f. p. homeormo,phism G: M X aAn X [0, 1] - M X aAn X [0, 1] with the properties that 
GIMM X aAn X {0) = id and that gGIM X ts)} X {t} is 8-close to qlM X { s} X {0) 
for each (s, t) in aAn X [0, 1], then we may additionally conclude that 

(iii) HIM X aAn X [0, 1] = G. 
Furthermore, if we are additionally given that M contains Rm X F as a Z-set, ql: 

Rm X F X A'n X [0,1] -* Rm X An X [0,1] is projection, and GIRm X F X aAn X [0,1] 
= id, then we may additionally conclude that 

(iv) HIRmX FX A'nX [0,1] = id. 

PROOF. In order to save space we assume that the reader is familiar with the proof 
of the main theorem in [24]. 

Let g: M X A*n Rm X An be defined by g(x, s) = q(x, s,0). Then g x id[01] is 
f.p. homotopic to q rel M x A'n x tO). This homotopy can be approximately lifted in 
order to obtain an f.p. mapf: M>X An X [0,1] -* M X An X [0,1] such that fIM x 
An X tO) = id and (g x id)f is close to q. Moreover, if we have the additional 
hypotheses of the theorem, then we can assume that f IM X aAn X [0, 1] = G1 and 
thatflRm x F x A'n X [0,1] = id. 

Now the problem is to approximate f by a homeomorphism. Specifically, we show 
that f is f.p. homotopic rel(M x A'n X tO)) U (M x aAn X [0,1]) to a homeomor- 

phism h: M x A'n X [0,1] -* M x A'n X [0,1] by a homotopy which is small when 
projected to Rm X An X [0,1] by g x id. By sliced Z-set unknotting we may further 
assume that hIRm x F x An X [0,1] = f l. Then H = h' will be the desired homeo- 
morphism. 

By following the proof of Theorem 3.1 in [24] we - obtain an f.p. map h: 
M X An X [0,1] _* M X An X [0,1] such that h is a homeomorphism over 

g-'(B3m X An ) X [O, 1] 
and f is f.p. homotopic to h rel(M x A'n X tO)) U (M x aAn x [0, 1]) by a homotopy 
which is small when projected to Rm x An X [0, 1] by g x id. (We use Brm to denote 
the m-cell [-r, r]m in Rm.) It should be noted that the wrapping up construction in 
[24] is avoided here since the base is already Rm. Thus we are only using that part of 
the proof of Theorem 3.1 in [24] which follows Assertion 3.2. 

The final step is to use an infinite expanding trick to produce the homeomorphism 
h promised above from the map h. First, notice that by a small modification of h we 
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can assume that there is a neighborhood N of (An X tO)) U (aAn X [0,1]) in An X 

[0, 1] such that h: M X N -*M X N is a homeomorphism. 
Let 0: Rm -* Rm be a radially defined homeomorphism such that 3I B{' = id, 

E9(B6m) = B2M, and e is supported on B m. Then e induces an f.p. homeomorphism 
E: Rm X An X [0,1] _* Rm X An X [0,1] such that Ol(Rm X An X t0)) U (Rm X aAn 

x [0, 1]) = id and Ot = (3 for t E (An X [0,1])\ N. By the parametrized engulfing 
theorem in [23, Theorem 4.3] there are f.p. homeomorphisms 0': M x An X [0,1] -* 

M X An X [0, 1] for i = 1, 2 such that O'I(M x An X {0}) U (M X aAn X [0,1]) = id, 
qOl is close to eq, (g x id)E2 is close to O(g x id), 

0'1 = id on q-'(Bjm x An X[0,1]), 

and 

2= id ong-'(B>m X An) X [0,1]. 

Then 

hl=(e ) :M X An x[O,1] _ M X A'nX [O, 1] 

is a homeomorphism over g-'(B6` x> An) x [0, 1]. Also there is a small (measured in 
Rm x A'n X [0,1]) f.p. homotopy from hi to h which comes from using isotopies 
id ( 3' for i = 1, 2 provided by [23, Theorem 4.3]. It is clear that one can continue 
this process to obtain a sequence of maps hl, h2,... such that h = limi oohi is the 
required homeomorphism. The reader should consult [8, pp. 327, 328] for a similar 
construction. N 

3. Homotopy and torsion in *VA(Rm x F). This section begins by showing how to 
deform certain controlled homotopy equivalences to maps which represent simplices 
of #`A(Rm x F). This is contained in Propositions 3.1 and 3.2. Next, Proposition 3.4 
gives a geometric way to understand what it means for two n-simplices of 

-A (Rm x F) 

to represent the same homotopy class in 7Tn#'A(Rm x F). Finally, we define the 
torsion of certain controlled homotopy equivalences to be an element of 

7T **fA(Rm x F) 

and characterize geometrically what it means for two of these homotopy equiva- 
lences to have the same torsion (Proposition 3.6). 

We begin with some more definitions. If a is an open cover of Y, then a proper 
map f: X -* Y is an a-equivalence provided there is a proper map g: Y -* X and 
proper homotopies gf - id and fg - id limited by f `(a) and a, respectively. If X 
and Y are both fibered over a space, then f is an f.p. a-equivalence provided f, g and 
the homotopies are all f.p. If Y = Rm x F, then f: X -* Rm X F is a bounded 
homotopy equivalence if it is ap'`(e)-equivalence for some (possibly large) E > 0. 

PROPOSITION 3.1. For every E > 0 there exists a 8 = 8(e, m, n) > 0 such that if p: 
M -* An is a bundle with Q-manifold fiber and f: M - Rm X F X A'n is an f. p. 
p'1(8)-equivalence, then f is f.p. p-'(e)-homotopic to a map f: M - Rm x F X A'n 

which is an f. p. p- '(p)-equivalence for every p > 0. 
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Moreover, if it is additionally given that M contains Rm X F X A'n as a sliced Z-set 
and f IR"m x F x An = id, then we may additionally conclude that the homotopy from f 
tof is relRm x F x lA. 

Furthermore, if it is additionally given that f 1: p- -*(ay) Rm X F X aAn is an f. p. 
p-'(IL)-equivalence for every p > 0, then we may additionally conclude that the homo- 
topy from f to f is rel p-I(aAn ). 

PROOF. The f.p. map pf: M -1- Rm x An has the property that pf,: p`(t) -* Rm is a 
8-fibration for each t in An. If 8 is small enough, then it follows from Theorem 7.2 
and Remark 7.5 of [23] that pf is f.p. e-homotopic to a map g: M -* Rm x An which 
is an f.p. approximate fibration. Lift this homotopy to get an f.p. p-'(i)-homotopy 
from f to a map f such that pf = g. Since f is an f.p. homotopy equivalence and pf is 
an f.p. approximate fibration, the method of Dold used in the proof of Lemma 2.1 
shows that f is an f.p. p-'(p)-equivalence for every y > 0. 

If we have the additional hypotheses of the proposition, then one uses the full 
strength of Theorem 7.2 of [23] to make the homotopy from pf to grel(Rm x F X An) 
U p-'( aA). Then the lifted homotopy from f to f can be required to have this same 
property. U 

The next proposition is the analogue of Proposition 3.1 for bounded equivalences. 

PROPOSITION 3.2. If p: M ,. An is a bundle with Q-manifold fiber and f: 
M -*Rm >X F X An is an f. p. bounded equivalence, then f is f. p. boundedly homotopic 
to a map f: M --*Rm >X F X> An which is an f. p. p-'(p)-equivalence for every y > 0. 

Moreover, the last two paragraphs of Proposition 3.1 hold verbatim in this situation. 

PROOF. There exists a c > 0 such thatpf,: p-'(t) -* Rm is a c-fibration for each t in 
'A . Choose K > 0 large and let y: Rm -+ Rm be the homeomorphism defined by 
y(x) = x/K. Then each ypf,: p`(t) -+ Rm is a 8-fibration, where 8 > 0 is small. As 
in the proof of Proposition 3.1 we can find a small f.p. homotopy of (y x id)pf to an 
f.p. approximate fibration g: M -+ Rm X An. Then (y-1 x id)g is still an f.p. 
approximate fibration and it is f.p. boundedly homotopic to pf. Now lift this 
bounded homotopy as in the proof of Proposition 3.1 in order to obtain the desired 
map f. 

If the additional hypotheses of the proposition are given, then one only has to 
replace the homeomorphism y X id: Rm x -An Rm x lAn by an f.p. homeomor- 
phism j which has the property that -JR" x a3An = id. U 

Since ('A(Rm x F) satisfies the Kan extension condition, it makes sense to talk 
about the homotopy groups of ('A(Rm X F). The nth homotopy group is based at 
the n-simplex of *A(Rm X F) which is represented by the projection map Rm X F 
X [0,1] X An -- Rm X F X An, where the sliced Z-embedding of Rm x F x An into 
Rm x F x [0, 1] X A'n is given by inclusion into the 0-level. If f: M >+ Rm x F X An 
represents an h-simplex of Y"A(Rm x F) which determines a class in ?Tn#A(Rm x F), 
then that class is denoted by [f ]. Such a map has the property that f I: p`(aiAn) -* 

Rm x F x 8iAn is equivalent to the "base (n - 1)-simplex" of *VA(Rm x F) for each 
i = 0, 1,. ., n. The following lemma will be useful in analyzing these maps. 
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LEMMA 3.3. Suppose that f: M -* R'm x F x A' represents a class [ f ] in 

Tn#A (R"' x F). 

Then there exists an f.p. homeomorphism j: Rm x F x [0,1] X aAn -* p-'1(aLA) such 
that jlR' x FX {0} xt Xan = id and fj: Rm x F X [0, 1]x aA"n -> Rm x F x aAn is 
projection. 

PROOF. Since f represents a class of ?Tn#'A(Rm x F), it follows that there are f.p. 
homeomorphisms g,: Rm' x F x [0, 1] X a3An -* p-'( a1An) for i = 0,1,. . . ,n such that 

g,IR" x F x {O} x a,An = id and fg, is projection. For each i = 1,2,...,n let C, 
denote the subset of the boundary of a,An which meets U'- 1 akA. The g,'s will now 
be modified so that they agree on their common domain. 

We will inductively define f.p. homeomorphisms go = g0, g,... ., g- = j, where 

g,: R x F x [0,1] x U akA ) P ( U ak ). 
k=O k=O 

These are defined so that - extends g-,, -IRm x F x {O} X JI=o akAn) = id, and 

g, is projection. Assuming i > 1 and that g-1 has been defined, proceed to define g, 
on Rm x F x [0,1] x a An . To this end consider 

g7 lg-l: Rm x F X [0, 1] x C, Rm x F x [0, lix C,. 

This is a homeomorphism whose restriction to R1' x F x {0} x C, is the identity. In 
addition, this homeomorphism affects only the [0, 1]-coordinate of any point. It 
follows that g, ig, -II extends to a homeomorphism 

g: Rml x F X [0, 1] x a/\n -> Rml x F x [O, 1] x a/\n 

such that gIRm x F x {O} X a"An = id and g affects only the [0, 1]-coordinate of any 
point. Define -1IR" x F x [0,1] x a/\n to be g,g. U 

The next result shows how to detect the equivalence of elements in 7n#&A(R" x F). 
Two maps f, g: M -* Rm x F x An are said to be boundedly close if there exists a 
constant L > 0 such that pf is L-close to pg, where p denotes projection to Rt. 

PROPOSITION 3.4. Let f: M -> Rm' x F x An and f': M' -- R"' x F x An represent 
the elements [f ] and [f'] of ?TnYVA(Rm X F), respectively. Then the following are 
equivalent: 

(i) [f ] = IfT 
(ii) for every c > 0 there exists an f.p. homeomorphism h: M -* M' such that 

hIR" x F x An = id, f'hIp- I(aA) = f IP-I(aA"), and f 'h is f. p. p (-)-homotopic to f 
rel(Rm x F x An) U p-I(aAn); 

(iii) there exists on f. p. homeomorphism h: M -> M' such that h IR' X F X Lx" = id, 

f'hl lp'(An) = f Ip-I(ay ), andf 'h is boundedly close to f. 

PROOF. It is first shown that condition (i) implies condition (ii). Since [f] = [f'] 
there is a bundle p: M -* An X I with Q-manifold fiber and an f.p. (over An X I) 

map f: M - 1I>Rm x F x An x I representing an (n + 1)-simplex of YVA(Rm x F) 
such that f lp-I(Ln X {O}) represents [f], f 1f-r(An x {1}) represents [f'], and 
f V0-'(ad1An x I) represents the "base n-simplex" of f'A(Rm' x F) for all i. 
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By (the proof of) Lemma 3.3 there is f.p. homeomorphism j: Rm X F X [0, 11 X 
aA1n x I -* f-1(aA'1 x I) such that jJRm x F x {O} x aA1n x I = id and fj is projec- 
tion. 

Using the fact that p is trivial and sliced Z-set unknotting, one can construct an 
f.p. homeomorphism h: Rm x F x [0, 11 x A'n X I * M such that hJR'm x F x {0} 
X A'n X I = id (see Lemma 5.1). 

Letjo = jJRm x F x [0, 1] x An x {0} and let ho =hIRm X F X [0, 1 x An X {O}. 
By Theorem 2.3 there is an f.p. homeomorphism 

H: Rm x F X [0, 11 X An X I -* Rm X F X [0, 11 X An X I 

with the following properties: 
(1) HIRm X F X [0, 1] x A'n X {0} = id; 
(2)HIRm X F X [O,1] x> aAn x I = h-'oj O(j x id,)o(h0 X id,)J; 
(3) HIRm X F X {O} X An x I = id; 

(4)pf hHlRm X F X [0,1] x {s} >x {t} is --close topfhRm ̀ X F X [0,1] > {s} >x 
{O} foreach(s, t)in An x I. 

Since f I0-1(A'n X {0}) represents [f ], there is an f.p. homeomorphism a: M 
-'(A'n X {O}) such that fal = f and aiRm x F x An = id. Likewise, there is an f.p. 

homeomorphism /3: M' --> fr(A'1n X {1}) such that fB = f' and fiIRm X F X An = id. 
Now the required homeomorphism h: M -* M' can be described by the composi- 

tion 

M -1(A1n X {0})) Rm X 
[0, 11 X An X {O} 

id X [O, 1] X An HI 
[O, 1] X An x H1I 

h' R(n x { 1} ) RM . 

The homotopy fromf to f 'h is given at time t by the composition 

M 0-l(An X {0})) Rm X Fx[0, 11 x An X A {} 

Rm X FX[0, 1] X An x H{t} Rm x FX[0, 1] X An x {t} 

-* ~r (A'1 {t} p-+ZRt' x F X A t) x {t} = Rtm x F X A'. 

This proves that (i) implies (ii). 
Since (ii) obviously implies (iii), it remains to show that (iii) implies (i). The 

following assertion first shows how to replace f by a map which has a particularly 
standard form over a'1n. 

ASSERTION 3.4.1. f is f.p. boundedly homotopic rel(R'm x F x A'n) U p-'(aA'1) to a 
map f which has the property that there is an f.p. homotopy G: idM = f rel Rm X F 
X A'n such that fG is a bounded homotopy and fGIp-I(aA'1) is a stationary homotopy. 

PROOF. By Lemma 3.3 there is an f.p. homeomorphism j: R" x F x [0,1] x alAn 

p'((a'1) such that jJR1 X F x {0} >x a'n = id and fj is projection. Since p is 
trivial there is an f.p. homeomorphism h: Rn x F x [0,1] x A'n -- M. By sliced Z-set 
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unknotting it is also possible to assume that hlRn X F x> {0} x AY = id and h IRn x 
F x [0, 11 x a A n = il (see Lemma 5.1). By Theorem 2.3 there is an f.p. homeomor- 
phism H: RmX F X [0,11 XAnR -+ X 1' > F x [0,11 X An such that HIR' x F x {O} 
X An = id, HIR' X F X [0, 1] x ann = id, and pfhH: R' X F X [0, 1]x An -+Rn 
? AVn is close to projection. 

We want to extend jover a neighborhood of aAn as follows. Let aln x [0, 1] be a 
closed collar of ay in An so that aAn x {0} is identified with aAn. Define j: 
Rm x F X [0, 1] x aAn X [0, 11 - p-'(aAy X [O, 1]) by 3 = hH[(H-Ih-rj) X id 
Note that] extends j, that iIR' X F x {O} x aAn x [0, 11 = id, and that pfj is close 
to proj[H-'h-'j x id]. 

Now define an f.p. homotopy G on M by defining Ga: M -- M, 0 < a < 1, as 
follows. First 

G.Jp-I(A\(aA\ >40,1])) = id forO < a < 1. 

Then for (x, f, s, t, u) in R' X F x [0,1]x aAn x [0,1] set Ga(X,J, s, t, U)= 

j(x, f, (1 - a)s + aus, t, u). Note that fG is a bounded homotopy and that fG is 
rel(Rm x F x An) U p-'(aAy). 

Definef: M -- Rn X F x An by setting f = fGI. It remains to show that G exists. 
To this end let K: idM - f be an f.p. homotopy relRm x F x An such that fK is a 
bounded homotopy. Define G by setting 

lA (G2a forO < a < 
Ga = 

a 
.1 

K2G \K2 oGi f or < a 1 

This completes the proof of Assertion 3.4.1. U 

The following assertion shows the existence of a homotopy from f to f 'h. 
ASSERTION 3.4.2. f is f.p. boundedly homotopic to f'h rel(Rn x F x An) U 

p-'( aA). 

PROOF. Let fG: f f and G: idM f be the homotopies defined in the proof of 
Assertion 3.4.1. Then the desired homotopy L: f = f 'h is defined by setting 

ffG2 forO < a <2 
Le 

tf hG2_ for < a <1. 

To complete the proof of the proposition, define L: M X I -- Rm X F X APn X I 
by setting L(x, a) = (La(x), a) for (x, a) in M x I, where La is defined in the proof 
of Assertion 3.4.2. Then L is an f.p. bounded sdr. And by Proposition 3.2, L is f.p. 
boundedly homotopic rel(Rm x F x APn X I) U (p-'(aAy) X I) to L which is an f.p. 
p-'(,u)-equivalence for every [ > 0. This L defines an (n + 1)-simplex in 

-rA(Rm X F) 

showing that [f] = [f'h] in ?Tn'A(Rm x F). Since f' is equivalent to f'h in 
Yf'A(Rm x F), this completes the proof. U 

The remainder of this section is devoted to defining and studying the torsion of 
certain homotopy equivalences to Rm X F x 'An. 
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Consider the following data: 
(I) a bundle p: M -> A'\ with Q-manifold fiber; 

(II) a sliced Z-embedding Rm X F X WA c p`( ); 
(III) an f.p. bounded homotopy equivalence f: M -Rm x F x A'n such that each 

(n - 1)-face of f, fI: p-v(aiAn) - Rm >X F X aiLn for i = 0,1, , n, is equivalent to 
the "base (n - l)-simplex" of #'A (Rm x F). 

When this data is given we will define the torsion of f. The immediate goal is to 
find an f.p. bounded homotopy rel p-`(aA\) of f to a map which represents a class in 

%rn*A(Rm x F). To this end let g: Rm X F X An -- M be an f.p. bounded homotopy 
inverse for f. We may assume that g is a sliced Z-embedding and that gIRm X F X 
aln = id by sliced Z-set unknotting. Identify Rm x F X An with its image under g 
and regard g as an inclusion map. 

Now f is f.p. boundedly homotopic rel p-`(aAW) to a map f: M -- Rm x F X Axn 
which is an f.p. bounded strong deformation retraction. This follows from the usual 
method of turning a weak deformation retraction into a strong deformation retrac- 
tion (see [32, p. 31]). 

By Proposition 3.2, f is f.p. boundedly homotopic rel(Rm X F X> An) U p-`(aAW) to 
a map f: M -- Rm >X F X AXn which is an f.p. p-'(e)-sdr for every - > 0. Then f 
represents a class [f ] in ?Tn*A(Rm x F) and we define the torsion T(f) of f by 
T(f) = [f] 

PROPOSITION 3.5. T(f) is well defined. 

PROOF. Suppose g': Rm x F X A'n -+ M is another f.p. bounded homotopy inverse 
for f such that g' is a sliced Z-embedding and g'IR x F X aA = id. Then g' gives rise 
to another class [f'] in 7n*'A(Rm x F). Here f' is f.p. boundedly homotopic 
rel p-I(aAy) to f. We must show [f ] = [f']. 

Note that g is f.p. homotopic to g' by a homotopy which is bounded when 
projected to Rm x F x An by f. By sliced Z-set unknotting there exists an f.p. 
homeomorphism h: M -+ M such that hg = g' and fh is boundedly close to f. Since 
the homotopy from g to g' can be chosen to be rel R"n x F x aAXn, it can be assumed 
that hlp-l(a/n) = id. That []f = [f'] now follows from Proposition 3.4. U 

Observe that if [f I is in ?Tn*'A(Rm X F), then ff) = []f . The next proposition 
shows how to decide if two torsions are equal. 

PROPOSITION 3.6. Let f: M ->Rm 'X F X AXn and f ': M' -+ Rm nX F X> An be maps 
for which T(f) and (f') are defined. Then T (f) = Tr(f') if and only if there is an f. p. 
homeomorphism h: M -* M' such that hIR`m X F X aAn = id, fhIp-l(oAn) = 

f Ip-l(azy), andf 'h is f. p. boundedly homotopic rel p-`(az\W) to f. 

PROOF. If Tf f) = T(f '), then the definition of torsion and Proposition 3.4 
immediately imply the existence of h. 

On the other hand, suppose the homeomorphism h is given. To define the torsion 
T(f) choose a sliced Z-embedding g: Rm X F x An --> M such that g is an f.p. 
bounded homotopy inverse for f and gIR' x F X a3n = id. It follows that hg: 
Rm x F x An __ - M' is an f.p. bounded homotopy inverse for f'. Now Proposition 
3.4 can be used to conclude that (f) = Tr(f'). U 
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The next proposition is a version of Proposition 3.6 when the bounded homotopy 
equivalences have small 8 control. 

PROPOSITION 3.7. For every E> 0 there exists a 8 = 8(-, m, n) > 0 such that if f: 
M -* Rm x F X An andf': M Rm X F)x An are f.p. p-'()-equivalences and T(f) 

and T(f ') are defined, then T(f) = Tr(f') if and only if there is an f. p. homeomorphism 
h: M -* M' such that h IRm X F X A2 = id,fhIp-l( I\n) = fIp-'(an), andf'h is f. p. 
p _'(i)-homotopic rel p-l(aAy) to f. 

PROOF. The proof is completely analogous to the proof of Proposition 3.6. One 
simply keeps track of the control at each step of the proof. The key observation is 
that if T(f ) is defined to be [f ], then one may assume that f is f.p. p -(E)-homotopic 
rel pI(ay\) to J. 0 

4. Proof of Theorem 3. The purpose of this section is to compute ro*01K(Rm x F) 
by reinterpreting a result of Chapman [8, Theorem 2]. It is first shown how to define 
addition so that ro*01K(Rm x F) becomes an abelian group. 

Let f: M -- Rm x F and f ': M' -- Rm X F represent elements [ f I] and [ f '] of 

?TO&"A(Rm x F). Let N be the Q-manifold obtained by gluing M and M' together 
along their common copy of Rm X F. Define g: N -+ Rm x F by gIM = f and 

gIM' = f'. Of course Rm x F is not a Z-set in N, but g is a p-'(-)-sdr for every 
E > 0. Define [f ] + [f'] to be T(g) in ?To0'A(Rm x F). That this addition operation 
is well defined follows directly from Propositions 3.4 and 3.6. Existence of inverses 
for this addition follows from the usual geometric construction [13, p. 21] with 
control [8, p. 320]. Alternatively, one may note that in what follows we show that 

TO&fIA(Rm x F) is monoid-isomorphic to an abelian group. Inverses then exist 
automatically and ?T0*'A(Rm x F) is an abelian group. Note that the identity 
element is represented by the projection map Rm x F x [0,11 -] Rm x F. 

In [8] Chapman defines Yfb(Rm x F) to be the set of equivalence classes of the 
form [ f ], where f: M -- Rm X F is a bounded homotopy equivalence and M is a 
Q-manifold. Another such map, f ': M' -+ Rm x F, is defined to be equivalent to f 
provided that there is a homeomorphism h: M -- M' for which f 'h is boundedly 
homotopic to f. 

PROPOSITION 4.1. There is a one-to-one correspondence y: ?To0&A(Rm x F) 

Yb(Rm x F). 

PROOF. If f represents a class [f] in ?T,0#A(Rm x F), then f represents a class in 

Yb(Rm x F), also denoted [f ]. Define y([f 1) = [f ]. It follows from Proposition 3.4 
that y is well defined. Now define T: Yb(Rm x F) -t TOOA(Rm X F) by T([f]) = 

T(f), the torsion of f in 0To#'A(Rm x F). It follows from Proposition 3.6 that T is 
well defined. 

It is clear that T o y = id. And it follows from the definition of torsion that 
y o T = id. Thus, y is a one-to-one correspondence. X 

Let Ki(F) denote Wh(Z?T,F) for i = 1, KO(Z?T1F) for i = 0, and K,(ZzrTF) for 
i < 0. In [8, ?8] Chapman defines a one-to-one correspondence a*: S?b(Rm x F) 

Kl im(F). 
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PROPOSITION 4.2. The composition a * y: 0To&A(Rm X F) -+ K1 K-m( F) is a group 
isomorphism. 

PROOF. It suffices to show that that a* y is a group homomorphism. For this one 
needs to examine Chapman's definition of a *. Let [ fi] be an element of 

?T0*A(Rm X F) fori = 1, 2. 

By a wrapping-up procedure Chapman constructs a homotopy equivalence fi: 
M- Tm x F with small control in the Tm-direction for i = 1, 2. Using a relative 
version of this wrapping-up procedure as developed in [23] one may assume that M1 
contains Tm X F as a Z-set and filTm X F = id for i = 1, 2. Chapman shows that 

T(fi) lies in the subgroup Wh(F) @ E2'1("n)K1_i(F) of Wh(T"' X F) and defines 

a*([fil) to be the component of (fi) in K,-m(F). By our choice of Mi we see that 

* Y([f11 + [f2]) = * Y([f1]) + * Y([f2). U 

5. Proof of Theorem 1. In this section we define an isomorphism 

aX: ?Tn*SA(R`> X F) -+ 7Tn_lWb(R> X F). 

The key ingredient which allows us to construct bounded concordances from 
elements of rn*%'A(Rm x F) is Theorem 2.3. 

To define a letf: M -+ Rm x F x A'n represent an element [f ] of ?Tn#'A(Rm x F). 
By Lemma 3.3 there is an f.p. homeomorphismj: Rm X F x [0,11 x 3A'n - p-'(\(aA) 
such that jhRm X F X {0} >x aAn = id and fj is projection. The following lemma 
establishes a particularly useful trivialization of p. 

LEMMA 5.1. There exists an f. p. homeomorphism h: Rn X F X [0,1] >x An1 -- M 
such that h IRn X F X {0} >X An = id and hlRn X F X [0,1] x an\An = jl. 

PROOF. Since p: M -+ AVn is a trivial bundle, one can construct an f.p. homeomor- 
phism h': Rm X FX [0,1] X An -+ M such that h'IRm X FX [0,1] X anAn = jl. It 
follows that h'IR' X F X {O} >X An is f.p. homotopic relRm x F X {0} X an An to the 
identity. The existence of h now follows from sliced Z-set unknotting. U 

With the homeomorphisms j and h in hand, consider the n-parameter family of 
approximate fibrationspjzh: Rm x F x [0,11 x A'n -o Rm x A'n. Note that 

pJhI(Rm x F x [0,1] x anAn) U (Rm x F x {0} x 'n) 

is projection. It follows from Theorem 2.3 that there is an f.p. homeomorphism H: 
Rm x F x [0,1] x An --* Rm x F X [0,1] x A'n such that HI(Rm x F X [0,1] x an An) 
U (R x F x {0} >x An) = id and the composition pJzH is --close to projection. Here, 
E is chosen small enough for the proof of Proposition 5.2 to work. 

Let jn-1 denote the (n - 1)-cell aA'n \ int(an An). Consider the composition 

1 n- HIn I 
h: Rm X F X[0,1 X J'1 Rm x F XF[0,1 X1 J 1' 

hl 1( n-1) 
( 

m vn-I 
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If one considers the (n - I)-simplices of Wb(R' X F) to be parametrized by Jn-1 

(instead of An -), then it follows that h determines a class [h] in 7Tnfllb(Rm x F). 
Define a([ f ]) = [h]. 

PROPOSITION 5.2. a is well defined. 

PROOF. If f: M -+ Rm x F x An represents [f ] in ?Tn#A(Rm x F), we first show 
that the definition of a([ f ]) is independent of the choices for the homeomorphismsj, 
h and H. So suppose that alternative choicesj', h' and H' have been made. 

Consider the f.p. homeomorphism (j')-j: Rm x F x [0, 11 x aAn '_ Rm x F x 
[0, 11 x a\n. Note that (ij)-ljJRm X F X {O} x aAn = id and that (j')-j affects only 
the [0, 1]-coordinate of any point. Then (j')'-j can be thought of as defining a 
parametrized family of homeomorphisms on [0,1] which are fixed on {0, 1}. It 
therefore follows from an Alexander trick that there is a homeomorphism 

j: Rm x F x [0, 11 x a/An x I -- Rm x F x [0, 11 x a\n x I 

such that: 
(i)j affects only the [0, 1]-coordinate of any point; 

(ii)jlRm X F X {O} X a)An X I = id; 

(iii)jlRm x F X [0, 1] X aA O >t = (= -; 
(iv)jlRm x F X [0, 1] x an X x {1} = id. 
Define]: Rm x F X [0, 1] x aAn X I -+ p-'(aAy) X I by setting] = (j' x id)3. 
Since an 

An is a strong deformation retract of An, there is a homotopy ru: APn -,n, 
0 < u < 1, such that ro = id, ruIan An = id, and r(AZn) = a n\n. Define a homeomor- 
phism 

h: Rm X FX[0,11 X An X I Rm X FX[0,11 X An X I 

by setting 

hI(x, f, s, t, u) = (prh'lh'(x, f, s, ri.u(t)), t, ) 

where pr denotes projection from Rm x F x [0, 11 x An to Rm x F x [0,11. Note 
that h has the following properties: 

(i)hIRm X FX {O} x An X I = id; 
(ii) h IRm x F x [0,11 x An X {0} affects only the [0, 11-coordinate of any point; 

(iii) hlRm x F X [0,11 x An X>K {1} = h-lh'; 
(iv) hIRm x F X [0,1] x an/n X I =J-lj'i x id. 
Now h extends to a homeomorphism h: Rm x F X [0,11 x Aln X [-1, 11 Rm x F 

X [0, 1,] X An X [-I, 1] such that: 

(i) hIRm x F X {O} X An X [-1, 11 = id; 
(ii) h IRm x F X [0, 11 x An x [-1, 0] affects only the [0, 11-coordinate of any point; 

(iii) hlRm x F X [0,11 x An X {-1} = id. 
To return to the parameter space I instead of [-1, 1], define 

h*: Rm x F x [0,11 X An X I -+ Rm X F X [0,11 X An X I 

by setting 

h*(x, f, s, t, u) = -h(x, f, s, t,2u - 1). 
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Consider the parametrized family of approximate fibrations 

q = p(f x id)(h x id)h*(H X id): Rm X F X [0,1] x A'n x I -> Rm X A'n X J. 

Note that: 
(i) qlRm X F X {O} X A'n X I is projection; 

(ii) qIRm X F X [0,1] X A'n X {O} = pfhH; 
(iii) qlRm X F x [0, 11 X An X> {1} = pfh'H; 
(iv) qIRm X F X [0, 11 X anAn X I is projection. 
By Theorem 2.3 there is an f.p. homeomorphism H: Rm X F x [0, 11 X A'n X I - 

Rm x F x [0,11 x A'n X I such that: 
(i) qH is close to projection; 

(ii) HIRm X F x {O} x An X I = id; 
(iii) IIRm x F x [0,1] x an\n X I = id; 
(iv) HIRm x F x [0,1] X A'1n X {0} = id; 

(v) fIRm XFX [0,1]X\ An x {1} = H'H'. 
(The reader should beware that we must "reparametrize" the (n + 1)-cell LAn X I so 
that the wording of Theorem 2.3 will apply.) 

Now consider the composition 

G: Rm x F x[0,1] xJ'11 x I Rm X Fx[0,1] xJ1 X I 

(hxid)h*(Hxid)I l( n-1) X (If' nx1 _> pl(J l x - Rm x F x [o,1] x J 1x I. 

Then G is a bounded concordance (parametrized over J n - 1 X I) such that: 
(i) GIRm X F x [0,1] x Jn-1 X {0} = 

(ii) GIRm X F X [0, 1] X Jn-1 X {1} = 

(iii) GIRm X F X [0, 1] X aJn-1 X I affects only the [0, 1]-coordinate of any point. 
Here h and h' are the two concordances which determine the definition of a([f]) 

depending on whetherj, h and H orj', h' and H' are used. 
Finally, one modifies G (by an Alexander trick again) to get a bounded concor- 

dance 

G: Rm X F x [0,1] x Jn-1 X I -> Rm X F X [0,1] x Jn-1 X I 

parametrized over Jn-1 x I such that: 
(i) GIRm X F X [0,1] x Jn-1 X 3I = GI; 

(ii) GIRm x F X [0,1] x aJn-1 x I = id. 
Then G shows that [h] = [h'] in 'rn l-'b(Rm x F). 
To complete the proof of the proposition we must show that the definition of 

a([f ]) does not depend on the choice of a representative of the equivalence class [f]. 
To this end letf': M' -- Rm X F X A'n be a map such that [f] = [f'] in 

7#n'A (Rm X F). 

By Proposition 3.4 there is an f.p. homeomorphism g: M -- M' such that gIlRm X F 
X A'n = id, f'gjp'(aA'1) = f 1, and f'g is close to f. It follows that if j, h and H are 
homeomorphisms used to define a([f ]), then g;, gh and H are acceptable choices of 
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homeomorphisms which can be used to define a([f']) = [h'], where 

Rm x ~ ~ j-1HI h': Rm x F x [0,1] -* Rm x F X [0,1] x Jn-1 

(gh)I 1 (gir' (g), (, )- (Jn-1) -l), Rm x F X [0, 1] x Jn-1. 

Now note that h' = h, where [h] = a([ f ]). U 

PROPOSITION 5.3. a is a group homomorphism. 

PROOF. We only treat the case n = 1, where a: 7r,#14(Rm x F) -> 6rot6b(Rm X F). 
The case n > 1 is similar but easier; it follows more directly from the definitions. 
Recall that the group operation on 7oW6b(Rm x F) is induced by the composition of 
concordances. 

Let [f], [f'] E 7J,(Rm x F). The first step is to define explicitly a map / so that 
[f] + [f'] = [f] in 7%VA(Rm x F). We may assume that f, f ': Rm x F X [0, 1] x A 
-. Rm x F x Al, thatf,f'IRm x F x {0} x A = id, and thatf,f'IRm x F X [0,11] x 

a1 are projections. Moreover, there are homeomorphismsij, ': Rm x F x [0, 1] 1 
Rm x F x [0, 1] x aol such that j, i'lRm x F x {0} = id and fj and f'j' are projec- 
tions. When convenient we will think of j and j' as being defined on Rm x F x [0, 1 
x aol. 

Let pr: Rm x F X -* Rm x F denote projection and define f: Rm x F X [0,1] 
x A\ Rm x F x AS by 

-( ) | ~(prf (x, f, s, 2t), t) for O < t <2 

fX, f S, t) = 

(prf(yj-1(x,f,s,1),2t-1),t) for < t<1. 

Here 1 = [0, 1]. Then [f] + [f'] = [f1. 
Now a([f]) and a([f']) are defined by finding f.p. homeomorphisms H, H': 

Rm x FX [0,1] x A\ -- Rm x FX [0, 1] x A suchthat H, H'IRm x FX {0}XI > = 

id, H, H'lRm x F x [0,1] x alS = id, and pfH and pf'H' are close to projection. 
Then a([f]) = [h], where h is the composition 

HI 
h: Rm x FX[0,1] x adol -Rm x FX[0,1] x a0S 

j-1 

Rm x F X [0,1] x a0tV. 

Similarly, a([f']) = [h']. 
Let pr: Rm x F X [0,1] x 1 - Rm x F X [0,1] denote projection and define H7: 

Rm x F X [0, 1] X l\- Rm x F X [0, 1] x A by 

H(x, f, s, t) (pr H(x, f, s,2t), t) for O < t < 2 

( jpr H'( j-H(x, f, s,1),2t - 1), t) for 2 < t < 1. 
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Then pf H is close to projection and a([f]) = [h], where h is the composition 

h: Rm X F X [0,11xaoAl RmxFx[0,1] x aol 

(J Rm x F x [0,1] x aol. 

To complete the proof observe that h = h'h. U 

PROPOSITION 5.4. a is injective. 

PROOF. Let [f] e 7rnfA(Rm x F) such that a([f]) = 0. To define a([f]) we are 
given homeomorphismsj, h and H as above. Then a([f]) = [h], where h = j-lhHJRm 
x F x [0,11 X J'-1. If [h] = 0 in 'rn-'<6b(Rm x F), there exists a bounded homeo- 
morphism 

G: Rm X F X [0,1] Xi Jn-1 X I - Rm X F x [0, 1] x Jn-1 x I 

which is f.p. over Jn-1 X I, GIRm X F X [0, 1] X Jn-1 X> {0} = h, and G is the 
identity on Rm X FX {O} XJn-1 X I, on Rm X FX [0,1] x ajn-1 x I, and on 
Rm x FX [0,1] XJn-1 x {1}. 

Let 
r: [0,1] X Al X I -> ((0) X A'n X I) U([0,1] X a(A'n X I)) 

be a retraction. Let pr: Rm X F X [0, 1] X A'n X I -, Rm X F X A'n X I denote pro- 
jection. Define D: Rm X F x [0, 1] X A'n x I -3 Rm X F X A'n X I by 

((x, f, t, u) if r(s, t, u) E ((0) X A'n X I) 

D(x, f I s, t, u) = U ([o, 1] X An X { 1}) U ([o, 1] X anAn X I) 
pr G(x, f, r(s, t, u)) if r(s, t, u) e [0,1] X J1n-1 X I, 

(JfzH(x, f, r(s, t, u)), 1) if r(s, t, u) E [0,1] X A'n X (1). 

Note that pD is boundedly close to projection. Thus Proposition 3.1 implies that 
there is an f.p. map D: Rm x F X [0, 1] X An x I - Rm x F X An X I such that 
DIRm x F x {0} x A'n x I = id, DIRm x F x [0,1] X a(A'n X I) = id, and pD is an 
approximate fibration. 

Then D provides a homotopy showing that [JhH] = 0 in 7'n#14(Rm x F). Since 
[f] = [JhH] we have shown ker(a) = 0. U 

PROPOSITION 5.5. a is surjective. 

PROOF. Let [G] e 7rn_-<Pb(Rm x F). Then G is an f.p. bounded homeomorphism 

G: Rm X F X [0,1] x A'n-1 - Rm X F X [0,1] x An-1 

such that 

GI(Rm X FX {0) x A7n-1) u (Rm x FX [0, 1] x aAn-1) = id. 

The straight line homotopy from the projection Rm x F x [0,1] X An-71 - Rm x 
An1 to pG is bounded, f.p., and rel(Rm x F x {0) X An-1) U (Rm x F X [0,11] x 
aA'n-1). This homotopy induces an f.p. map g: Rm x F X [0, 1] X An-1 X> I -) Rm x 
An-1 x I such that: 

(i) gIRm X F X {0) x An` X I = id; 
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(ii) gl(Rm X F X [0,1] X aAn-l X I) U (Rm X F x [0,1] x A'n-1 x {0}) is projec- 
tion; 

(iii) gIRm X F X [0,11 x lA\n-' X {} = pG; 
(iv) g is boundedly close to projection. 
As in Proposition 5.4, using the fact that 

(tO) X An-1 X I) U([O, 1] x a(An-1 X I)) 

is a retract of [0,1] x An-1 X I, we can find an f.p. map g: Rm X F X [0,1] x An-1 

X I -, Rm X F X A'n-' X I such that: 

(i)gIRm x FX {0} x An`- x I= id; 
(ii) gl(Rm x F x [0,1] x aAn-i x I) U (Rm x F x [0,1] x aAn-i X {0}) is pro- 

jection; 
(iii)gIRm X FX [0,1]x xAn-1 X {1} = prG(wherepr: Rm x FX [0,1] x An-1 

Rm X F X A' -1is projection); 

(iv)pg = g. 
By Proposition 3.2 there is an f.p. map g: Rm x F x [0, 1] x An-1 X I -* Rm X F 

X An-1 X I such that gIRm x F X {0} X An-1 X I = id, gIRm x F X [0, 1] x 
a (nA-1l x I) = g , and pg is an approximate fibration. 

Identify An with An-` X I in such a way that an An is identified with (An-' x {0}) 
u (aAni- x I). Then g determines a class [g] in 7n#'" (Rm x F) and one checks that 

a([g]) = [G]. U 

6. Proof of Theorem 2. In this section we define an isomorphism 

/3: 7Tnf'b(R"'l x F) --, 7Tn#(Rm X F). 

The construction is similar to that in [1, ?8]. 
In order to define /3, let [h] be an element of 7TnW'b(Rm?i x F). Thus h is an f.p. 

bounded homeomorphism h: Rm?i x F x [0,1] x An -3 Rm?+ x F x [0,11 x An 

such that hl(Rm?+ x F x {0} X An) U (Rm?+ x F x [0,11 ]X aA'n) = id. Let L be a 

positive number such that ph is (L/4)-close to projection. Write Rm+? as Rm x R 
and define M to be 

h(Rm x(-oo L] x Fx[0,1] X An)\(Rm x(-oo,0) x Fx[0,1X] X An). 

Since M is a subset of Rm+ 1 x F x [0, 1] x An, the projection to A'n restricts to a map 
p: M -+ An. 

Note that Rm x {0} x F x [0,11] X An is a sliced Z-set in M. Definef: M -- Rm X 
{0} x F x [0,1] x An to be the restriction of the projection. We now show that f is 
an f.p. bounded sdr. Let r: Rm?+ x F x [0,1] X An\ -- Rm x (-oo, L] X F X [0,1] x 
An be the obvious retraction which affects only the R-coordinate of any point. Let st: 
Rm?+ x F x [0,1] x A'n -- Rm?+ x F x [0,1] x An, 0 < t < 1, be the homotopy such 
that st multiplies the R-coordinate of any point by t and does not affect the other 
coordinates. (By the R-coordinate we mean the last coordinate of a point in 
Rm+1 = Rm x R.) Finally, define ft: M -- M, 0 < t < 1, by ft = hrh-ist. Then 

fA = id and fo = f. This homotopy shows that f is an f.p. bounded sdr. 

LEMMA 6.1. The map p: M -3 A'n is a bundle with Q-manifoldfibers. 
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PROOF. It is clear that p is a submersion with noncompact Q-manifold fibers. 
There are two alternative ways to show that p is, in fact, a bundle. The author's 
original method was to follow the proof of the Technical Bundle Theorem in [25], 
constructing by hand the radial engulfing isotopies. (It is necessary here to appeal to 
the Q-manifold versions of the submersion theorem and the isotopy extension 
theorem in [17 and 31].) 

The following quicker method was pointed out by the referee. Note that there is 
an f.p. proper retraction R: Rm X [0, 2L] X F X [0,1] x A'n -- M defined by suitably 
restricting hrh-1. Thus, p is a so-called proper fibration and one simply invokes 
Theorem 2 of [10] to conclude that p is a bundle. U 

Since p-'(aA\) = Rm x [0, L] X F X [0,1] x aAn and f lp-l(an) is projection, we 
may take the torsion of f to obtain an element T(f) in ?7rn#A(Rm X F x [0,1]). A 
homeomorphism k: F x [0, 1] - F induces an isomorphism 

k*: ?7Jn#'f(Rm X F X[O, 1]) -3 7Jn-A (Rm X F). 

Now define j3([h]) = k*(T(f )). 

PROPOSITION 6.2. /B is well defined. 

PROOF. We need to show that 13([h]) does not depend on the choices for k, L, or 
the concordance representing [h]. First, it is clear that k*(T(f)) is independent of 
the homeomorphism k: F x [0,1] -* F. 

Second, suppose L' > L is another number. This yields 

Ml = h(R" X(-oo, L'] X F x[O,l] x An)\ Rm X(_oo0) x F X[0,1] X An 

and an f.p. bounded sdr f': M' -* Rm x {0} x F x [0,11 x A'n which is the restric- 
tion of the projection. Let -y: Rm x (-00 , L] X F X [0,11 >X An7 -- Rm X (- oo, L'] 
x F x [0,1] x A'n be the homeomorphism induced by the homeomorphism (-oo, L] 

(-oo, L'] which is the identity on (-oo, L/2] and takes [L/2, L] linearly onto 
[L/2, L']. Define a homeomorphism y: M -- M' by y = h-yh1IM. Then y satisfies 
the hypothesis of Proposition 3.6 showing T(f ) = (f'). 

Finally, let h' be a concordance such that [h'] = [h] in 7TflnWb(Rm"l x F). Then 
there is an f.p. bounded homeomorphism H: Rm?l x F x [0,1] x A'n X I -> R+ 
x FX [0,1] x An X I such that Hl(Rm+l x FX {0} X An X I)u(Rm+l x Fx 
[0, 1] X aAn x I) = id, HIRm+l X F X [0, 1] x An X {0} = h, and HIRm+l X F X 
[0, 1] X A'7 X {1} = h'. Let L > 0 be chosen such that pH is (L/4)-close to projec- 
tion. Then as was done above we obtain 

M = H(Rm X(-oo,L] X FX[O,1] X An X I)\(Rm X(-oo,O) X FX[O,1] X An X I), 

a bundle p: M -\ A' x I, and an f.p. bounded sdrf: M -> Rm x {0} x F X [0,11] X 
An X I which gives rise to a homotopy in #fA(Rm x F X [0,1]) showing that 
/([h]) = /3([h']). U 

PROPOSITION 6.3. /B is a group homomorphism. 
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PROOF. This follows almost immediately from the definitions. U 

The following simple variation of Alexander's trick will be useful in the next 
proposition. 

LEMMA 6.4. Let h: Rm+l X F X [0, 1] XAn -- Rm+l X F X [0, 1] x An be a bounded 
homeomorphism such that h = id on (Rm x (-oo , 0] x F X [0, 1] X An) U (Rm+l x F 
X {0} X An) U (Rm+l x F X [0, 1] x d?n). Then h is f.p. boundedly isotopic to the 
identity rel(Rm x (-oo, O] x F X [0,1] x An) U (Rm+l x F x {t} X An) U (Rm+l x 
F x [0,1] X aAn). 

PROOF. Define 8,: R -- R for 0 < s < 1 by 8,(t) = t - s/(s - 1). Then E5 
induces e3: Rm +1 x FX [0,1] X An -Rm+l X FX [o,1]xAn defined by OS =id 
x OS x id. Define hs: R"+l X F X [0,1] x An -- Rm+ 1 x F X [0,1] x An by hs = 

3s sOh, for 0 < s < 1 and h =id. Then hs: h = id, 0 < s < 1, is the desired 
isotopy. - 

PROPOSITION 6.5. /3 is injective. 

PROOF. Let [h] e .7rnfb(Rm+l x F) such that 13([h]) = 0. Suppose ,B([h]) = 

k *(T(f )) is defined as above. Thus, we have an f.p. bounded sdr f: M -- Rm x {0} 
x F X [0,1] X An such that T(f) = 0. 

As a representative of 0 in 7nS#A(Rm x F X [0,1]) we use the projection pr: 
Rm X [0, L] X F X [0,11] X An - Rm X F X [0,1] x An . By Proposition 3.6 there is 
an f.p. homeomorphism H: M -* Rm X [0, L] X F X [0, 1] X A' such that pr H is 
boundedly homotopic tof rel p-1(aAW) and HiRm x {0} X F X [0, 1] X A' = id. (This 
latter statement is somewhat stronger than Proposition 3.6. We are actually using the 
fact that f is a sdr, the definition of torsion, and Proposition 3.4.) By sliced Z-set 
unknotting we may also assume that HI(Rm x [0, L] X F x {0} x An) U (Rm x 
[0, L] X F X [0, 1] X aAn) U (Rm X {L} X F X [0, 1] X An) is the identity. The ho- 
motopies needed to apply sliced Z-set unknotting come from pushing along the 
[0, L] and [0, 1] factors. 

Now define a hybrid concordance h: Rm +1 X F x [0,1 ]X An -* Rm+1 X F x 
[0,1] X Anby 

{h onRm X[L, +oo) X F X[01I] x An 
h={Iyl1 on:Rm X[,0L] XFX[0,1] x An, 

tid onRm x0(-oo,] x FX[0.1] X An. 

Apply Lemma 6.4 to see that h-1h and h are both f.p. boundedly isotopic to the 
identity rel(Rm+l x F x (0) X An) U (Rm+l x F X [0,1] x aAn). This shows that 
[h] = [h] = [id] in 7fnW'b(Rm+l X F). Thus, [h] = 0 and the kernel of /B is 0. U 

PROPOSITION 6.6. /3 is surjective. 

PROOF. It will be shown that k-1/3: 7rnWb(Rm+l X F) -* t7n*%A(Rm X F X [0, 1]) is 
surjective. We treat the two cases n = 0 and n > 1 separately. For the n = 0 case let 
T E 7r0A(Rm X F X [0,1]). Using the method of [11, p. 200] we will construct a 
bounded concordance h: Rm+l x F X [0, 1] -* Rm+l X F X [0, 1] such that 
k*1/([h]) =T. 
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We first need a decomposition Mi U Ni = Rm X [i, i+ 1] X F X [0,1] for every 
integer i, where 

(i) Mi and Ni are Q-manifolds, 
(ii) Mi n Ni = Pi is a Q-manifold collared in both Mi and Ni, 

(iii) Rm X { i} X F x [0, 1] c int Mi and Rm x { i + 1} x F x [0, 1] c int Ni, 
(iv) Mi n (Rm X [i, i + 1] x F X {0}) = Rm X [i, i + 2] X F x {0} and Ni n (Rm 

X [i, i + 1] x F x {0}) = Rm x [i + , i + 1] x F x {0}, 
(v) the projections Mi -- Rm X {i}X > F X [0,1] and Ni -> Rm X {i + 1) X F X 

[0, 1] are bounded sdr's with torsions T and -, respectively, 
(vi) there is a homeomorphism gi: Rm x F X [0,1] -- Pi such that gi is boundedly 

homotopic in Mi to the inclusion Rm X F x [0, 1] - Rm X { i} X F x [0, 1], and in 
Ni to the inclusion Rm X F X [0,1] -> Rm x {i + 1) x F x [0,1]. Also, gi : Rm X F 
X {0} - Rm x {2} x F X> {0} is the identity. 

To get such a decomposition (say for i = 0), let Rm x [0, 2] X F x [0,1] and 
Rm x [ 1] x F x [0, 1] be contained as Z-sets in the Q-manifolds M and N, 
respectively. Letfo: M -Rmx [0, X Fx [0,1] andfl: N -Rm X [21] x Fx 
[0, 1] be bounded sdr's such that fj followed by projection to Rm X { j} x F x [0, 1] 
for] = 0, 1 represents Tor -T, respectively. Let Ml be the union of M and N along 
Rm x {2} x F x [0,1] and definef: M -- Rm X {O} X F x [0,1] to befo Uf1 fol- 
lowed by projection. Then (f) = 0. 

Therefore, one can construct a homeomorphism H: Ml -- Rm x [0,11] x F x [0,1] 
such that HI(Rm x {o,1} x F x [0, 1]) U (Rm x [0, 1] x F x {0}) = id and H fol- 
lowed by projection is boundedly homotopic to f. Then set MO= H(M) and 
No = H(N). 

Now one defines a bounded homeomorphism h :Rm X [i- i, + 2] X F X [0,11 
Ni_-1 U Mi so that hiIRm x [i- i i + x] F X {0} = id. By using Z-set un- 

knotting we can assume hiIRm x {i + 2} x F x [0,1] hi?1I. Then the hi's piece 
together to define h. 

For the case n > 1 let T E 7rn#A(Rm X F X [0,1]) be given. Let a(T) = [h] E 
Jnlnl-'b(R" X FX [0,1]), where h: Rm x FX [0,1] x [0,1] x 'An-l > Rm x Fx 

[0,1] x [0,1] x An-1 is a bounded homeomorphism f.p. over An-1 such that h IRm X 
F x [0, 1] x {O} x A'n-1 = id and h IRm x F x [0,1] X [0,1] X aAn-l = id. By sliced 
Z-set unknotting we may assume that h IRm x F x {O, 1) >X [0, 1] x A'n-1 = id. 

By a familiar construction (see [1, 20, 21 and 22]), we will show there is an element 
[h] e G7lnWb(R"+1 x F) such that ak */3([h]) = [h]. Since a is injective, we will have 
k*1j3([h]) = T. 

To construct h, let a: (0,1) -> R be an increasing homeomorphism such that 
(2) = 0. For 0 < u < 1, define Tu: Rm x F x R x[0, 1] x An-l' Rm x F x R x 

[0,1] x An-l by Tu(x, f, y, s, t) = (x, f, y + c(u), s, t). Define h: Rm X F X R X 
[0,1] x AIn-l1 - Rm x F x R x [0, 1] x An-' by extending h via the identity. Recall 
I = [0,1]. Now define h: Rm x F X R x [0,1] x A'n-1 x I -* Rm X F X R X [0,1] 
X An-1 x Iby 

(X,fy,Y s, t, U) = (Tu;hT(x, f,y,s,t),u) forO<u<1, 
{(x,f, y,s, t,u) foru = 0,1. 
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Identify An -1 X I with An in such a way that An -1> X {}1 is identified with Jn -1. 
Then [h] e 7TnfWb(Rm?l x F) and we claim ak*1j([h])= [h]. First recall how 
k *1/([h]) is defined. Choose L > 0 large and set 

M = (Wn X F X (-o, L] x [o,l] X An-' X I) \(Wn X F X (-Xoo ) X [0, ] X An-' x I). 

Maps p: M -) A'\n-1 X Iandf: M-, Rm x FX {0} x [0,1] x A'n-` x Iare defined 
to be the restrictions of the projections. Then k*1/([h]) = (f). 

To define a(T (f )) we need a trivializing homeomorphism H for p: Ml -3 A'n-1 X I. 
Define H: Rm x F x [0, L] x [0, 1] X An-1 x I -> Mby 

{( 
xT(x,f,yst)( 

f(or T<uh 1 

H(x, f, y, s, t, u) = hTu(x, f, y, s, t), u) for 0 < u < 2 

(, f, y, s, t, u) for u = 0. 

Note that pfH is boundedly close to projection. 
It follows that a(T(f)) is represented by HIRm x F x [0, L] x [0, 1] x A'n-1 X {1} 

(after [0, L] is identified with [0, 1]). This is clearly the class of h. Thus ak*1/([h]) = 

[h] as desired. U 
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