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SECTION 1:
INTRODUCTION

This work is concerned with parameterized families of approximate
fibrations from a Hilbert cube manifold (that is, a Q-manifold) M to a
polyhedron B. We present a method for detecting those parameterized
families of maps which are close to parameterized families of approxi-
mate fibrations. When M and B are compact this results in showing that
the space of approximate fibrations from M to B is locally n-connected
for each non-negative integer n.

Approximate fibrations were introduced by Coram and Duvall {8] as
a generalization of both Hurewicz fibrations and cell-like maps. Since
then approximate fibrations have been studied by several authors
(see [5], [9], [13], [16]). Recently, Chapman proved the following

important theorem:

THEOREM ([2, Theorem 11). Let B be an ANR and let a be an open
cover of B. There exists an open cover B of B so that if M is a Q-
manifold and £ : M - B is a B-fibration, then f is a-close to an approx-

imate fibration.
OQur main result is a parameterized version of Chapman's theorem.

THEOREM 1. (See Theorem 10.2). Let B be a polyhedron, let n 2 0
be an integer, and let a be an open cover of B. There exists an open
cover B of B so that if M is a Q-manifold and £ : M x I">Bx1I"isa
fiber preserving map such that ft : M~ B is a B-fibration for t in "
and an approximate fibration for t in BIn, then there is a fiber pre-

serving map £ : M X 1" - B x I" such that ?t is an approximate fibration
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a-close to £, for t in " and E|M x 31" = £|M x 31",

The shell of the proof of Theorem 1 is the same as the proof of
Chapman's theorem, however, there are several major technical differ-
ences. One of these differences is that in the course of the proof we
encounter non-compact Q-manifolds parameterized by submersions to )
Hence, we are forced to recast some basic fibered Q-manifold theory in a
new setting (see Section 3). Another point which requires delicacy at
every step of the proof is achieving the condition }IM x 31" =
f|M x 3I". This is also the reason that we restrict ourselves to poly-
hedral bases whereas Chapman's theorem allows for arbitrary ANRs. We
remark that a relative version of Theorem 1 is also obtained.

. Many authors héve studied local properties of spaces of certain
types of maps. Of particular relevance here are the theorems of

Ferry [14] and Haver [15]. Ferry proved that the homeomorphism group

of a compact Q-manifold is an ANR, while Haver proved a theorem which
implies that the space of cell-like maps from a compact Q-manifold to
itself is weakly locally contractible (and therefore, locally n-connected

for each n 2 0). Our main result implies the following:

COROLLARY. (See Section 10). Let M be a compact Q-manifold and
let B be a compact polyhedron. Then the space of approximate fibrations
from M to B endowed with the compact-open topology is locally n-con-
nected for each n 2 0. Moreover, the same is true of both the space of
cell-like maps and the space of monotone approximate fibrations from

M to B.

This paper is organized as follows. Section 2 consists of prelim-

inary notations, definitions and facts. Section 3 contains the previously



mentioned results on fibered Q-manifold theory. In Section 4 we intro-
duce for technical reasons a variation on e-fibrations which we call
(e,u)-fibrations. Section 5 contains a key result about families of
e-fibrations parameterized by finite dimensional polyhedra. We show
that such families have a certain sliced, or parameterized, lifting pro-
perty. The restriction to finite dimensional parameter spaces is the
main reason why we are unable to prove stronger results on spaces of
approximate fibrations (for example, local contractibility). In
Section 6 we prove that the various types of fibrations which we en-
counter have the appropriate stationary lifting properties.

Sections 7 through 9 contain the core of the proof of Theorem 1.
These sections are modelled on the proof of Chapman's theorem [2]
quoted above. Finally, in Section 10 we present the proofs and complete

statements of our main results.



SECTION 2:
GENERAL PRELIMINARIES

Most of our notation and definitions are standard. Except for the
various function spaces which we consider, all spaces are locally com-
pact, separable and metric. We use R" to denote euclidean n-space and

n n n . . 1
Br to denote the n-cell [-r,r] c¢ R . The circle is denoted by S~ and
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the n-torus is T" = S X eee X Sl (n times). The standard n-cell is

"= [0,1]n and its (combinatorial) boundary is a1, If X is a space
and A < X, then we use both A and int(A) to denote the topological in-
terior of A in X. The closure of A in X is denoted by cl(A). If X is a
compact space, then c(X) denotes the cone over X. That is, c¢(X) =

X x [0,+0]/~, where ~ is the equivalence relation generated by

(x,0) ~ (x',0) for all x, x' in X. Similarly, E(X) = X x [0,+0)/~ de-
notes the open cone over X, and for any r in [0,+»] let cr(X) =

X x [0,r]/~ and ¢ (X) = X x [0,1)/~.

The Hilbert cube Q is represented by the countable infinite product
of closed intervals [-1,1]. A space M is a Hilbert cube manifold or
Q-manifold if it is locally homeomorphic to open subsets of Q. Our
reference for Q-manifold theory is Chapman's book [1] which should be
consulted by the reader unfamiliar with the basic machinery of Q-
manifolds including the notion of Z-sets.

Amap f : X >~ Y (i.e., a continuous function) is proper provided
f'l(C) is compact for all compact subsets C of Y. If a is an open cover
of Y, then a proper map £ : X -~ Y is said to be an a-fibration if for

all maps F : Z x [0,1] =Y and g : Z + X for which fg = F_, there

0,
is amap G : Z x [0,1] - X such that Gy = 8 and fG is a-close
to F (that is, given any (z,t) ¢ Z x [0,1] there is a U ¢ o containing
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both £G(z,t) and F(z,t)). If C ¢ Y and a is an open cover of Y, then a
proper map £ : X - Y is said to be an a-fibration over C provided the
condition above is satisfied when the maps F : Z x [0,1] + Y are required
to satisfy F(Z x [0,1]) <« C. If € > 0, then we also use € to denote the
open cover of Y by balls of diameter €. Thus, we speak of e€-fibrations.
A proper map f : X + Y is an agpproximate fibration provided it is
an g-fibration for each open cover a of Y. We only consider approximate
fibrations which are defined between ANRs. The abbreviation ANR is for

absolute netighborhood retract. The following lemma is used repeatedly.

LEMMA 2.1. Let B be an ANR and let C be a compact subset of B with
a compact neighborhood €. For every a > 0 there exists a B =
B(a,C,E,B) > 0 such that if € > 0 and £ : E - B is an e-fibration over
C, then f has the following lifting property: given maps
F:2Zx[0,1]>CcBandg: Z~+E such that fg is B-close to FO’ there
exists amap G : Z x [0,1] ~ E such that Gy = 8 and £fG is (a+€)-close

to F.

For a proof of Lemma 2.1, see [8, Proposition 1.2] or [9, Lemma 1.1].
These two papers should also be consulted for other basic results on ap-
proximate fibrationms.

A closed subset A of an ANR X is cell-like if it is contractible
in any neighborhood of itself. A proper map f : X > Y between ANRs is
cell-like provided f'l(y) is cell-like for each y in Y. A cell-like map
is also an approximate fibration. A map £ : X + Y is monotone provided
f'l(y) is connected for each y in Y.

If o is an open cover of Y, then a homotopy H : X x [0,1] + Y is

an o-homotopy if for each x in X there exists a U in a containing



H({x} x [0,1]). For other similar conventions, the reader is referred
to [2].

Finally, if X is a space (not necessarily locally compact) and nz0
is an integer, then X is said to be loeally n-comnected (written LCn) if

for each x in X and each open subset U of X containing x, there exists

aIn+1

an open subset V of X such that x ¢ V ¢ U and any map £ : + V ex-

tends to a map £ : 1"l + U,



SECTION 3:
BASIC Q-MANIFOLD THEORY IN A SUBMERSIVE SETTING

In this section parameterized versions of some basic results from
Q-manifold theory are developed. The Q-manifolds are parameterized by a
submersion over a polyhedron. The main results are a mapping replace-
ment theorem (Proposition 3.7), a sliced Z-set unknotting theorem
(Proposition 3.9), and a stability theorem (Proposition 3.15). There
are certainly more general results than those presented here, but we re-
strict ourselves to proving only what is needed in the sequel. Related
parameterized Q-manifold theories can be found in [6], [3, Section 2],
and [14, Section 4]. In fact, we rely heavily on both the results and
ideas of those papers (together with [1] of course) for the proofs of

our theorems.

DEFINITION 3.1. Amap m : E > B is a submerston if for each x in
E, there is an open neighborhood F of x in ﬂ-l(w(x)), an open neighbor-
hood N of w(x) in B, and an open embedding ¢ : F x N - E such that m¢
is the projection F x N -+ N ¢ B and for each y in F ¢ E, ¢(y,m(x)) = y.
We call ¢ a product chart about F for m. If C < E and for each x in C,
the neighborhood N of w(x) can be chosen to be all of B, then we say T

has nice ceross secticns on C.

If T : E > B is a proper submersion for which the fibers ﬂ_l(b),
b ¢ B, are Q-manifolds, then w is actually a bundle projection. This is
proved in [17] with {12] supplying the necessary deformation theorem
(see also [7]). Unfortunately, we will encounter in the sequel submer-
sions whose fibers are non-compact Q-manifolds, and it is that fact
which makes this section necessary. However, we will be working on
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compact pieces of the submersion and the following theorem due to
Siebenmann is the main technical tool which allows us to deal with this

situation (again, see [12] for a major ingredient).

PROPOSITION 3.2. ([17, Corollary 6.15]). Let 7 : E ~ B be a submer-
sion such that w'l(b) is a Q-manifold for each b in B and let C c E be a
compactum such that w(C) is a point. Then there exist an open neighbor-
hood F of C in n‘l(n(C)), an open neighborhood N of w(C) in B, and a pro-

duct chart ¢ : F x N > E about F for .

The following definition is a slight generalization of that given

in {14] for sliced Z-sets in products.

DEFINITION 3.3. Let m : E - B be a submersion and let K be a closed
subset of E. Then K is said to be a sliced Z-set if for every open cover
U of E there is amap £ : E >~ E \ K such that f is U-close to id and

wf = 7.
The following theorem characterizes sliced Z-sets incertain products.

PROPOSITION 3.4. ([6, Theorem 3.1]). Let m : M x B - B be projec-
tion where M is a Q-manifold and B is a polyhedron and let K < M X B be
closed. Then K is a sliced Z-set if and only if K n ﬂ-l(b) is a Z-set in

7 L(b) = M x {b} for each b ¢ B.

REMARKS ON PROOF. Since one will not find Proposition 3.4 worded
exactly like this in [6], we indicate here how it may be derived from
the results of [6]. The non-trivial part of this proposition is to start
with a closed set K « M x B such that K n ﬂ-l(b) is a Z-set in n'l(b) for

each b in B and then show that K is a sliced Z-set. Under these



conditions we can use [6, Theorem 3.1] to get a homeomorphism
h:MxB+Mx Qx B such that h(K) <« M x {0} x B and ph = 7 where
p:MxQx B+ B is projection (recall Q = [—l,llm). Given an open
cover U of M x Q x B, it will suffice to produce a map
f:MxQxB->(MxQx B)\ (Mx {0} x B) such that £ is U-close to id
and pf = p. To this end, write M x B = u2=1 Ci where each Ci is compact
1 1 g S Mg < eee SO that if
f:MxQxB-+>MxQx B is a map with the property that f(m,q,b) =

and Ci c int Ci+ Choose integers n, < n

(ml(ql,qz,...,qnl,qﬁl+l,qﬁl+2,...),b) for ‘each (m,b) e C; \ int C; ; and
q € Q, then f is (-close to id. Let ¢ : M x B » [1,+0) be a map such
that ¢_1([1,ni]) = Ci for each i = 1,2,... . Construct a map

a: Qx [1,+0) » Q so that if n, ST, and q € Q, then

ala,r) = (9;,95,---,9, a7 l+1,q5. »1,1,1,..0)
1+ 1

1
pasees
i+l e qni+2

+1

Finally, define f : M x Q x B>~ (M x Q x B) \ (M x {0} x B) by f(m,q,b)

(m,0(q,$(m,b)),b) for each (m,q,b) in M x Q x B. O

Using Propositions 3.2 and 3.4 we now characterize compact sliced

Z-sets in certain submersions.

PROPOSITION 3.5. Let w : M -+ B be a submersion where B is a poly-
hedron and n'l(b) is a Q-manifold for each b in B and let K < M be
compact. Then K is a sliced Z-set if and only if K n n'l(b) is a Z-set

in 71 (b) for each b in B.

PROOF. We only need to prove the "if" part of this proposition.
Using Proposition 3.2 and the compactness of K, we find Q-manifolds Fi’

open subsets Ni of B, compact polyhedra Bi c Ni’ and product charts
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§; ¢t Fy x N, » M for i = 1,2,...,k such that K < uj_; ¢;(F; x B;) and
Kn ﬂ-l(Bi) c ¢i(Fi X Bi)' Using Proposition 3.4 one sees that

Kn ¢i(Fi X Bi) is a sliced Z-set in ¢i(Fi X Ni) for each i = 1,2,...,k.
From this it follows by a standard argument that each K n n'l(Bi) =

K n q)i(Fi X Bi) is a sliced Z-set in M (see the proof of Theorem 3.1(4)
in [11). By another standard argument it follows that K is a sliced

Z-set in M (see the proof of Theorem 3.1(3) in [1]). O

We now state a mapping replacement theorem from [6] from which we
will derive an analogous result. A sliced Z-embedding is an embedding

onto a sliced Z-set.

PROPOSITION 3.6. ([6, Theorem 4.1]). Let m : M x B ~ B be projec-
tion where M is a Q-manifold and B is a polyhedron. Let AO be a closed
subset of the space A and let £ : A > M x B be a proper map such that
f]A0 : Ao +M x B is a sliced Z-embedding. Then for any open cover U of
M x B there is a sliced Z-embedding F:A->M>xB such that f is U-close

to f, Z’|A0 = f|A,, and 7f = uf.

PROPOSITION 3.7. Let w : M ~ B be a submersion where B is a poly-
hedron and n'l(b) is a Q-manifold for each b in B. Let A0 c A be com-
pacta and let £ : A ~ M be a map such that flAO P AT M is a sliced

Z-embedding. Then for every € > 0 there is a sliced Z-embedding

f : A+ M such that f is e-close to f, ?IAO f[AO, and Tf = 7f.

PROOF. As in the proof of Proposition 3.5, we find Q-manifolds
Fi’ open subsets Ni of B, compact polyhedra Bi < Ni’ and product charts
, )

¢i : Fi X Ni +M for i =1,2,...,k such that f(A) < Yio1 q)i(F.l x Bi
-1 : _ -l
and f(A) n 7 (Bi) c d)i(Fi X Bi)' Define Ai-f (£E(A) n ¢i(Fi X Bi))
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for i =1,...,k. Note that A = uk Ai and that each Ai is compact. In-

i=1

ductively define maps f = %O’%l""’?k = f from A into M such that for
i=1,...,k we have:

i) fi is €/k-close to fi-l;

ii) “é'i|Ai is a sliced Z-embedding;

iii) fiIA0 UA Ut UA S fi-llAO UA Ut U AL s

iv) wf, = mf.

i

-~

It is then clear that f = fk satisfies the conclusions of the proposi-
tion. To get the maps }i’ first use Proposition 3.6 to get
£ f'l(f(A) n ¢;(F; x N;)) ~ ¢, (F; x N;) such that £, is close to
~ -1 . . . .
fi-llf (£f(A) n ¢, (F; x N.)), f; is a sliced Z-embedding into
-1 i~
¢; (F; x N,), fil[(AolJAllJ°" VA, ) n £ (£(A) n ¢, (F; x N;))T = fi_ll,

-~

and wfi = rf|. If £, is close enough to Ei- » then f, extends via £

1‘ i-1

to our desired map %i :A-M 0

The next step is a result on the separation of sliced Z-sets.
Again the proof will be to argue locally using the appropriate result

from [6].

PROPOSITION 3.8. Let m : M »~ B be a submersion where B is a poly-
hedron and n_l(b) is a Q-manifold for each b in B. Let K and L be com-
pact sliced Z-sets in M, let U be an open subset of M containing K, and
let U be an open cover of U. Then there is an isotopy H : Mx [0,1]+M

such that

i) Hy = id;

ii) H [M\ U= id for each t in [0,1];
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iii) H|U x (0,1] is a U-isotopy;
iv) mH(m,t) = w(m) for each (m,t) in M x [0,1];

v) H (K) n L = p.

PROOF. As usual choose Q-manifolds Fi’ open subsets Ni of B, com-
pact polyhedra B.l < Ni’ and product charts ¢i : F.1 x Ni +UcM for
. k -1
i=1,2,...,k such that K ¢ Uio1 d)i(Fi X Bi) and Kn 7 (Bi)<=¢i(Fix Bi).

For each i =1,2,...,k let K; = K n ﬂ-l(Bi). Using [6, Theorem 2.1] we

find for each i = 1,2,...,k an isotopy HY @ M x [0,1] - M such that

i) H; id;

ii) Ht|M \ ¢, (F, x N,) = id for each t in [0,1];

iii) Hll¢i(Fi x Ni) x [0,1] is a small isotopy;

iv) wHi(m,t)

m(m) for each (m,t) in M x [0,1];

ol

v) Hi(Ki) nL =P,

Our isotopy H : M x [0,1] + M is defined by H(m,t) = H§t>Ht'l

1
0o oHt (m)
for each (m,t) in M x [0,1]. If each H' is a small enough isotopy, then
H|U x [0,1] will be a U-isotopy and H, (K) n L = p. The other require-

ments on H are trivial to check. O

We are now in a position to prove the following sliced Z-set

unknotting theorem.

PROPOSITION 3.9. Let m : M - B be a submersion where B is a poly-
hedron and W'l(b) is a Q-manifold for each b in B. Let A be a compactum
and let F : A x [0,1] = M be a map such that Fy and F1 are sliced Z-
embeddings and wF(a,t) = wF(a,0) for each (a,t) in A x [0,1]. Let U be
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an open subset of M containing F(A x (0,1]) and let U be an open cover
of U by which F is limited. Then there is an isotopy H : M x [0,1] -+ M

such that

i) Hy = id;

ii) HtIM \ U = id for each t in (0,1];
iii) H|U x [0,1] is a U-isotopy;
iv) wH(m,t) = w(m) for each (m,t) in M x [0,1];

v) HlFO = Fl'

PROOF. By Propositions 3.7 and 3.8 we may assume that F is a
sliced Z-embedding. Choose Q-manifolds Fi’ open subsets Ni of B, com-
pact polyhedra Bi c Ni’ and product charts ¢i : Fi X Ni + U c M for
. i k
i=1,2,...,k such that F(A x [0,1]) < Ui ¢i(Fi X Bi) and
F(A x [0,1]) n w'l(Bi) c ¢i(Fi x B;). Since F is an embedding we can

find an open cover V of U by which F is limited such that stk(V) refines

U. Using [6, Theorem 5.1] we can find for each i = 1,2,...,k a homeo-
morphism h, : F, x N, » F, x N, x (0,1] which takes F({a} x [0,1])
linearly onto ¢'1F(a,0) x [1/3,2/3) « Fy x N; x {0,1] for each a in
F_I(FO(A) n ﬂ-l(Ni)). We also require that phi = p where p denotes pro-
jection onto N,. Define an isotopy th: : PNy x[0,1]-)-F1 XNIX[O,IJ,

0<tc<1, so that G1 = id, Gi affects only the [0,1]-coordinate of any

0
point, and Gi slides h,[F(A x {oh) n W-I(Bl)] up to

h,[F(A x {1}) n ﬂ-l(Bl)]. If Gi is limited by an appropriate open cover,
then the isotopy ¢hi1Gihl¢'1, 0 <ts 1, extends via the identity to a

V-isotopy H1 : M x [0,1] - M. Define A A~ [0,1] so that
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Hi(F(a,O)) = F(a,p,(t)) for each a in A. Then DIIFBI(FO(A) n ﬂ_l(Bl)) =1
-1 -1
and pllFO (FO(A) \ 7 (Nl)) = 0.
Using this same procedure again, we construct a V-isotopy
Hz : Mx [0,1] M and a map Py ¢ A + [0,1] such that Hin(F(a,O)) =
F(a,0,(t)) for each a in A and pz|F61(FO(A) n n‘lcal U B,)) = 1. Contin-

k

uing this process will give us isotopies HI,HZ,...,H such that the iso-

k 2 1
t

topy H : M x [0,1] -+ M defined by Ht =H eveeroH oH, 03 tsg 1,

satisfies the conclusions of the proposition. [

We will now deduce a strong relative version of sliced Z-set

unknotting.

PROPOSITION 3.10. Let m : M -~ B be a submersion where B is a poly-
hedron and n'l(b) is a Q-manifold for each b in B. Let A, < A be

compacta and let F : A x [0,1] -~ M be a map such that F, and Fl are

0
sliced Z-embeddings and mF(a,t) = 7F(a,0) for each (a,t) in A x [0,1].
Suppose further that FtlAO tAprMisa sliced Z-embedding for each t
in [0,1]. Let U be an open subset of M containing F(A x [0,1]) and let

U be an open cover of U by which F is limited. Then there is an isotopy

H: Mx[0,1] - M such that

i) HO = id;

ii) Hth \ U = id for each t in [0,1];

iii)  H|U x [0,1] is anst(U)-isotopy;
iv) mH(m,t) = w(m) for each (m,t) in M x [0,1];
V) HlFO = Fl;

vi) H.Fylag = F 1A, for each t in [0,1].
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PROOF. Define £ : A x [0,1] - M x [0,1] by f(a,t) = (F(a,t),t) for
each (a,t) in A x [0,1]. Using Proposition 3.5 it is easy to see that
f] (Ag x [0,11) v (A x {0,1}) : (A5 x [0,1]) v (A X {0,1}) = M x [0,1] is
a sliced Z-embedding with respect to the submersion
7 x id : Mx [0,1] - B x [0,1]. Moreover, £f(A x [0,1]) « U x [0,1] and
for each a in A there is a U_ in U such that f({a} x [0,1]) < u, X (0,11
(we fix such a Ua for each a in A). Using our mapping replacement
theorem (Proposition 3.7) we find a map f:Ax[0,1]+Mx[0,1] close
to £ such that ?|(A0 x [0,1]) u (A x {0,1}) = £, pf = pf where
p=mxid : M x [0,1] - B x [0,1], and such that f is a sliced
Z-embedding with respect to p. If T is close enough to £, then
£({a} x [0,1]) < U_ x [0,1] for each a in A.

Define a homotopy Gs : Ax [0,1] >Mx [0,1], 0ss<5 1, by
G (a,t) = (p,‘\I}(a,st),t) for each (a,t) in A x [0,1] where
Py M x [0,1] - M is projection., Note that GO(a,t) = (F(a,0),t) and
G, (a,t) = f(a,t). Also, PG (a,t) = (1F(a,0),t) and {G} is limited by
{u, x [0,1]|a e A}.

Using sliced Z-set unknotting (Proposition 3.9) we get a homeomor-
phism g : M x [0,1] - M x [0,1] such that g|(M \ U) x [0,1] = id,
g|u x [0,17 is {u' x [0,1]{U" ¢ U}-close to id, pg = p, and g°G; = G,.

Qur isotopy H : M x [0,1] » M can now be defined by
Hm,t) = pyg™ (gp(m, 1) . O

The next result is a collaring theorem for submanifolds which are

sliced Z-sets.

PROPOSITION 3.11. Let w : M - B be a submersion where B is a poly-

hedron and ﬂ'l(b) is a Q-manifold for each b in B. Let N c M be a
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sliced Z-set such that wIN : N+ B is a submersion and ﬂ_l(b) nNis a
Q-manifold for each b in B. Then there is an open embedding
¢ ¢ Nx [0,1) + M such that $(n,0) = n for each n in N and mY(n,t) = w(n)

for each (n,t) in N x [0,1).

PROOF. Using small product charts for 7 and w|N and the fact that
Z-set Q-submanifolds are collared [1, Theorem 16.2] it is easy to see
that N is locally collared in M by embeddings which respect w. Then the
usual proofs that locally collared implies collared show the existence
of our y (the reader should consult [3, Proposition 2.5] and
[14, Corollary 4.10] for similar invocations of the proof of Brown's

collaring theorem). O

We now begin proving a sequence of lemmas which will be used to
establish our stability result (Proposition 3.15). The strategy is
somewhat different here in that we will work in nice horizontal neigh-
borhoods rather than in vertical neighborhoods as in the preceding pro-

positions.

LEMMA 3.12. Let G be an open subset of Q x I" and let G be an open
cover of G. Then there exists a homeomorphism h : G x Q - G G-close to

projection such that ph = p where p denotes projection to ",

PROOF. The proof is only a slight modification of the proof of
stability for open subsets of Q as presented in [1, Section 13]. We only
sketch the argument here; for more details see [1].

Construct a map a : Q x " x Q x [1,+=) =+ Q x 1" such that if
o, Q x In x Q-+Qx I" is defined by ar(q,t,q’) = a(q,t,q',r) for

r =21, then
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i) each ar is a homeomorphism;

ii) if m £ r, where m is an integer, then
ar((qi) ’t’q') = ([ql aq2’ LR A ,qm’q;l'l+1’q.:1’l+2’ .. ‘)!t)

Write G = u:=1 Am where each Am is compact, Am < int Am+1’ and for
integers k1 < kz < ees, we have ((ql,qz,...,qkm,qim*l,qém+2,...),t) in
Am whenever ((qi),t) is in Am.

Choose integers 21 < 12 < ee¢+ 50 that each km < Qm and if
f:G6GxQ~+G is a map which preserves the first Qm-coordinates and the
I"-coordinate of any point in (Am \ int Am-l) x Q, then £ is G-close to
projection (we are requiring f to send (q,t,q') to
((ql,qz,...,qlm,qzm+l,qﬁm+2,...),t) whenever (q,t,q') is in
(Am \ int Am—l) x Q.

Define a director map ¢ : G + [1,+=) so that if (q,t) is in G and

j-= min{lml(q,t) € Am}, then
i) ¢({q,t)) 2 j;
ii) ¢((q,t)) = ¢((q',t)) if q; = q} for i < j.
Finally, define a homeomorphism h : G x Q - G by h((q,t,q')) =

a(q,t,q',6(q,t)) and check that ¢ satisfies the conclusions of the

lemma. {J

The next lemma is similar to [1, Lemma 14.1]. For a definition of

variable products see [1, Section 14].

LEMMA 3.13. Let U be an open subset of Q x 1" and let U be an open
cover of U. If (Q x In) X Q is a variable product, then there exists a

homeomorphism g : U x, Q> U such that
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i) pg = p where p denotes projection to In;

ii) g is U-close to projection onto U.

PROOF. Let G = {x ¢ Ulr(x) = 0}. Then G is open in Q X I" and we
can use Lemma 3.12 to find a homeomorphism h : G x Q - G which induces

the desired homeomorphism g : U x Q + U. 0

LEMMA 3.14. Let W c I™ be open and let U be an open cover of
U=Qx [0,1]xWeQx[0,1]x I If (Qx[0,1]x1IM x Q and
(Q x [0,1] x ™ X Q are variable products such that r|Q x {1} x "=
s|Q x {1} x I", then there is a homeomorphism g : U X Q-U X Q

such that
i) gl@x {1} xw x_ Q-=id,
ii) pg = p where p denotes projection to ",

iii) qg is U-close to q where q denotes projection to

UcQx([0,1] x I",

PROOF. By Lemma 3.13 there are homeomorphisms h : U X Q-+ U and
f:U Xg Q - U close to projection such that ph = p = pf. Note that the
inclusions (Q x {1} x W) x.Q cUx.Q and (Q x {1} x W) x, Q cUx.Q
are sliced Z-embeddings with respect to projection to 1", It follows
that h{(Q x {1} x W) x. Q and £l(Q x {1} x W) x, Q are close sliced
Z-embeddings. By sliced Z-set unknotting there is a homeomorphism
g :Qx[0,1] xW-Qx[0,1] x W such that pg = p, g§ is close to id and
gohl(Qx {1} x W) x. Q= £| (we are using (6, Theorem 5.1] here which
works in a non-compact setting). Then g = f_léh is the desired

homeomorphism. [
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We are now ready for our stability theorem.

PROPOSITION 3.15. Let m : M + I" be a submersion such that ﬁ_l(t)
is a Q-manifold for each t in I". Let Wec I" be an open set and let
C c¢ M be a compactum such that w has nice cross sections on some compact
neighborhood €C of C in M. For every open cover U of M there is a map
f: MxQ~>Mwith the following properties:

i) f is U-close to projection;

ii) £lM\ n'l(W)) xQ: M\ ﬂ-l(W)) xQ+MA\ w'l(W) is

projection;

iii) £ is a homeomorphism over C n ﬂ'l(W);

iv) wf(m,q) = w(m) for each (m,q) in M x Q.

PROOF. Using the facts that T has nice cross sections on C and

that Q-manifolds are locally homeomorphic to Q x [0,1), we can find open

embeddings ¢i : Qx[0,2) x ) G M, i

~

C o 6:(Qx00,1/21 x 1) and mo,

to In.

1,2,...,k, such that

p where p denotes projection

We inductively define maps s; ¢ M~ [0,1] for i = 0,1,...,k, as

follows. First set Sy = 1. Assuming 1 € i £ k and that Si.1 has been

defined let s5 be a map such that s; = 0 on u;=1 ¢j(Q x [0,1/2] % In)

and s, =s; ,on M ¢i(Q x [0,1) x In).

-1

Using Lemma 3.14 for each i = 1,2,...,k choose a homeomorphism

£, 1 6,(Q % [0,11 x W) x,

i Q- ¢i(Q x [0,11 x 1) X Q such that

i-1 i
fi|¢i(Q x {1} x W) xsi . Q is the identity, pf, = p, and pyf; is close
to py where py denotes projection to M. Each f, extends via the identity
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to a homeomorphism %i : n_l[W) X Q- n'l(W) Xq Q. If each pri is
i-1 i
close enough to p,, then the composition f| o <. o ?1 : ﬂ'l(W) x Q-
n'l(W) x, Q followed by projection ﬂ'l(WJ x, Q= n'l(W) extends via
k k

projection to the desired map f : M x Q = M. [

REMARK 3.16. A theorem similar to Proposition 3.15 can be proved
whose conclusion is the existence of a map £ : M x {0,1] = M with the
same properties as the map f of Proposition 3.15. This is accomplished
by first proving a lemma analogous to Lemma 3.12 where now we want a
homeomorphism h : G x [0,1] - G (such a lemma in fact follows from
Lemma 3.12). Then notice that Proposition 3.15 followed rather mechani-
cally from Lemma 3.12 so that we may replace Q by [0,1] in the appro-

priate places.



SECTION 4:
(e,u)-FIBRATIONS

In this section we study a technical variation of the definition of
an e-fibration which we call an (e,u)-fibration. Our main result is
Theorem 4.8 which roughly says that a map which is an e-fibration glo-
bally and a p-fibration over a piece of the range has a certain 1lifting
property which takes into account both the € and u control. This result
will be used in Sections 7 and 9. The proof of Theorem 4.8 is modelled
on the proof of Proposition 2.2 in [2]. In fact, Theorem 4.8 is impli-
citly assumed in the proofs of Theorems 3.3 and 5.2 in [2].

Preliminaries for this section include a generalization of the fact
that close maps into an ANR are homotopic by a small homotopy (Proposi-
tion 4.2) and a variation on the estimated homotopy extension property

(Proposition 4.3).

DEFINITION 4.1. Let AcB, ¢ >0, and u > 0. Let £: X > B be
a map.
i) Amap g : X + B is (g,u)-close to f with respect to A if £

is €-close to g and f|f'1(A) is p-close to g|f'1(A).

ii) Amap g : X » B is (e,u)-homotopic to f with respect to A if
there is an €-homotopy H : X x [0,11 - B from f to g such
that H|£1(A) x [0,1] is a p-homotopy. We call H an

(e,u) -homotopy from f to g with respect to A.
(Beware: These relations are not symmetric).

PROPOSITION 4.2. Let B be an ANR and let A and C be compact sub-
sets of B with A ¢ C. For every € > 0 there exists a § > 0 such that

21
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for every u > 0 there exists a v > 0 so that the following statement is
true:
if £f,g : X = C c B are maps such that g is (6,v)-close
to f with respect to A, then g is (g,u)-homotopic to f with

respect to A (as maps into B).

Moreover, the homotopy H from f to g can be chosen so that it is
stationary wherever these maps agree (that is, if x is in X and f(x) =

g(x), then H(x,t) = f(x) for each t in [0,1]).

PROOF. Let € > 0 be given and let C be a compact neighborhood of
C in B, Choose § > 0 so that any two 28-close maps into C are e/2-
homotopic in B (with the homotopy stationary wherever the two maps agree).

Let y > 0 and set u' = min(y,8,e/2). Choose v > 0 so that any two
v-close maps into C are M'-homotopic in B (with the homotopy stationary
wherever the two maps agree). Also assume that the u'-neighborhood of C
in B is contained in C.

Let f,g : X + C ¢ B be two maps with g (§,v)-close to f with respect
to A. Since f|f'1(A) is v-close to glf'l(A), there is a p'-homotopy
F: £1(A) x [0,17 ~ B such that F, = £|£7 (A) and F, = gl£1(A). By the
estimated homotopy extension property (see [4, Proposition 2.1]) there is

-

a u'-homotopy F:Xx [0,1] - B which extends F and such that FO

f.
Note that the image of F is contained in C.

Now ?1 is 28-close to g and El = g on f‘l(A), so there is an
g/2-homotopy G : X x [0,1] - B such that G0 = ?1, G1 = g, and
G 1) = g|£71(A) for each t in [0,1]. We define H : X x [0,1] ~ B

by



E(x,2t) if 0sts %-,
H(x,t) = 1
G(x,2t-1) if i-s ts1.

Then H is an g-homotopy and Hlf_l(A) x [0,1] is a p-homotopy.

We now modify the proof so that H will be stationary wherever f and
g agree. Let Z c X be the agreement set of f and g. In the proof above
let F be defined on (f’l(A) v Z) x [0,1] and assume that it is stationary
on Z, Then ?1 = g on f'l(A) u Z so we can assume that thf'l(A) uZs=
g|f'1(A) u Z for each t in (0,11. O

PROPOSITION 4.3. Let A be a closed subset of the ANR B and let X
be a closed subset of the space Y. Let € > 0 and p > 0. If
f:Y~+Bis amapand F : X x [0,1] B is an (¢,u)-homotopy from £|X
to F1 with respect to A, then F extends to an (€,u)~-homotopy

F:Yx[0,11~+B from f to ?1 with respect to A.

PROOF. We assume that pu s €. Since FI[f'l(A) n X1 x [0,1] is a
p-homotopy, the estimated homotopy extension property implies that
Fl[f'l(A) n X) x [0,1] extends to a u-homotopy F: f'l(A) x [0,1] + B
with ﬁo = flf'l(A). Since F and F agree on [f'l(A) n X1 x [0,1] we can
define F* : [£-1(A) v X] x [0,13 - B by F*|£"1(A) x [0,1] = F| and
F*|X x [0,1] = F|.

Now F* is an (e,u)-homotopy from f] to FI with respect to A. In
particular F* is an g-homotopy so by another application of the esti-
mated homotopy extension property, F* extends to an e-homotopy
F:Yx {0,1] = B with F. = f. Then F is clearly an (g,u)-homotopy from

0

f to Fl with respect to A. {J

DEFINITION 4.4. Let D and C be subsets of the ANR B with D < C.
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Amap p : E » B is said to be an (g,u)-fibration over (C,D) where € > 0
and p > 0, if given maps F : Z x [0,1] +C c B and £ : Z -~ E with

pf = FO’ then there is amap G : Z x [0,1] -~ E such that G, = £ and pG is

0
(e,u)-close to F with respect to D. The map G is called an (e,u)-lift of
F with respect to D.

Similarly, we say that p : E = B is an (e,u)-fibration over (C,D)

for compacta when the condition above is required to hold only when Z is

compact.

LEMMA 4.5. Let B be an ANR and let C and D be compact subsets of B
with compact neighborhoods C and D, respectively, in B such that
CcCcDecD. For every € > 0 there exists a § > 0 such that for every
@ > 0 there exists a v > 0 so that if p : E - B is a (§,v)-fibration
over (E,B) for compacta, then the following statement is true:

Let Z=2, v Z

1 X, < Zl \ 22, and Xz < 22 \ Z1 be given

2’ 7

.where Z, Z,, Z X{» and X, are compact. Let there be given

1’ =2
maps F : Z x [(0,1] »C and f : Z + E with pf = FO’
¢l . Z; x[0,11>E with Gg = f]Z.1 and pGi (§,v)-close to
F|Zi x [0,1] with respect to D for i = 1,2. Then there is a
map G : Z x [0,1] + E such that pG is (e,p)-close to F with
respect to D, G, = f, and GIXi x [0,1] = Gi|Xi x [0,1] for

i=1,2,

PROOF. Given € > 0 choose §' > 0 such that §' < €/2 and the &'~
neighborhood of C in B is contained in C. Choose 8 < 0 such that § < &'
and such that § < &(8') where §(&') comes from Propbsition 4.2 (with

A=Dand C = ().
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Given u > 0 choose v' > 0 such that v' < /2 and the v'-neighbor-
hood of D in B is contained in D. Choose v > 0 such that v < v' and
v < v(v') where v(v') comes from Proposition 4.2 (with A =D and C = 0.
Assume that we are given the situation of Lemma 4.5. Choose a com-

pact neighborhood xi of xi in Zi such that Xi n Z1 n z2 =@ for i

fl

1,2,
Define G : ((i1 u Xl) x [0,11) v (Z x {0}) >~ E by Glii x [0,1] = Gil for
i =1,2 and G|Z x {0} = f. Then pG is (§,v)-close to F| with respect to
D. It follows from Proposition 4.2 and the choices of § and v that there
is a (8',v')-homotopy from F| to pG with respect to D.

By Proposition 4.3 the map pG extends to a map F' : Z x [0,1] - B
which is (§8',v')-close to F with respect to D. Note that the image of F'
is contained in C.

Define a homotopy Rt : 2 x[0,11+2Zx[0,1], 0s t <1, such that

i) R, = id,

ii) Rt|[(x1 u X,) x [0,11) v (Z X {0})] = id for each t in [0,1],

iii)  Ry(Z x [0,1]) < ((i1 u 22) x [0,11) v (Z x {0}).

Note that pGR, = F'Rj. Since p is a (§,v)-fibration over (C,D) for com-

0
pacta, there is a homotopy H_: Z x (0,11 ~E, 0 st s 1, such that

i) H, = GRO,
ii) th is {§,v)-close to F'Rt with respect to D for each t
in [0,1],

iii) Ht|[((X1 u X)) x [0,1) u (Z % {oh1 = H0| for each t in

o,11.

(To achieve condition iii) we are using the stationary lifting property.

See Section 6.)
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It can be checked that G = H, : Z x [0,1] - E is the desired (g,u)-

1
1lift of F with respect to D. [0

LEMMA 4.6. Let B be an ANR and let C and D be compact subsets of B
with compact neighborhoods C and D, respectively, in B such that
CcCcDcD. For every € > 0 there exists a 6 > 0 such that for every
p > 0 there exists a v > 0 so that the following statement is true:

if p: E+ B is a (§,v)-fibration over (E,ﬁ) for compacta,

then p is an (g,u)-fibration over (C,D).

PROOF. Our 6 and v are chosen according to Lemma 4.5. We also
assume that § < ¢ and v < u. Let p : E - B be given as in the hypothe-
sis. We want to show that p is an (g,u)-fibration over (C,D). To this
end let Z be a space (a local compactum of course) and suppose we are
given maps F : Z x [0,1] ~C cBand £ : Z+~ E such that pf = FO' Write
Z = u?=1 Zi where each Zi is compact and Zi n Zj = § implies |i -jl s 1.

For each i write Zi = xil v xiZ where Xij is compact for j = 1,2,

Xi2 n Zi-l = f, and Zi n Zi+l c xiz n X(i+1)1.

><
.
.
.

11 12 21 31

Since p is a (§,v)-fibration over (E,B) for compacta, we can find
for each i, a map G* : Z; x [0,1] = E such that Gé = f[Zi and pG* is
{(6,v) -close to F]Zi x [0,1] with respect to D. For each i we will in-

ductively define a map ¢t : ( u;=1 Zj) x [0,1] »- E with the
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following properties:

1

i) Gy = £l5

i) G LIT] 2 v Xy _y,d % (0,11 = &7

as ai i
iii) G lxiz x [0,1] = G |;
iv) pﬁl is (g,u)-close to F with respect to D.

To start off the induction set g - Gl. Assuming that G! has been de-

fined, we proceed to define 61*1. Since §1+1 is to extend

~i i-1 . . . ai+l
G I[(uj=l Zj) u X;;1 % [0,1], we will just define G on X;, U Z;,4

al+l

(in such a way that G [(Xil n X)) x [0,1] = G']). To do this we
simply use Lemma 4.5 to piece together ﬁllxiz x 0,11 = G'|and ¢**! o
get an (g,u)-lift §1+1 such that al+l|(xil n Xin x [0,1] = ﬁll and such
ai+l _ i+l
that G ]x(i+l)2 x [0,1] =G "].
Finally, the map G : Z x [0,1] -+ E, defined so that G|Zi x [0,1] =
i+l

G~ 7, is the required (g,u)-1ift of F. O

LEMMA 4.7. Let B be an ANR and let K< K ¢ V< C ¢ U ¢ B where K
and C are compact, V and U are open, and Kis a compact neighborhood of
K. For every € > 0 there exists a § > 0 such that for every u > 0 there
exists a v > 0 so that if p : E - B is a §-fibration over U and a v-
fibration over V, then the following statement is true:

whenever F : Z x [0,1] ~ C and f : Z - E are maps such

that pf = F, and for each z in Z, F({z} x [0,1]) lies either

0
in int K or in C \ K, then there is a map G : Z x [0,1] = E

such that G0 = f and pG is (e,u)-close to F with respect to K.

PROOF. Given € > 0 simply choose § > 0 so that § < €. Givenu > 0

choose v' > 0 so that § + V' < g, v'<yu, and the v'-neighborhood of C in
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B is contained in U. Choose v > 0 so that any two v-close maps into K
are v'-homotopic in V.

Let p, F and f be given as in the hypothesis, Define
2, = {z e Z|F({z} x [0,1]) < int K} and 2; = {z € z|F({z} x (0,1])

meets K}. Note that Z. < Zl’ Z, is closed in Z, and Z1 is open in Z.

1 1
Since p is a v-fibration over V, there is a map G1 Py x {0,1] ~ E such
that Gé = f|Z1 and such that pGl is v-close to F|(Z1 x [0,11). Thus pG1

and F|Z1 x [0,1] are Vv'-homotopic inV. Using the estimated homotopy ex-
tension property we can extend pG1 to a map F' : Z x [0,1] - B such that
Fb = f and such that F' is v'-close to F. Note that the image of F' is

contained in U.

=S - .
Since Z, is closed in Z and Z; is open in Z, we can use a Uryshon

1 1
map to define a homotopy Rt : Zx[0,11>2Zx [0,1], 0=t =<1, with the

following properties:
i) Ry = id;
i) R |(Z; x [0,11) v (z x {0}) = id for each t in [0,1];
iii)  Ry(Z x [0,17) < (z; x [0,1]) v (Z x {o}).

Define Gl : (zy x [0,1]) v (2 x {0}) = E by Gll(Z1 x [0,10) = ¢! and

él](Z x {0}) = £. Note that pGlR0 = F'Ry. Since p is a §-fibration over

U, there is a homotopy Ht : 2x[0,1]+E, 0<t <1, such that
i) H, = GR
i) H |2 x [0,12) v (z x {0}) = &!| for each t in [0,1],
iii) pH, is §-close to F'R, for each t in [0,1].

(To achieve condition ii) we are again using the stationary lifting pro-

perty. See Section 6.)
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Finally, the map G = H, : Z x [0,1] - E is seen to be the desired

1
(e,p)-1ift of F over (C,K). O

We are now ready for our main result of this section.

THEOREM 4.8. Let B be an ANR and let K Vc C ¢ U < B where C and
K are compact and U and V are open in B. For every € > 0 there exists a
§ > 0 such that for every u > 0 there exists a v > 0 so that the follow-
ing statement 1is true:
if p: E~> B is a §-fibration over U and a v-fibration

over V, then p is an (e,u)-fibration over (C,K).

PROOF. Let K = Ky € K| © K, € Kg ¢ V where each K, is a compact

neighborhood of Ki_1 in B and let C = CO c Cl

a compact neighborhood of Ci-l in B, Let € > 0 be given and choose

§' > 0 such that &' < €/2, the §'-neighborhood of C \ Ky in B is con-

c C2 < U where each Ci is

tained in C1 \ K, and the §'-neighborhood of K2 in B is contained in

int K3. Choose 61 > 0 such that 61 < 6(8') of Proposition 4.2 with

A = K. Finally, choose & > 0 such that § < G(min(e,dl)) of Lemma 4.7

with K = KS’ K=K, and C =C

1 1’
Let u > 0 be given and choose v' > 0 such that v' < p/2 and the

1 Choose vl > 0 such that
v, S v(v') of Proposition 4.2 with A = K. Finally choose v > 0 such

that v < v(min(u/Z,vl)) of Lemma 4.7 with the choices described above.

v'!-neighborhood of K in B is contained in K

With these choices we will show that p : E - B is an (e,u)-fibra-
tion over (C,K) for compacta. Of course, to be technically correct we
should replace C, K by E, K and use Lemma 4.6 to conclude that p is an

(e',p')-fibration over (C,K), but we will omit these further epsilonics.
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Let F : Zx [0,1]+C<cBand f: Z -+ E be maps such that pf = F

0

and Z is compact. Let 0 = t <t

{0,1] so that each F({z} x [t

<eee <t =1 be a partition of
i_l,tij) lies in either int K2 or C\ Kl.
We will inductively define maps Gtz x [O,ti] +E for i =0,1,...,n

with the following properties:
. i i-1 .. . 0
i) G~ extends G if i >0 and G = £f;
ii) pG1 is (g,u)-close to FIZ x [O,ti] with respect to K;

iii)  pGt|z x {t;} is (8;,v;)-close to F|Z x {t;} with respect

to K for i < n.

Of course, G" will be the desired (e,u)-1ift of F with respect to K.
Assuming that Gi has been defined, we proceed to define Gi+1

(0 £i<n). Since pGi|Z x {ti} is (8,,v;)-close to F|z x {ti} with re-

spect to K, there is a (§',v')-homotopy H from F|Z x {ti} to pGi|Z><{ti}

with respect to K. Using the homotopy H we can 'pull F|Z x Ct,,1] around

the corner created by H" to get a new map F' : Z x [0,1] + B satisfying:

i) F'|Z x [0,t;] = pG’;

i) F'|z x [ty,,,11 = F|;

iii) F'|Z X [ti,l] is (8',v')-close to F| with respect to K;

iv) each F'({z} x [ti,ti+1]) lies in either int K3 or C1 \ K.
Since Gl+1 is to extend G' we only need to define G1+1 on
. . ivl |
Z x [ti’ti+1]‘ Using Lemma 4.7 we can find a map G .Z><[ti,ti+1] -+ E

so that

) ez x (e =6tz x {t,),
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s s i+l . . .
ii) PG is (min(e/2,$;) ,min(u/2,v,))-close to F'|Z><[ti,ti+1]

with respect to Kl.

This completes the inductive step and also the proof of the theorem. (J



SECTION 5:
SLICED €-FIBRATIONS

In this section we present a key lemma for our proof that certain
spaces of approximate fibrations are locally n-connected. The main re-
sult here is Theorem 5.3 which says that a family of §-fibrations par-
ameterized by a finite dimensional polyhedron has a certain sliced

ge-lifting property. We begin with some definitions,

DEFINITION 5.1. Let E, B, and X be spaces and let C ¢ B. A map
f:ExX~+BxXis said to be fiber preserving (f.p.) if pr = py vwhere
Py denotes projection to X. If € >0 and £ : EX X > B X X is a proper
f.p. map, then we say f is a sliced e-fibration over C x X if f satisfies
the following sliced e-lifting property over C x X:

if F:2Z2x([0,1]xX+>CxXcBxXandg:2ZxX=>EXxXX

are f.p. maps such that fg = F_, then there exists a f.p. map

0’
G:2x[0,1]xX~>EXxX such that G, = g and £G is e-close

to F.
If C = B, then f is called a sliced e-fibration.
We will need the following lemma for the proof of Theorem 5.3.

LEMMA 5.2. Let £ : E x X + B x X be a proper f.p. map where E and

B are ANRs. Let C be a compact subset of B and let C be a compact neigh-
borhood of C in B. Let € > 0 and suppose for each x in X
£, = £f|]E x {x} : E=Ex {x} »B x {x} =B is an e-fibration over C.
For every o > 0 there is an open cover U of X such that if XO is any sub-
set of X contained in some member of U, then £|E x Xj : E x X; > B x X,
is an (a+g)~fibration over C x XO‘

32
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PROOF. Given the hypothesis above, choose B = B(a/S,C,E,B) by
Lemma 2.1. Choose the open cover U of X so that the diameter of any
member of U is less than o/3 and so that fx is B-close to fy over C when-
ever x and y are elements of a common member of U.

Let XO be a subset of X contained in some member of U. Let maps
F:Zx(0,1]~Cx Xy and g : Z +~ E X XO be given such that fg = FO.

Since the diagram

Pg = PT0]
ExX + E
0
£ lf
X
Pg = Proj
Bx X, —+ B

g-commutes over C where X ¢ X0 is fixed, the choice of B implies the
existence of amap G : Z x [0,1] -+ E such that G0 = Pp8 and fo is
((a/3)+e)-close'u3pBF. Define H : Z x {0,1] - E X XO by H(z,t) =

(G(z,t),pxg(z)). Then H is seen to be an (a+g)-1ift of F. [

THEOREM 5.3. Let C be a compact subset of the ANR B and let C be a
compact neighborhood of C in B. Let n be an integer. For every € > 0
there exists a § > 0, § = G(s,n,C,E,B), such that if E is an ANR, X is
an n-dimensional polyhedron, and £ : E X X + B x X is a proper f.p. map
such that fx is a 6-fibration over C for each x in X, then £ is a sliced

g-fibration over C x X.

PROOF. The proof is by induction on n. The theorem is clearly
true for n = 0 by taking G(E,O,C,E,B) = ¢£. Assume n > 0 and that the

theorem is true for n - 1. Let € > 0 be given and choose B-=8(£/4,C,E,B)
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by Lemma 2.1. Let & = &(e,n,C,C,B) = min{e/8,5(8,n-1,C,C,B)}. Let

f: ExX=+BxX be given as in the hypothesis. By Lemma 5.2 we can

consider X to have such a fine triangulation that if ¢ is any simplex of

X, then f|E x 0 : E x ¢ - B x g is an (e/4)-fibration over C X d. Note

that pr|E Xx g : Ex g+ B is also an (g/4)-fibration over C. We also

assume that fx is (e/2)-close to fy over C whenever x and y are in g.
Given f.p. maps F : Z x [0,1] x X+ C x X< B x X and

g : 2ZxX-+E x X such that fg = FO, the inductive assumption implies

the existence of a f.p. map G : Z x [0,1] x X1 5 E x x™! such that
G, = glz x X1 and £G is B-close to F|Z x [0,1] x X1 (here KL e
notes the (n-1)-skeleton of X). Define g : [Z x [0,1] % Xn-ll )

n-1

[Z x {0} x XJ - E x X by g|z x [0,1] xX = G and g(z,0,x) = g(z,x).

Let g be an n-simplex of X and note that the pair
(z x [0,1] x 0,[Z x [0,1] x 30] v [Z x {0} x 0]) is homeomorphic to the
pair (Z x [0,1] x 1,2 x {0} x I™). Hence, there exists a map

T=c : Z x [0,1] x 0 + E x 0 such that T=0|[2><[0,1]xao]u[Zx{o}xo]=§|

and pr ﬁc is (e/2)-close to pBFI. (F. is not assumed to be f.p. .)

o}
Define F : 2 x [0,1] x X + E x X by ?|Z x [0,1] x o = ?0 whenever ¢ is an

n-simplex of X and F|Z x [0,1] x G Finally, define

H: Zx[0,1] xX=>Ex X by H(z,t,x) (pEﬁ(z,t,x),x). Then H is seen

to be the desired sliced e-1ift of F. {J

The proof of Theorem 5.3 lends itself to a technical generalization

which we state without proof below. First we need another definition.

DEFINITION 5.4, Let E, B, and X be spaces and let K< C < B. If
g,u >0and £ : Ex X + B x X is a proper f.p. map, then we say f is a

sliced (e,n)-fibration over (C x X,K x X) if f satisfies the following
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lifting property:
if F: Zx[0,1]xX+CxXcBxXandg:2ZxX+ExX
are f.p. maps such that fg = FO, then there exists a f.p. map
G: 2 x([0,1] xX~=E x X such that G0 = g and £G is (g,u)-

close to F with respect to K x X.

PROPOSITION 5.5. Let K< Ve C c U c B where C and K are compact
and U and V are open subsets of the ANR B, For every integer n and
€ > 0 there exists a § > 0 such that for every yu > 0 there exists a v > 0
so that the following statement is true:
if E is an ANR, X is an n-dimensional polyhedron, and
f: ExX=>Bx X is a proper f.p. map such that each fx is
a (6,v)-fibration over (U,V), then £ is a sliced (e,p)-

fibration over (C x X,K x X},



SECTION 6:
STATIONARY LIFTING PROPERTIES

In this section we present a proof that e-fibrations have the sta-
tionary e-lifting property. The same result for approximate fibrations
appears in [8]. Their proof is based on the usual proof of the analogous
result for Hurewicz fibrations as found in [10, Chapter XX]l. Our proof
is somewhat different from those proofs in that we do not use lifting
functions. A disadvantage of this is that we do not recover the sta-
tionary lifting property for abstract spaces (of course, this is not im-
portant to us). An advantage is that our simple proof readily gener-
alizes to other types of fibrations that we encounter, for example sliced

g¢-fibrations and (eg,u)-fibrations. We begin with a definition.

DEFINITION 6.1. Let p : E+ B be a map and let C < B. Ife >0,
then p is said to have the stationary e-lifting property over C if given
maps F : Z x (0,11 ~C c B and g : Z -+ E such that pg = FO’ there exists

g, pG is e-close to F, and G is

amap G : Z x [0,1] -+ E such that G,
stationary with F, that is, whenever z e Z such that F(z,t) = F(z,0) for

each t in [0,1], then G(z,t) = G(z,0) for each t in [0,1].

THEOREM 6.2. If ¢ > 0 and p : E + B is an e-fibration over C < B,

then p has the stationary e-lifting property over C.

PROOF. Let F : Z x [0,1J+C c B and g : Z >~ E be maps such that
pg = F,. Let A = {z € Z|F(z,t) = F(z,0) for each t in [0,1]}. Then A
is a closed subset of Z. Let ¢ : Z - [0,1] be a map such that p"l(0)==A.
For each z ¢ Z \ A, let 8(z,*) : [0,p(z)] - [0,1] be the unique linear
map which takes 0 to 0 and p(z) to 1. Define ¢ : 2x[0,11+Zx[0,1] by
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(z,0) if ze A,
¥(z,t) = -1
(2,6 “(z,t)) if z e Z\ A .
Thus, ¢ is the map which is the identity on Z x {0}, squeezes Z x {1}

down to the graph of p, and is linear on each interval {z} x [0,1].

Define F* : Z x {0,1] = C by

F(z,0(z,t)) if ze Z\ Aand 0 < t s p(z),
F*(z,t) =
' Fl(z) if p(z) st=<1.

Since p is an e-fibration over C, there exists a map G* : Z x [0,11 ~ E

such that Gy = g and pG* is e-close to F*. Define G : Z x [0,1] - E by

G*(z,67 (z,t)) if zeZ\A,
G(z,t) =
g(z) if z e A

Then G0 = g and G is stationary with F. Also pG is €-close to F. To see

that G is continuous, just notice that G = G*oy. (0

DEFINITION 6.3. Let p : Ex X+ B x X be a £f.p. map, let € > 0,
and let C ¢ B. Then p is said to have the sliced stationary e-lifting
property over C x X if given f.p. maps F : Z x [0,1] x X~ C x X and
g : Zx X+ Ex X such that pg = FO, there exists a f.p. map
G: Zx[0,1] xX->E x X such that G0 = g, pG is €-close to F, and G is

stationary with F.

PROPOSITION 6.4, If e >0 and p : Ex X+ B x X is a f.p. map such
that p is a sliced e-fibration over C x X, C < B, then p has the sliced

stationary e-lifting property over C x X,
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REMARKS ON PROOF. The proof of this proposition is almost word-for-
word like the proof of Theorem 6.2. The map F* will be f.p. and thus G*

can be assume to be f.p. . It then follows that G will be f.p. . O

We could also define the stationary (e,u)-lifting property over

(C,D).

PROPOSITION 6.5. If e,u > 0 and p : E - B is an (e,u)-fibration
over (C,D), D ¢ C < B, then p has the stationary (e,u)-lifting property

over (C,D).

REMARKS ON PROOF. The proof of this proposition is almost word-
for-word like the proof of Theorem 6.2, Just require G* to be an (g,M)-

1ift of F* with respect to D. [

Of course, there are also analogous results for sliced (e,u)-fibra-
tions and for those fibrations which have the lifting property for a

certain class of spaces (for example, compacta).



SECTION 7:
PARAMETERIZED ENGULFING

In this section we establish the key engulfing results used in the
sequel. These results are stated as Theorems 7.3, 7.8, and 7.9.
Lemma 7.1 contains the basic geometric engulfing move used in the proof
of Theorem 7.3. Generalizations of this result are contained in
Lemmas 7.4 and 7.5. These lemmas are established using sliced Z-set

unknotting.

DATA FOR LEMMA 7.1. Let B and Z denote ANRs where Z is compact and
Z xR is an open subset of B. Given an integer n 2 0, let & :In-+[0,1],
a_ In->£-1,0], and p : Rl [-1;,0] be maps satisfying the following

conditions:
1) 10y v et car”,
ii) o = 0 on a neighborhood of o 1(0) u o~ (0),

iii) « (t) < p(t) for each t ¢ 1"\ o 1(0).

We now define four subsets of Z xR x I" ¢ B x I, Let
E = {(z,x,t)|a (t) s x < a ()}, E_= {(z,x,t)|a_(t) = x}, E, =
{(z,x,t)|a+(t) = x}, and X = {(z,x,t)|a_(t) < x s p(t)}. Note that X ¢ E
and BdE = E_ v E_.

Finally, let Y be a compact subset of E which misses E_ and

Z xR x [a:l(OJ u a:1(0]]. Denote projection to Z by Py and projection

to R by p,.

LEMMA 7.1. For every € > 0 there exists a § > 0 such that if M is
a Q-manifold and f : M x [0,1] x "+-Bx1"isa f.p. map which is a
sliced §-fibration over Z x [-2,2] % In, then there is a f.p.
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homeomorphism u : M x {0,1] x " > M x (0,13 x 1" such that
. -1 ‘ n -1
i) £5(Y)y n (M x {0} x I") < uf "(X),
ii) u is supported on f'l(int E),

iii)  there is a f.p. homotopy u_ : id = u, 0 £ s £ 1, which is
supported on f'l(int E) and which is a (plf)-l(e) -homotopy

over Z XR X In.

PROOF. Let N, be a compact neighborhood of a:l (0) v a:_l (0) in "
such that Y misses Z X R X N1 and such that p = 0 on Nl' Choose a com-
pact neighborhood N2 of a:l (0 v a;I(O) in I" such that Nz < int Nl'
Choose maps B8, : ) RS (0,11 and B_ : - {-1,0] with the following
properties:
i) 87l =N, B7H(0) = Ny
+ 1 - 2

i) B,(t) <a(t) for t ¢ 1"\ o[1(0), a_(t) < B_(t) for
te 1™\ o l(0);

iii) Y < {(z,x,t) e Z xR x I"[x < B_(0)};

iv) B (t) < p(t) for t € I"\ N,

Here is a picture of the situation when Z = {point} and n = 1:

-

=

~nN
— =
3 -
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Choose a f.p. isotopy g * ZxRx I"> Z xR x In, 0 s s £ 1, which
slides the graph of 8, over to the graph of B _. More specifically, we

require g, to satisfy the following properties:

i) gy = id;

ii) g affects only the R-coordinate of any point;

iii) gs|2 xR x N, = id;

iv) g is supported on a compact subset K of int E;

V) g(2,8,(),t) = (z,8_(t),t) for each (z,t) € Zx I".

Now given a Q-manifold M and a f.p. map £ : M x [0,1] x " >px 1"
which is a sliced §-fibration over Z x [-2,2] % In, define a f.p. homo-
topy §s : M x [0,17 x 1" + B x 1", 0< s <1, so that ES =g ° f on
£z xR x I and g, = £fon (Mx[0,1]x ™\ £z xR x ™. Since
f is a sliced §-fibration over Z x [-2,2] X In, there is a f.p. homotopy
G, : £71(2 % [-2,21 x I™ =M x [0,1] x 1" such that Gy = id, f6 is
S8-close to §5| for each s, and GS is stationary with respect to
g €71z x [-2,23 x 1) (Proposition 6.4).

Observe that Gsl[f-l(z x [-2,2] x I™ n (M x {0} x I™] extends via
the identity to a map G} : M x {o} x 1" > M x [0,11 x I, Using Proposi-
tion 3.6 we can approximate G! by a f.p. embedding 61 : M x {0} x 1" »

1
M x [0,1] x " possessing the following properties:

i) G, (M x {0} x ™) is a sliced Z-set;

-

ii) G1 is supported on f"l(K) a (M x {0} x I™;

iii) El(f'l(int E) n (M x {0} x IM) e £ (int E).
We can further assume that 51 is so close to Gll that 61 is f.p. homo-

topic to G1| via maps satisfying conditions ii) and iii).
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Using sliced Z-set unknotting [6, Theorem 5.1] we can find a £f.p.

isotopy u, : M x [0,1] x 1" > Mx [0,1] x I", 0< s < 1, so that u,=1id,
u |6, x {0} x 1) = Eil, and u_| (M x [0,1] x 1™ \ £ L(int E) = id.

It is now easy to see that u, satisfies the conclusion of the lemma. It

1

only remains to observe that we can assume u_ is a (plf)'lte)-homotopy

t
over Z x R x I™. This is because of the control on the f.p. isotopy ug

given by [6, Theorem 5.1]. O

ADDENDUM TO LEMMA 7.1. Let F be a compact Q-manifold such that
FxBcMand £f|[F x B x {0} x I™ : Fx B x {0} x I" » B x I" is projec-
tion. Extend g * ZxRx I"+ Z xR x I" via the identity to a f.p.
homeomorphism §S : Bx I+ B x In, 0 £ s < 1. Then the f.p. homotopy
ug M x [0,11 x 1™+ M x [0,1] x 1", 0 < s s 1, can be chosen to addi-

a=l

tionally satisfy u_|F x B x {0} I" = did; x B77, 0s s < 1.

PROOF. We indicate here how to modify the proof of Lemma 7.1 in
order to attain the added condition on u_. Since g |F x B x {0} x "=
fo(id, x 8) for 0 s s <1 and Fx B X {0} is collared in M x [0,1], it
can be assumed that G;lF x B x {0} x I" = (idp x g) for 0<s < 1.

Using the full strength of Proposition 3.6, the f.p. embedding

Gl s M x {0} x I™ > M x [0,1] x I" can be chosen so that

ﬁllF x B x {0} x I" = (idp x §l) and the homotopy from G; to El is

rel F x B x {0} x I". After a reparameterization of the homotopy from
Gb to 61, one simply uses the strong relative version of sliced Z-set un-
knotting (Proposition 3.10) to produce ug M x (0,17 x G

M x [0,1] % In, 0 < s <1, with the desired properties instead of

[6, Theorem 5.1]. O
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DATA FOR LEMMA 7.2. Let B and Z denote ANRs where Z is compact and
Z x R is an open subset of B, Given an integer n =2 0, let a, : In-*[-l,ll
and a, ¢ ) G {0,1] denote maps such that al(t) < az(t) for each t ¢ I"

and ail(-l) = aél(O) =Cc 31", Let I,)) ={(z,x,t) e ZxRx ["|xs al(t)}.

— e, —— - —————]

0
I‘(al) R

LEMMA 7.2. For every € > 0 there exists a § > 0 such that if M is
a Q-manifold and £ : M x I" + B x 1" is a f.p. map which is a sliced §-
fibration over Z x [-2,2] x In, then there is a f.p. homeomorphism

h:Mx 1™ +Mx I" such that
i) h|M x C is the identity,
.. -1 -1 n
ii) £77(I(@))) € hE (2 x (-=,0]1 x 17,

iii) there is a f.p. homotopy hs :id * h, 0 s s £ 1, which is
a (plf)'l(s) -homotopy over Z x R x 1" where P, denotes pro-

jection to Z,

iv) hs is supported on f‘l{(z,x,t) € ZXRx Inl-.QSXSaz(t),

t eI\ C} for each 0 5 s < 1,

PROOF. Given € > 0, § > 0 is chosen by Lemma 7.1 so that the two

basic engulfing moves described below can be made. Given a f.p. map
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£:Mx 1"+ Bx I" as in the hypothesis, choose a f£.p. map

k : Mx [0,1] x I" > M x 1" close to projection such that kiM x [0,1] x C
is projection and k|M x [0,11 x (I"\ €) : M x [0,11 x (I"\ ¢) »

M x (In \ C) is a homeomorphism (see Remark 3.16 or [14, Theorem 4.6]).
It then follows that £k : M x {0,1] x I" > B x I" is also a sliced 8-
fibration over Z x [-2,2] x I". The homeomorphism h will be defined as

-l yhere v, w, and u are constructed

a composition h = kevewouok
below.

Use Lemma 7.1 to produce a f.p. homeomorphism u : M x [0,1] X " -
M x [0,1] x I® such that (fk)‘lcr(al)) o Mx {0} x I <
u(£k)"1(Z x (-»,0) x I™) and u is supported on (£k) 1{(z,x,t) e ZxRx I"|
-.5<sx< az(t), t e I"\ C}.

Let S, = (£ H(z,x,t) € ZxRx I"|-.6 5 x < o (t)} and let
S, = (fk)-l{(z,x,t) e ZxR X In|max(0,a1(t)) < x < az(t)}. Use
Lemma 7.1 again to produce a f.p. homeomorphism v : M x [0,1] X " -
M x [0,1] x I" such that S; n (Mx {1} x 1™ < v'l(Sz) and v is supported
on (£ 7M(z,x,t) € Z xR x I"[-.7 s x < ay(t), t e I" \ ChL.

Let U = (£kv) 1{(z,x,t) € Z xR x I"|max(0,a,(t)) < x} and observe
that if k is close enough to projection, then
§, < [m(Un (Mx {1} x 1)1 x [0,1] where ™ : M x [0,1] x ™ >Mx It
is projection. Then w : M x [0,1] x ™+ M x (o,13 x "isa f.p. homeo-
morphism affecting only the (0,1]-coordinate of any point such that
w[Sl \ u(fk)'l(z X (=0,0) % I™)J c U. The support of w is on
(£ M {(z,%,8) € Z xR x I"]-.7 € x < a,(t)}.

It is easily verified that h = kevowoue k-l satisfies the conclu-
sions of the lemma. The homotopy of the identity to h comes from compos-

ing three homotopies of u, v, and w to the identity. These homotopies
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for u and v are provided by Lemma 7.1; the homotopy needed for w comes

from pushing along the [0,1]}-factor in M x [0,1] X .o

ADDENDUM TO LEMMA 7.2. Let N, and N, be compact neighborhoods of C

n and F(al) misses Z x [-,5,+»0) X% Nl. Choose

in I such that N2 c int N1

maps B, : G (0,1] and B_ : ) G (-.5,0] with the following properties:
1) 8N =Ny, 87H0) = N,;
+ = 1° - = 12:
ii) o, (t) < B,(t) for each t ¢ I';

iii)  8,(t) < a,(t) for each t ¢ "\ c.

Suppose we are given a f.p. isotopy g ° Bx I" + B x In, 0<ss1,
such that gslz x R x I" satisfies the properties listed for g in the
proof of Lemma 7.1 where now E = {(z,X,t) ¢ Z X R x In|-.5 £ x s az(t)}.
Let F be a compact Q-manifold such that F x B is a Z-set in M and

£lF x BxI" : Fx B x I" > B x I" is projection. Then the f.p. homeo-
morphism h : M x 1™ > M x I" can be chosen to additionally satisfy

h|F x B x " - idF x gil and the f.p. homotopy h_ : id=h, 0ss<1,
can be chosen to additionally satisfy h_[F x B x 1" = idy x ggl,

0 <ss < 1.

PROOF. Just three modifications need to be made in the proof of
Lemma 7.2. First, choose the f.p. map k : M x [0,1] x "> Mx IM o
additionally satisfy k|F x B x {0} x I" : F x B x {0} x "> FxBx 1"
is the identity. This is possible by Proposition 3.6. Secondly, choose
the f.p. homeomorphism u : M x [0,1] x I™ > M x [0,1] x I" and the f.p.
homotopy u_ : id = u, 0 < s < 1, so that uSIF x B x {0} x I™ = id x g;I.
This is possible by the Addendum to Lemma 7.1. Finally, choose the f.p.

homeomorphism v : M x [0,1] % "> M x [(0,1] x I" and the f.p. homotopy
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LA id v, 0 £ s <1, so that vs[M x {0} x 1" is the identity. To see
that this is possible, recall that v is provided by Lemma 7.1 and reex-
amine its proof.

With these modifications it is now easy to see that

h =k ovowauok_1 satisfies the conclusion of the addendum. O

DATA FOR THEOREM 7.3. Let B and Z denote ANRs where Z is compact
and Z X R is an open subset of B. Let P, denote projection onto Z and
P, projection onto R. Let n 2 0 be an integer and let C be a closed sub-
set of AI". Let 8 :Rx I">R x 1" bea f.p. homeomorphism with the

following properties:
i) 8|R x C is the identity;
ii) x < pze(x,t) for each x e R and t ¢ In;
iii) 6 is supported on [-1,11 x ",
Let 8' : B x I" + B x I" denote the f.p. homeomorphism which extends

idZ x 8 via the identity.

For each X ¢ R, let I'(8,x) = {(z,x,t) € Z xR X Inlx < pze(i,t)}.

THEOREM 7.3. For every € > 0 there exists a § > 0 such that if M
is a Q-manifold and f : M X "+Bx1"isa f.p. map which is a sliced
§-fibration over Z x [-2,2] x 1", then there is a f.p. homeomorphism

8 : Mx I">Mx I" such that
i) 8|M x C is the identity,
ii) £f6 is e-close to E'f,
iii) § is supported on £1(Z x [-1,1] x 1™,

iv) there is a f.p. homotopy és :id = é, 0 £ s £ 1, which is
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a (plf)'l(e)-homotopy over Z x R x I™ and is supported on

£z x [-1,11 x (1" \ O)).

Moreover, if we are additionally given a compact Q-manifold F such
that F x B is a Z-set in M and f|F x B x ™ : FxBxI"+BxI"is pro-
jection, then ® can be chosen so that §|F x Bx IV = idF x @' and the
homotopy 55, 0 £ s £1, can be chosen so that pléle x Z xR x 1" =P

for 0 £ s <1,

PROOF. Let & > 0 be given. Choose a partition
-lo=Xxp <X <X, < eee < X1 < Xp S 1 of [-1,1] so fine that the in-
terval [pze(xi_z,t),pze(xi,t)] has diameter less than €/2 for each
i=2,3,....,mand t ¢ I®. Then & > 0 is chosen according to Lemma 7.2
so that each of the m-1 engulfing moves described below can be performed.
Given a Q-manifold M and a £.p. map £ : M x I" » B x I" which is a
sliced §-fibration over Z x [-2,2] x In, we proceed to define £.p.
homeomorphisms éi: MxI">Mx 1" and ei R x I" >R x I". Choose
1 and N, of C in I" such that N2 c int N1 and
such that F(G,xi_l) misses Z X [1/2(x.1_l + xi),+w) X Nl for i=1,...,m-1.

compact neighborhoods N

For i = 1,...,m-1 choose maps B: S G [xi,+“) and

i

g+ 1" > (1/2(x;_; + x,),%, such that (8)1(x;) = N, BHxp) =N,

and pze(xi_l,t) < Bi(t) < pze(xi,t) for each t ¢ I" \ C.
VAN
Haiw,

In
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Now ei : R x I" >R x I" is defined to be the f.p. homeomorphism
which is supported on {(x,t) ¢ R x In]1/2(xi_1 + xi) < x< pze(xi,t),
teI” \ Nz} and which slides the graph of Bf over to the graph of Bi;
that is, 82(81(t),t) = (BL(t),t) for each t ¢ I". Let 6% : BxI">Bx1"
denote the f.p. homeomorphism which extends J‘.clZ X Bi via the identity.
There is an obvious £.p. isotopy 8. : id = 6', 05551, and id, x 61

extends via the identity to 6; :id =67, 0ss 51,

1,...,m-1 there exists a f.p.

According to Lemma 7.2 for each i

homeomorphism 8% : Mx I" » M x I" such that
i) §1|M x C is the identity,

i) £Hr,x_ ) BT x (=x) x I,

.
~

iii) &' is supported on f‘l(r(e,xi)) \EHE X (o, 1x 1Y,

iv) there is a f.p. homotopy 5; : id = 8%, 0 £ s < 1, which
is a (plfj'l(e/Zm)-homotopy over Z x R x I™ and which is

supported on

L7 (PO, %)) \ £71(2 x (=o,x; 11X THI N (1% O).

Moreover, if F is a compact Q-manifold such that F x B is a Z-set in
M and f|F x B x " FxBxI">BxI"is projection, then 6% can be
chosen so that 8'|F x B x 1" = idy x 5! and 5: can be chosen so that

6,F x B x I = id; x éi, 0<ssl.

Consider the following compositions:

é:éloézoouogm_l , g =§1°62°_“°6m-1’
s S S ]

= =1 %2 ~m-1 5 _al _gz2,.....8m1

B =0"00"0 ° 8 , and 85 =8, 8 °9$

It follows from the construction that F(e,xi_l) CQ(ZX(-w,xi]XIn)<=F(6,xi)
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and £71(1(8,x; ;) < §el(z x (w,x3x 1M e £71(r(e,x,)) for
i=1,2,...,m, From this it follows that § is e-close to 6 and fg is €-
close to 68'f, Also gs :id = 3, 0<ss<1l, is a (plf)'lte)-homotOpy over
Z xR x I". Since EIF x B x I = idp x §, we must modify 8 to get the
required 8.

Since F x B is a Z-set in M, there is a collar about F X B in M.
Thus, we can consider F x B x [0.2) as an open subset of M with F x B
and F x B x {0} identified. Let ¥ : M - M be an embedding which is sup-
ported on F x B x [0,1.5] and just pushes M in along the collar so that
¢(£,b,0) = (£,b,1) for (f,b) ¢ F x B. There is a f.p. isotopy
H, : 6= 8l o020 ees oem'l, 0 ss < 1, which is supported on
[-1,1] x (In \ C). If the partition -1 = Xy < X e < x = 1 is fine,
then H, 0ss<1, isa small isotopy. Let ﬁs : Bx 1" +B x 1",

0 <s <1, denote the f.p. isotopy which extends idz x Hs via the iden-
tity. Define the f.p. homeomorphism 6 : Mx I™+Mx I" as follows.
First, let 8|[M \ (F x B x [0,1))3 x I" = (p x id ) 0o (L x id 0.
Then, for (f,b,u,t) ¢ F x B x [0,1] X In, let é(ffb,u,t) = '
(f,pBﬁu(b,t),u,t) where Py denotes projection onto B. By making the
collar on F x B short in M, it can be seen that 8 is close to 5 and sat-
jsfies the conclusions of the theorem. The appropriate f.p. isotopy

~

8 :id =8, 0<s s 1, comes by first using the isotopy 55 : id =

las )]

2
0 <s <1, and then using the collar coordinate and the definition of 8

to get an isotopy from 8 to 6. 0

We are now ready to begin a generalization of Theorem 7.3. This
generalization is Theorem 7.8 below and is the main result of this sec-

tion. Four lemmas are needed for the proof of Theorem 7.8. The first two,
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Lemmas 7.4 and 7.5, are similar to Lemma 7.1 and their proofs are
omitted. Next, two lemmas similar to Lemma 7.2 are stated. Of these
two, only the proof of Lemma 7.7 is presented. We now fix some notation

which will be used for the rest of this section.

DATA FOR THE REMAINDER OF SECTION 7. Let B and Z denote ANRs where
Z x R is an open subset of B. Let ¢ : Z +~ [0,+°) be a proper map, and
for each r ¢ [0,+») let Z, = ¢'1([0,r]) and Z¥ = ¢'1([r,+w)). Let p;
denote projection onto Z and P, projection onto R, Let an integer n 2 0

be given. For any map o : Z X In + R define T(a) =

{{(z,x,t) ¢ Z xR x In|x < a(x,t)}, and for each r e [0,+=) define Pr(a)

M@h(gxmxﬂ)mdﬁm)=umn(fxmxﬂy

DATA FOR LEMMA 7.4. Let o : Zx I'" (0,11, a :Zx I" > [-1,0],
and p : Z x G [-1,0] be maps satisfying the following conditinns:

i) x1e all(O) n a:1(0);

i) ot vl e 2t x 1™ v 2 x ar™;
iii) p = 0 on a neighborhood of azl(O) v a:l(O);

iv)  a (z,t) < p(z,t) for each (z,t) ¢ (Z x I") \ aZ}(0).

Let Y be a compact subset of {(z,x,t) € Z xR X Inl

a_(z,t) € x < a,(z,t),4(z) > 5/12, and o_(2z,t) = 0 = a, (z,t)}.

LEMMA 7.4. For every u > 0 there exists a v > 0 such that if M is
a Q-manifold and £ : M x [0,1] x 1" + B x I" is a £.p. map which is a
sliced v-fibration over (Z3 \ 21/3) x [-3,3] x In, then there is a
f.p. homeomorphism u : M x [0,1] x "> M x [(0,1] x I" such that

5/12

i £l e o x 03 x 1Y e w12,
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ii) u is supported on f'l{(z,x,t) € ZxRx I

a_(z,t) < x < a_(z,t),0(z) > 5/12},

iii) there is a f.p. homotopy ug ¢ id > u, 0 £ s £ 1, which is
supported on f'l{(:,x,t) € ZxRx Inla_(z,t) <x<a(z,t),
$(z) > 5/12} and which is a (plf)'l(p)-homotopy over

ZxR x 1M,

Moreover, if we are additionally given a compact Q-manifold F such
that F x B is a Z-set in M and £|F x B x {0} x I" : F x B x {0} x 1" »
B x In is projection, then u and u, can be chosen so that

H

ulF x Z xR x {0} x I" = id. x § and u_|F x Z xR x {0} x 1" = idp x
0<s<1, wheredd : ZxR x {0} x I">2Z xR x {0} x I" is a homeomor-
phism and ﬁs :ZxRx {0} x I"+>ZxRx {0} xI", 0ss <1, is an

isotopy so that 4 and ﬁs are f.p. over Z and ",

REMARKS ON PROOF. The proof is almost word-for-word like the proof
of Lemma 7.1 and its Addendum. The only significant change is that extra
care must be taken in defining maps and homotopies in order to allow for

the extra degree of freedom in the Z-direction. (J

DATA FOR LEMMA 7.5. Let o : Z x I" » (0,13, a_: 2 x I" = [-1,0],
and Py ° zx I+ [-1,0] be maps satisfying the following conditions:

i) AR LR (VIR (O F

i) ol 0 ual) e 2t x 1™ vz x ™)

iii) pp=0Oona neighborhood of a;l(O) v a:1(0);

V) a_(z,t) < py(z,t) for each (z,t) ¢ (2 x I") \ o1(0).
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Let 5/12 = T, < Tg < r, < Ty < Ty = 1/2 be a partition of the in-

terval [5/12,1/2]. Let Y, be a compact subset of {(z,x,t) € Z XR X Inl

1
a_(z,t) s x <a,(z,t),6(z) 1), and a_(z,t) = 0 = a, (z,t)}.

LEMMA 7.5. For every € > 0 there exists a § > 0 such that if we are
given maps w,_ : Z X "~ [o,11, w_o:ZX - [-1,0] and
Pyt Z % 1" » [-1,0], and a compact subset Y, of {(z,x,t) € Z xR x 1"|
w_(z,t) < x < w(2,t),8(z) 2 r,, and w_(z,t) = 0 = w+(z,t]} satisfying
the following conditions:

i) 2t x 1t e w:l(O) n w:l(O);

i) w0 vut) ezt x 1™ vz x a1t
iii) Py = 0 on a neighborhood of w:1(0) u w:l(O);
V) w_(z,t) < p,lz,t) for each (z,t) € (Z x 1) \ wl0);

n
¢ andw =o0o onZ_ X I;
+ - - T

2

v) w,

n
p1 on Zr x I,

3

vi) 0,

then for every u > 0 there exists a v > 0 so that the following state-
ment is true:
if M is a Q-manifold and £ : M x [0,1] x I™ = B x 1" is
a f.p. map which is a sliced §-fibration over 23 x [-3,3] x "

and a sliced v-fibration over (23 \ il/S) x [-3,3] x In, then

there is a f.p. homeomorphism u : M x [0,1] % I > M x (0,11 x "
such that

. -1 n -1

i) £ uY)) n (Mx {0} xI') <uf (T(ey)) s

ii) u is supported on f'l{(z,x,t) € Z xR x I"|

w_(z,t) < x <w(z,t),4(2) s 2},
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iii) there is a f.p. homotopy ug id x u, 0 £ s £ 1, which is
supported on f'l{(z,x,t) € Z xR x I
w_(z,t) < x <w,(z,t),0(2) < 2} and which is a (plf)'l(e)-
homotopy over Z x R x I" and a (plf)_l(u)-homotopy over

Z5/12 xR x 1",

Moreover, if we are additionally given a compact Q-manifold F such

that F x B is a Z-set in M and £|F x B x {0} x I" : FxBx {0} xI"+»BxI"

is projection, then u and u can be chosen so that ulFxZxRx{0} x1" =
. A n . n
1dF x 4 and uS|F x ZxRx {0} xI = 1dF x U
§:ZxRx {0} xI™"+2Z xR x {0} x I" is a homeomorphism and

s? 0 £ s £1, where

Gs : ZxRx {0} x ">z xRx {0} xI", 0<s <1, is an isotopy so

that @ and ﬁs are f.p. over Z and 1",

REMARKS ON PROOF. The proof of Lemma 7.5, just like that of
Lemma 7.4, is almost word-for-word like the proof of Lemma 7.1 and its
Addendum. The only significant change now is that Proposition 5.5 (see
also Section 6) must be invoked so that we can assume that £ has the
sliced stationary (§,v)-lifting property over (Z3 x [-3,3] x 17,

(Z3 \ %1/3) x [-3,3] % In). This is needed when constructing the homo-

topies that are used for sliced Z-set unknotting.

DATA FOR LEMMA 7.6 AMD LEMMA 7.7. Let C be a closed subset of 3I"
and let o z x It » [-1,1] and o, - zx I » [0,1] denote maps such
that a, (z,t) < a,(z,t) for each (z,t) ¢ Z x I" and ail[-l) - a51(0) -

izt x ™ vz x 0.

LEMMA 7.6. For every B > 0 there exists a v > 0 such that if M is

a Q-manifold and £ : M x I" >+ B x I" is a f.p. map which is a sliced
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v-fibration over (Z3 \ %1/3) x [-3,3] % I", then there is a f.p. homeo-

morphism h : M x I" » M x I" such that

i) h|M x C is the identity,

i) £ @) < hEtE x (=,00 x 1Y,
iii) there is a f,p. homotopy hs :id = h, 0 € s £ 1, which is a

(plf)'l(u)-homotopy over Z xR x I,

iv)  h_ is supported on £, (0,)) \ ez x (=,-.97 x 1M v

£z, xR xI™ u (Mx C)] for each 0 s s < 1.

5/12

Moreover, if we are additionally given a compact Q-manifold F such
that F x B is a Z-set in M and £|F x B x I" : Fx B x I" + B x I" is pro-
jection, then h and hs can be chosen so that h|F x ZXR X In = idF x h
and hs|F x ZxRx 1" = idp x ﬁs’ 0sss<1, whereh: ZxRxI"»

ZxR x I? is a homeomorphism and ﬁs : ZxRx I"+>Z xR x In,

0ss<1, is an isotopy so that h and ﬁs are f.p. over Z and ",

REMARKS ON PROOF. Lemma 7.6 follows from Lemma 7.4 in almost the

exact way that Lemma 7.2 follows from Lemma 7.1. O

LEMMA 7.7. For every € > 0 there exists a § > 0 such that if we
are given -.5 < w < 0 and a map oz @ Z X 1" > [-1,1] such that
al(z,t) < as(z,t) < az(z,t) for each (z,t) ¢ Z x 1" and agl(w) =
(Zl X In) u (Z x C), then for every u > 0 there exists a v > 0 so that
the following statement is true:
if M is a Q-manifold and £ : M X M+Bx1"isa f.p. map
which is a sliced §-fibration over Z, X [-3,3] x I" and a sliced
v-fibration over (Z; \ %1/3) x [-3,3] x 17, then there is a f.p.

homeomorphism h : M x 1" = M x I" such that
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i) h|M x C is the identity,

i) £y v M%) ¢ heThE x (=,01 x 1Y,

3)

iii) there is a f.p. homotopy hs :id = h, 0 £ s £ 1, which is
a (plf)-1 (e) -homotopy over Z x R X 1" and a (plf)_l(u)-
homotopy over 25/12 x R x In,

iv) h, is supported on f'l(I‘z(az)) \ [f_I(Z x (-»,-.9] x I v

S/12

£1z%/1% % (0,01 x I™) u (M x C)] for each 0 < s s 1.

Moreover, if we are additionally given a compact Q-manifold F such
that F x B is a Z-set in M and f|F x Bx I" : F x B x I" + B x I" is
projection, then h and h_ can be chosen so that h|FxZxRxI"=
idp x h and hs]F x ZxRx I" = idg x ﬁs’ 0<s <1, where h : ZxXRx1I">

ZxRx 1" is a homeomorphism and ﬁs : Z xR X In->Z><]RXIn, 0sssl,

is an isotopy so that f and ﬁs are f.p. over Z and ",

PROOF. The proof is very similar to the proof of Lemma 7.2. The
choices for § > 0 and v > 0 are made using Lemma 7.5 so that the two en-
gulfing moves (u and v) described below can be performed. Given a map
£:MxI"+BxI" as in the hypothesis, choose a f.p. map
k : Mx[0,1] x I + M x 17 close to projection such that k{Mx[0,1]1xC
is projection and k|M x [0,1] x (In \C) : Mx[0,1] x (Irl \ C) ~»

M x (In \ C) is a homeomorphism (see Remark 3.16 or [14, Theorem 4.61).

Choose a partition 5/12 = v < T, <Tg <T,<T<Ty= 1/2 of the

5
interval (5/12,1/2]. Use Lemma 7.5 to produce a f.p. homeomorphism

u: Mx[0,1] x I+ M x {0,173 x I" such that (fk)-l(I‘(al) ul‘rl(a3)) n
™M x {0} x I < u(£k)"1(Z x (-=,0) x I™) and u is supported on
(fk)'l{(z,x,t)].Sw s x £ a,(z,t),r, < ¢(z) S 2,t ¢ Cor -.5sxs0a,(z,t),

¢(z) < r,,t k C}.
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Let S, = (£ M (z,x, ) |-.6 < x < & (2,8),6(2) $ 7, or
6w S x S a;(z,t),0(z) 2Ty Or 6w S x < as(z,t),$(z) 2 rz}. Let S, =
(fk)'l{(z,x,t)|max(0,a3(z,t)) < x < az(z,t) or max(O,al(z,t))‘<x'<a2(z,t),
d(z) < rz}. Use Lemma 7.5 again to produce a f.p. homeomorphism

v :Mx[0,1] x I"+Mx [0,1] x I" such that S, n (M x {1} x I™) <

1
v'l(Sz) and v is supported on (fk)-l{(z,x,t)l.Yw s x S a,(z,t),
¢(2) s 2,t £ Cor -.7 < x S 0,(z,t),4(2) < 13t ¢ Cl.

Let U = (£kv) 1{(z,x,t) |max(0,a5(z,8)) < x or max(0,a,(z,t)) < x,
¢(z) < rz} and observe that if k is close enough to projection, then
Sy e [m(un (M x {1} x I x [0,1] where 7 : M x [0,1] x "> Mx 1"
is projection. Then w : M x [0,1] x " > M x [0,1] x I" is defined to
be a f.p. homeomorphism affecting only the [0,1]-coordinate of any point
such that w[S1 \ u(fk)'l(z X (-2,0) x In)] c U. The support of w is on
(fk)'l{(z,x,t)|.8w S x S ay(z,t),r, S ¢(2) s 207 -.8sx5a,(z,t),
$(z) < rz}.

It is easily verified that h = kovow cuo k™! satisfies the con-
clusions of the lemma. As in the proof of Lemma 7.2, the homotopy of the
identity to h comes from the construction. The modification of the proof
above to treat the relative case when we are given a compact Q-manifold F
as in the hypothesis is exactly like the proof of the Addendum to

Lemma 7.2.

We are now ready for the main result of this section. This key en-

gulfing theorem is a refinement of Theorem 7.3.

DATA FOR THEOREM 7.8. Let C be a closed subset of 31" and let
ér :Rx I" +R x In, 0 £r < +o, be a £f.p. isotopy with the following

properties:
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i) ér is the identity for r = 1;
ii) §r|]R x C is the identity for r 2 0;
iiil) x < pzér(x,t) for each (r,x,t) € [0,+) xR x I";

iv) 51_ is supported on [-1,1] x I" for r 2 O.

Define 8 : ZxRx I"+ Z xR x I" by 6(z,x,t) = (z,6¢(z) (x,t)) for each
(z,x,t) € ZxR x I". Then @ is a f.p. homeomorphism supported on
Zl x [-1,1] x (In \ C) which extends via the identity to a f.p. homeo-
morphism 6' : B x "+ B x I,

For any X ¢ R and t ¢ [0,+»), define I'(0,x) = {(z,x,t) ¢ ZXRXInl
S SN EROME I(8,X) = I(8,X) n (Z' xR x I, and T_(8,%) =

F(8,%) n (Z. xR x M.

THEOREM 7.8. For every € > 0 there exists a § > 0 such that for
every |1 > 0 there exists a v > 0 so that the following statement is true:
if M is a Q-manifold and £ : M x I" = B x I" is a f.p.
map which is a sliced §-fibration over Zg X (-3,31 x I" and a
sliced v-fibration over (Z3 \ 21/3) x [-3,3] x In, then there

is a f.p. homeomorphism & : M x I" + M x I" such that
i) §[M x C is the identity,

ii) £8 is e-close to 8'f,

iii) £8 is u-close to 8'f over 22/3 X R x In,

iv) 9 is supported on f'l(Z1 x [-1,1]1 x I,

v) there is a f.p. homotopy és :id=8, 0<s<1, which is a

(plf)'l (e) -homotopy over ZxRxI™ and a (p,£) -1 (u) ~homotopy

2/3

over Z xR x In, and vhich is supported on f'l (le[-l,llx(ln\C)) .
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Moreover, if we are additionally given a compact Q-manifold F such
that F x B is a Z-set in M and f|F x B x " FxBxI">BxI"is pro-
jection, then 6 can be chosen so that 5|F x Bx I" = idF x 8' and the
homotopy 55, 0 £ s <1, can be chosen so that plés‘p x ZxRx I" = P

for 0 £ s < 1.

PROOF. Given € > 0, choose a fine partition -1 =

Xg <X < Xy & eee <x =1 of the interval {-1,1]. Then 8§ > 0 is chosen

0 1 2

according to Lemma 7.7 so that certain engulfing moves described below
can be performed. Given p > 0, choose a fine refinement -1 =

Yo €Yy <Yy <o <Yy = 1 of the partition -1 = x0<x1<x2<-"<xm=l.
Then v > 0 is chosen according to Lemma 7.6 and Lemma 7.7 so that each
of the L-1 engulfing moves described below can be performed. Let J =
{i= 0,1,...,2,|yi = X, for some j = 0,1,...,m}. For i ¢ J, let i denote
the unique integer in {0,1,...,m} such that y; = xiJ. Let J' =

J\ {0,2}.

For each i = 1,...,2-1, let Yi sz x 1M - [yi,+w) be the map de-
fined by Yi(z,t] = pze(z,yi,t) for ¢(z) 2 1/2, Yi(z,t) = pze(z,ya,t) for
$(z) £ 5/12 where o is the greatest integer < i such that a« ¢ J, and Yi
is defined '"linearly" on ¢'1([5/12,1/2]) x 1M, (These maps are given be-
fore v is calculated.)

Now given f : M x " > B x 1" as in the hypothesis, we will define
for each i = 1,...,2-1 a f.p homeomorphism 51 :Mx I">Mx I" and a
f.p. homotopy éi :id =87, 0<ss 1, For i & J use Lemma 7.6 to con-

struct a f.p. homeomorphism 8' : M x 1™ > M x 1" such that
i) 51|M x C is the identity,

i) £ e,y 1)) < BRI x (oyy) 2 1Y,
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~

i11) 8% is supported on £ (T,(YD)) \ £71(Z x (-=,y; ;1% 17,

iv) there is a f.p. homotopy 5: : id = 51, 0s s s 1, which is
a (plf) -1 (1/22) -homotopy over Z x R X I" and is supported

on €71, (") \ LE(Z x (emyyp (1% T v (1 O],

For i ¢ J' use Lemma 7.7 to construct a f.p. homeomorphism

s M x In + M % I" such that

i)  BY|M x C is the identity,
1) £loat ) c Fel x (w0 x 1,

111) & is supported on £71(I,(0,y)) \ [£71(2x (-=,x; Ix1") v
J

£ @12 x (wm,y, 1% 1],
i-1
iv) there is a f.p. homotopy 5; : id = 51, 0 £ s s 1, which is

a (plf) -1 (e/3m) -homotopy over Z X R X 1" and a (plf)'l (u/28)-

5/12

homotopy over 2 X R x In, and which is supported on

£, 0,00 \ LETE X (myxy 1% T
J

£ x (wo,y, 1 x 1N v (X O

Define 6 = 510520'-- o'ég"l and 55 = 5i°5§°"'°5§-1, 0<s =<1,

One can verify the following three facts:

H elrex, ) < 5@ x (=,y 1 x 1Y e £71re,y,))
1J-1 i i
for i € J;
i) £ 2,y, ) € 8712 x (-=,y;1 x 1T for

i=1,2,...,%-1;

111) B3 x (I x 1Y) < £1(r7/12(0,y,)) for

i=1,2,...,8-1.
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It follows that § satisfies the conclusions of the theorem if the parti-
tions -1 = xo < Xy < xz < eee < xm =1 and -1 = Yo < yl < y2<--o<)&'=1
are sufficiently fine. The treatment of the embellishment of the theorem
when we are given a compact Q-manifold F as in the hypothesis is ade-

quately illustrated in the proof of Theorem 7.2. O

It should be remarked here that the embellishment of Theorem 7.8
works equally well when we are given a sliced Z-embedding g : FxBx 1M+
M x I" such that fg is projection.

Finally, we will need the following variation of Theorem 7.8 in
Section 9 when we wrap up and encounter non-proper submersions. The
proof of Theorem 7.9 is exactly like the proof of Theorem 7.8 only.now

we must rely on the Q-manifold results of Section 3. We adopt the data

of Theorem 7.8.

THEOREM 7.9. For every € > 0 there exists a § > 0 such that for
every p > 0 there exists a v > 0 so that the following statement is
true:

if M is a Q-manifold, 7 : M > I" is a submersion with

Q-manifold fibers, £ : M > B % " is a proper f.p. map

(i.e., proj of = m) such that f_: ﬂ-l(t) + B is a §-fibra-

tion over Z; x [-3,3] and a v-fibration over (23‘\21/3) x[-3,3]

for each t in In, and T has nice cross sections on

f'l(Z3 x [-3,3] x 1), then there is a f.p. homeomorphism

€@ : M > M such that

i) §|771(c) is the identity,
ii) f0 is e-close to 0'f,

iii) £0 is u-close to 9'f over 22/° xR % In,



61

-~

iv) B is supported on f‘I(z1 x [-1,11 x 1Y,

-~

v) there is a f.p. isotopy es :id = 5, 0 s <1, which is a
(plf)'l(e)-homotOpy over Z xR x I™ and a (plf)'l(u)-homo-

2/3

topy over Z x R x I" and which is supported on

f‘l(z1 x [-1,1] x (I"\ ©)).

Moreover, if we are additionally given a compact Q-manifold F and a
sliced Z-embedding g : F x B x I + M such that mg is projection and fg
is projection, then 8 can be chosen so that 5g = idF x 6' and the homo-

topy és’ 0 £ s <1, can be chosen so that plésg =p for 0 s s £ 1.

Perhaps the only thing that has not been mentioned above about the
proof of Theorem 7.9 is the establishment of the corresponding results
of Section § which are needed in this situation. However, the required

results follow immediately from Proposition 3.2 and Theorem 5.3.



SECTION 8:
PARAMETERIZED WRAPPING

In this section we present the details of a parameterized version
of Chapman's construction for wrapping up 6-fibrations around Sl.
Before stating the main result of this section, Theorem 8.2, we first
state the more palatable Proposition 8.1 which is actually a corollary
of Theorem 8.2. For notation let B and Z denote ANRs where Z X R is an
open subset of B. Let ¢ : Z - [0,+») be a proper map and for r in
[0,4=) define Z_ = 67 1(0,71) and z¥ = ¢ }((r,+)). Let n 2 0 be an
integer. The map P, denotes projection onto Z, P, projection onto IR,

and P3 projection onto . Finally, let e : R ~+ S1 be the covering pro-

jection defined by e(x) = exp(wix/4) (thus e has period 8). This nota-

tion will be used throughout this section.

PROPOSITION 8.1. Suppose Z is compact. For every € > 0 there
exists a 6 > 0 such that if M is a Q-manifold and f : M X " »pBx "
is a proper f.p. map which is a sliced §-fibration over Z x [-3,3] X In,

1 x In

then there is a compact Q-manifold M, a f.p. map £ : MxI">zxs
which is a sliced e-fibration, and a f.p. open embedding
¥ e f'l(Z x (-1,1) x 1™ = M x I" for which the following diagram
commutes:

Mx 1" _f, zxstxr®

7 id xex id

£lzx(-1,1) x 1™ _;I__, Zx(-1,1) x 1"

Moreover, if we are additionally given a compact Q-manifold F such
that F x B is a Z-set in M and £]FxBxI": FxBxI">Bx1I" is projection,

62
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then we can additionally conclude that there is a sliced Z-embedding

1 n_ 1 1

g : FxZx8 x1I">Mx I" for which fg : Fx Zx § x I"+Zx § x I"

is projection and for which the following diagram commutes:

Fxzxsx1" g y Mx 1"
idx ex id v
FxZx (-1,1) x IV e flaxyx

We now state the main result. Notice that Z is no longer required

to be compact.

THEOREM 8.2. For every € > 0 there exists a § > 0 such that for
every u > 0 there exists a v > 0 so that the following statement is true:
if M is a Q-manifold and £ : M x [" »B x I" is a
proper f.p. map which is a sliced é-fibration over
z, x [-3,3]1 x 1" and a sliced v-fibration over
(Z3 \ 21/3) x [-3,3] % In, then there is a Q-manifold ﬁ,

a submersion 7 : M + I" with Q-manifold fibers, a f.p. map

P 1 n S | ) 1
f.1~1+%2.5xs x 1" such that £ : w (t) »Z, ¢ xS
is an e-fibration over Z, x S1 and a u-fibration over

2
(Z2 \ %2/3) x S1 for each t in In, and a f.p. open em-

bedding v : £ 1(§, x (-1,1) x 1) > § for which the follow-

ing diagram commutes:

e

pl 5 % xslxIn
N .
] idxexid

f‘lcil x (-1,1) x 1™ ___L_, %1 x (-1,1) x 1"
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. ~ n . .
Also, the submersion w : M + I has nice cross sections on

~-1 1 n
f (22.1 x S x I).

Moreover, if we are additionally given a compact Q-manifold F such
that F x B is a Z-set in M and f£|F x B 1" FxBxI"+>BxI"

projection, then we can additionally conclude that there is a sliced

Z-embedding g : F x 22 g X S1 x I" » M for which ?g : F><%2 5

22 g X S1 x 1" is projection and for which the following diagram

xslx1“+

commutes:

1_.n g ~
Fxl, o x8 xI p M
idxex id
Fxﬁlx(-l,l)xln c X(ll)XI)

REMARKS ON THE PROOF OF PROPOSITION 8.1. A direct proof may be
given along the lines of the proof of Theorem 8.2 below. The procedure
is simplified because Z is compact. Alternatively, one may simply
notice that Proposition 8.1 follows from Theorem 8.2. The only addi-
tional information needed is that a proper submersion with Q-manifold

fibers is a bundle projection (see Section 3). 0

PROOF OF THEOREM 8.2. Let §_ :Rx I" »R x I', 0 £ T < +o, be the
f.p. isotopy such that for 0 < r < 2.7 ér is the f.p. PL homeomorphism
supported on [-2.4,2.4] x 1" with the property that ér(x,t) = (x+4,t)
for -2.2 < x < -1.8 and t ¢ I". For 2.7 s r < 2.8, ér is phased out to
the identity so that ér =id for r > 2.8. Define® : ZxR x I" »

ZxRx 1" by 6(z,x,t) = (2 )(x,t)). By engulfing (Theorem 7.8)

otz

there is a f.p. homotopy hS :id = hl’ 0<s<1, onMx 1" where
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h, : Mx I">Mx 1"is a f.p. homeomorphism such that fh1 is §'-close

1
n . 1/2
to 6f over Z x R x I, and fhl is v'-close to 6f over Z

x R x I", and
the homotopy is supported on f'I(Z3 x [-3,3] x In) (Theorem 7.8 also
gives some control on the size of the homotopy which we will need.)
Here, 8' and v' are small if § and v are small, respectively. Moreover,
if we are given a compact Q-manifold F as in the hypothesis, then we may
assume that hllF x ZxRx I" = id; x 6 and plhs|F x ZxRx I" = p, for
0<s <1,

Let Y = h £1(Z, 5 x (-=,-21 x ) \ £1(2 x (-=,-2) x IV,
E =Y £1(zx (-2} x 1", and E, = h £7(2, , x {-2} x I"). Let ~ be
the equivalence relation on Y generated by the rule: if y is in
Y n f_1(22.7 x {-2} x 1™, then y ~ h (y). Let M = Y/~ and let

q: Y+ M denote the quotient map.

ASSERTION 1. The relation ~ induces an upper semi-continuous

decomposition of Y.

PROOF. The nondegenerate elements are of the form {y,hl(y)} where
y is in Y n f'l(22.7 x {-2} x In). Thus, the union of the nondegenerate
elements is (Ynf ' (Z, ,x{-2} x1") uh (Yo £75(z, 5x{-2} xI™) which
is closed in Y. Therefore, it suffices to show that the elements
{y,hl(y)} have arbitrarily small open saturated neighborhoods. Let U be
a small open neighborhood of y in M x I" such that Un E, = § =
hy (V) n f'l(z x {2} xI™. SetW=(UnY)u (hy (W) 2 Y). Then W is

the required small open saturated neighborhood of {y,hl(y)} in Y.

ASSERTION 2. There exists a map o : Y - Z such that

i) a(y) = aly") if y ~y',
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1) o|0£71(z x [-2,1.997 x ™) n Y] = p £,

iii) a is &'-close to plle,

r

iv) o is v'-close to p,flY over Z 1 where r, is fixed so that
P 1

1/2 < v, < 2/3.

1

PROOF. Define a homotopy g * [f'l(zx [-2,1.99]x In) NYIVE_~+Z,
0sssl, by gsltf'l(z x [-2,1.99] x T n Y] = p £| and
g lE, = plfhl_sh11|E+. Note that g, extends to p1f| : Y+ Z. By the
homotopy extension property there is an extension 'és : Y=+ Zof g such
that §0 = plf | . Using the estimated homotopy extension property and the
control on the homotopy hs’ we may assume that the homotopy Es is con-

trolled in the plf direction. Then define a = §1.

ASSERTION 3. 1If we are given the compact Q-manifold F as in the
hypothesis, then the map o of Assertion 2 can be chosen so that

al(FxZxRx 1" nY=pf| =p.

PROOF. 1In the proof of Assertion 2 extend g to (FxZxXRx In) ny
by setting g = plf] = p; on this set. This is well-defined because
plfhl_shillF x ZxRx 1" = P, -
ASSERTION 4. There is a map 8 : Y - [-2,2] such that

i) B(E)

n
’
N
-

1}
+
D

i) B(E,) = +2,
1i1)  BI0E(Z % [-2,1.991 x 1™ a Y] = pof|,
iv) B is §'-close to pzfl,

T
v) B is v'-close to p,£| on £(Z xR x I n Y,
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vi) if F is a compact Q-manifold given as in the hypothesis,

then B|(F x Z xR x I") n Y = p,£| = p,.

PROOF. Define a homotopy g (C f_l(z x [-2,1.99] % In) ]
(FxZxRxIMIaY) uE =R, 0sss1,as follows: Ffirst
gs][f_l(z x [-2,1,99] x I™ v (Fx2ZxR x ™Miny-= pzf]. On E_ define
g so that gOIE+ = pzf] and as s goes from 0 tolf g, shrinks p,£(E,) to
+2 so that gl(E+) = +2, Note that this can be done so that it does not
conflict with the definition of gs|(F X Z xR X In) n Y. Now g5 extends
to pzf] : Y >R and so we may use the estimated homotopy extension pro-
perty to extend g to §s : Y+R. Letr :R~+1[-2,2] be the retraction
such that r((-=,-2]) = -2 and r([+2,+0)) = +2. Then define B = rél.

This completes the proof of Assertion 4.

Identify S1 with the quotient space [-2,231/{-2,2} and let
u: {-2,2] » S1 be the quotient map. Do this in such a way that

ul|l-1,1] = e|[-1,1].

1

Define £ : M~z x § x I" by Fa(y)) = (a(y),uB(y),p;(y)) for y

in Y. This map is well-defined. Let M = f'l(i x st x I") and let

2.5
1

F:M %2 g X sl x 1™ denote the restriction of ¥ to M. Define

+ 1" by 7(q(y)) = p;(y) for y in q'l(ﬁ) c Y. The remainder of the

=t

T
proof consists of showing that f and 7 satisfy the conclusions of the

theorem,

ASSERTION 5. F is a proper map.

1

PROOF. Let C c 22 g X S X 1" be a compactum. Then §-1(C) =
1 n

be a compactum such that C c K x §° x I'. It

-1 )
£77(C). LetKc Z, g

suffices to show that q 'ET1(C) < £71(Z¢ x [-3,3] x I'). To this end
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let y ¢ Y such that £(q(y)) ¢ C. We need only show that plf(y) € 26.

Since a(y) « %2 5 and plf(y) is close to a(y), the result follows.
ASSERTION 6. m : M - I" is a submersion.

PROOF. First let y ¢ E_ such that q(y) € M. Thus

1y 1" and from this we may conclude that

Bq(y) € 2, xS

y e f’l(fz.s x {-2} x I™. Let U = hlf'l(%2.6x (=, -1.8) x I™ \

£1(z x (=,1.8] x I"). Define q' : U+Mbyq' =qonUn Y and

q' = qhi1 on U\ Y. Note that q' is an open embedding and q(y) ¢ q'(U).

Let U =Un (q')"2(M). Then D is an open subset of M x I" and

q'|ﬁ : U->Mis an open embedding onto a neighborhood of q(y) such that

wq'lﬁ = pg. It follows that there are product charts about q(y) for m.
Next let y € Y such that q(y) € M\ q(E_). Since q(y) € ﬁ, we have

Y € f-l(% x [-3,3] x In). Since q(y) is not in q(E_ ), we have

2.55
y eV = hlf‘l(iz 6 X (=2,-2) x T \ £1(z x («,-21 x 1. And

q|V : V > M is an open embedding. By setting V=Vn q'l(ﬁ) we get pro-

~

duct charts about q(y) for m by using qIV : V> M. This completes the

proof of Assertion 6.

Notice that the proof of Assertion 6 shows that M, as well as ﬂ-l(t)

for each t in In, is a Q-manifold.

ASSERTION 7. The submersion m : M - 1™ has nice cross sections

%=1

1
on f (22.1 x §% x In).

PROOF. Let x ¢ ?'1(22 1 x s! x I"). Suppose x = q(y) where

f(y) € %2 5 % {-2} xI". Let y ¢ G ¢ f'l(f'.2 5 % (-2.1,-1.9) x {ps(y)})
where G is open such that G x 1" c f'l(i2 5 X (-2.1,-1.9) x In). Adopt-

ing the notation of Assertion 6, we see that q'hl(G X In) c M provides
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the nice cross sections about x. The case when
y e hlf'l(i2 , % (=,-2) x TH\ £z x (=,-21 x 1™ is handled

similarly.

ASSERTION 8. %t : w'l(t) - Z, g X s is an e-fibration over szs1

for each t in In.

PROOF. Extend the previously defined quotient map u : [-2,2] -+ st

to a covering projection u : R ~» S1 of period 4. It will be helpful to

keep the following commutative diagram in mind:

-~

i E 1 ashar

n n

M-—————g————) Z><Sl>< "

qT TiquXid
(),XBXP

Y-———————-——» ZxRx 1"

Choose €' so that any map to Z X S1 which is an €'-fibration

2.5

over both z, L X u(l1.9,2.1]) and Z
1

fibration over Z2 x §.

Note that if (id x u)ft|f;1(z x R) : f;l(z XR) > Z x s is an

2.1 % u(f-1.95,1.95]) is an (€/2)-

-~

g'-fibration over Z, L% ul-1.95,1.95], then so is ft' This is because

of the following commutative diagram:

ﬁ f

qIT IiquXid

£ (2 Z, gx (- 2199]><I)--—f|-—;22s x[-2,1.991 x I"

And of course, £, will have this property if & is small enough.
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-~

We are only left with the problem of showing that ft is an €'-

fibration over Z2 L * u(f1.9,2.1]). To this end define U =

hlf'ltﬁ2 g % (=,-1.8) x 1) \ £1(z x (-,1.81 x 1), Define a map

g:U=+2Zx (1.8,2.2) % " componentwise as follows:

a on UnyY
P8 = -
1 aohll on U\NY,
g on UnyY
P8 = -1
pze(plfxBXPSf)hl on U\NY,
Psg = p3 .

1

Defineﬁ:U*ﬁsothat§=qonUnYandﬁ=qh'1' on U\ Y and

consider the following commutative diagram:

M £ #%Z_stlxln

'ﬁ{ Iidxuxid

U—2=8 4% x(1.8,2.2) xI"

2.5

Note that q is an open embedding. Thus we will be done if we show that
g, is an e'-fibration over Z, , X [1.9,2.1]. This is accomplished by
observing that g is as close to f|U as we need by choosing & small.

This completes the proof of Assertion 8.

ASSERTION 9. E, : n i) > 2

(2, \ 5,5 s! for each t in IM.

2.5 X Sl is a p-fibration over

The proof of Assertion 9 goes almost word-for-word like the proof of

Assertion 8 and we omit the details.
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To complete the proof of Theorem 8.2, it only remains to consider
the embellishment when we are given the compact Q-manifold F as in the

hypothesis.

ASSERTION 10. There is a sliced Z-embedding g : F><°Z2 5><SlX "+

for which %g = projection and for which the following diagram commutes:

Fx %, stlxI" £ M
idxex id Y = inclusion
inlx(-l,l)xf‘ c f'1(§1><(--1,1)><1n

PROOF. Note that F x Z, 4 X (-=,2] x " c f_l(Z2 7><(-°°,2]x In)

and that h |F x Z x R x I" = id; x 8. Therefore, Y n (F X Z XR X ™ =

F

Fx2Z,.x[-22]x I" and q|F x Z

n
2. x [-2,2) x 1

2.7 id x u x id. Then

g is defined so that the following diagram commutes:

Fxd, xstx1" —E& i

idxuxid n
[*] -
x=><22.5x[-2,21><1n —JI——yM

To show that g is a sliced Z-embedding we must make some adjust-
ments. Specifically, we must use a collar on F x B in M to modify h,
{and hs) so that it behaves like h1 (or hs) does on F x B X 1", wWith
this our construction yields a fibered collar on F><§2.5><Sl><1n in M.
This completes the proof of Assertion 10 and hence the proof of

Theorem 8.2. O



SECTION 9:
HANDLE LEMMAS

In this section we establish three handle lemmas needed for the re-
sults of Section 10. For notation B and X will denote ANRs where X is
compact. Let n 2 0 be an integer and let C be a closed subset of 1™
which is collared in IM. Thus, we consider C x [0,1) as an open subset
of I with C identified with C x {0} (the possibility that C is empty is

not ruled out). This notation will be used throughout this section.

PROPOSITION 9.1. Suppose ¢(X) is an open subset of B. For every
g > 0 there exists a 6 > 0 such that for every u > 0 there exists a
v > 0 so that the following statement is true:

if M is a Q-manifold and f : M X M+Bx1"isa

proper f£.p. map such that f is a sliced §-fibration over

CS(X) x I" and a sliced v-fibration over [cs(X)\ ZI/S(X)]><1“,

and ft : M > B is an approximate fibration for each t in C,

then there is a proper f.p. map f : M x 1" +~ B x I” which is a

sliced y-fibration over cl(X) x 1" and is f.p. €-homotopic to

£orel [(MxI™M\ f‘I(EZ/S(x) x T™7 u [M x CJ.

Moreover, if we are additionally given a compact Q-manifold F such
that F x B is a Z-set in M and f|F x B x " FxBxI">BxI"is
projection, then we may additionally conclude that §|F x B x I" is pro-

jection and that the homotopy from f to Fis rel F x B x I",

PROOF. To simplify matters we will only show that f is €-close
to such an f. Further epsilonics would produce the homotopy. Using
Theorem 5.3 we are only required to show that each ft isau-fibration

over cz(X).
72
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Let € > 0 be given and choose T, > 0 so small that the diameter of

c_ (X) is less than /2. Let 8 : [0,4w) x "+ [0,+) x I™ be a f.p.
0
homeomorphism such that

i) 6 is supported on [r0/2,7/12] x 17,
ii) for each t in I" \ (C x [0,1/2)), et is a PL homeomorphism
which takes 3r0/4 to 1/2,

iii) for t in C x [0,1/2], Bt is linearly phased out to the
identity so that 8|[0,+®) x C = id.
Then & induces a f.p. homeomorphism on E(X) x 1™ which extends via the

identity to a f.p. homeomorphism & : B x I" » B x I",

Choose r, such that r, < r, < 1/2 and the diameter of c. (X) is

1 0 1
1
less than £/2. Choose € > 0 so that the sl-neighborhood of . {(X) in
0
B is contained in c. (X). Let 61 = 6(81) be given by Theorem 4.8 so

1
that if we start with a map g : E + B which is a él-fibration over CS(X)

and a v'-fibration over CZ.ZS(x) \ 33r0/4(X), then g is an (el,u')-
fibration over (c, ¢(X),c,(X) \ ErO(X)).

Choose 62 >0 so that if g : E+ B is a dz-fibration over CS(X)’
then é;lg is a Gl-fibration over c;(X) for each t in ",

Choose 63 > 0 by the engulfing result Theorem 7.3 so that if
g : Mx 1" > B x 1" is a sliced 63-fibration over CS(X) x In, then 8 can
be (e/2)-covered by a f.p. homeomorphism of M X " {this is described in
more detail below),

Let § = min{62,63} and let u > 0 be given. Choose s, so that
0 < 5, <1 and the diameter of csl(X) is less than yu. Define a f.p.
homeomorphism v : [0,+x) x j RS £0,+0) X 1" such that

i) Yy is supported on [0,2/3] x ",
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ii)  for t in I™\ (C x [0,1/2)), Y, is a PL homeomorphism which

takes T, to s

1’
iii) for t in C x [0,1/2], Ye is linearly phased out to the

identity so that y|[0,+») x C = id.

Then y induces a f.p. homeomorphism on &(X) x I" which extends via the

identity to a f.p. homeomorphism y : B x 1" + B x 1™, Choose Wy o> 0

so that if g : E + B is an (g, ,u,)-fibration over (c, (X),c,(X)\é (X)),

1’71 2.5 2 T,

then ?tg is a py-fibration over cz(x) for each t in I™ \ (€ x [0,1/2)).
Let v, = v(ul) be given by Theorem 4.8 so that if g : E+ B is a

61-f1brat10n over cS(X) and a vl-flbratlon over cz.ZS(X) \ c3r0/4(X),

then g is an (g, ,u,)-fibration over (c, (X),c,(X) \ ¢_ (X)). Choose

1’71 2.5 2 Ty
v > 0 so that if g : E »~ B is a v-fibration over c;(X) \ El/scx), then

é;lg is a v -fibration over c;(X) \ 33 4(X) for each t in

r,/
n 0
I\ (Cx[0,1/2)).

Now let £ : M x I" > B x I" be given as in the hypothesis. Choose
@ > 0 so that if g : E >~ B is an a-fibration over c;(X), then ?téglg is
a u-fibration over CS(X) for each t in 1", Choose B so that 0 < 8 < 1/2
and ft : M> B is an a-fibration over CS(X) whenever t is in C x [0,8].

%, 1" pe the homeomorphism which is supported on C x [0,3/4]

Let y : I
which takes each interval {c} x [0,8] linearly onto {c} x [0,1/2] and
takes {c} x (B,3/4] linearly onto {c} x [1/2,3/4].

Let § : M x I" + M x I" be the f.p. homeomorphism given by engulfing

with the following properties:

i) §|M x C is the identity;
ii) é;l of | °§t is (e/2)-close to f for each
PT(t) v (v)

t in I
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iii) & is supported on (M x I™ \ £! (@500 x 1.

-1

L n n ~ - e
Define £ : Mx I "+~ B x I by £ =Y,°8,  of °o§_for each t
. ) v ot oyl ot
in I". This f satisfies the conclusions of the proposition. We need only

indicate how to modify the proof to take care of the embellishment when
we are given a compact Q-manifold F as in the hypothesis. By

Theorem 7.3 § can be chosen so that 6'1f§|F x B x 1" is projection.

The problem is that §§'1f5|F x B x I" is not projection. However, it is
easy to see that by using a collar on F X B in M a small f.p. isotopy on

M x I" will correct the action of y. O

LEMMA 9.2. Suppose m is a positive integer. For every € > 0 there
exists a § > 0 such that for every u > 0 there exists a v > 0 so that
the following statement is true:

if M is a Q-manifold and £ : M X "R x 1"is a proper

f.p. map such that

i) ft is a §-fibration for each t in I",

ii) f_is a v-fibration over R" \ ﬁ? for each t in In,

t

iii) ft is an approximate fibration for each t in C,

then there is a proper f.p. map f:MxI1®>R" x 1" such that
i) T is g-close to f,
ii) ?t is a y-fibration over Bg for each t in In,

1ii) ~ft = £, for each t in C.

Moreover, if we are additionally given a compact Q-manifold F and a
sliced Z-embedding g : FxR™x I"+M x I™ such that fg: FxR" xI"»R" x1" is

projection, then we can additionally conclude that fg is projection.
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PROOF. Define a f.p. homeomorphism 8 : R" x 1"+ R™ x 1" so that

i) 6 is supported on Bg x In,

ii) et affects only the first coordinate of any point in R®

for each t in In,

iii) et(xl,xz,...,xm) = (x1-+5,x2,...,xm) for each (xl,xz,...,xm)

in B“Z‘ and t in I\ (C x [0,1/2)),
iv) for t in C x [0,1/2], etis linearly phased out to the

identity so that 6|R™ x C = id.

Given € > 0 choose 6§ > 0 by the engulfing result Theorem 7.8 so
that 6 will be able to be covered as described below. Givenu > 0
choose v > 0 so that if x and y are any two v-close points ofnfu then

e;lcx) is py-close to e;l(y) for each t in IM (thus, if g : E +R" is a

m
2

Let £ : Mx I" >R™ x I be given as in the hypothesis. Choose Q

v-fibration over 9 (B,), then e;lg is a u-fibration over Bg).

such that 0 < & < 1/2 and ft is a v-fibration for each t in C x [0,c].

M .+ 1" be the homeomorphism supported on C x [0,3/4] which takes

Let ¢ : I
each interval {c} x [0,a] linearly onto {c} x [0,1/2] and {c} x [,3/4]
linearly onto {c} x (1/2,3/4].

By engulfing there is a f.p. homeomorphism 8 :Mx 1M x "

such that
i) 8|M x C = id,
ii) 6;1f 1 5t is e-close to £ ,  for each t in 1.
V7T (1) ()
1

Define £ : M x 1" »R" x I"by ¥ ; =07'f ; & for each t in I".
V(D) VR "

This f satisfies the conclusions of the lemma. If we are additionally
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given a sliced Z-embedding g : F X R® x 1" > M x 1" where F is a compact

~

Q-manifold and fg is projection, then just require 8 to additionally

"

satisfy Og g(idF x 8). Then }g is projection. [

LEMMA 9.3. Suppose m is a positive integer. For every € > 0 there
exists a § > 0 such that if u > 0, M is a Q-manifold, and f: Mx 1™ -+
R x 1" is a proper f.p. map such that ft is a §-fibration for each t
in I" and ft is an approximate fibration for each t in C, then there is
a proper f.p. map F:Mx I"+R® x 1™ such that

m

i) E|f‘1(32 x I™ is e-close to f]f‘l(s2 x 1%,

ii) ft is a y-fibration over Bg for each t in In,

1ii) ft = ft for each t in C.

Moreover, if we are additionally given a compact Q-manifold F and a
sliced Z-embedding g : F x R® x 1" + M x 1™ such that fg: FxR"xI%
R™ x 1" is projection, then we can additionally conclude that
Eg|F x Bg x I : F x g"

) X ) Gl Bg x 1" is projection.

PROOF. Given € > 0 let § = 8(g)/3 where 8(€) comes from Lemma 9.2.
Given p > 0, choose v = v(u) by Lemma 9.2. Choose K to be a large

number (in fact, X = 3§/v suffices). The usual PL norm on R" will be

denoted by

|5 thus, [|x]] = max{|x;[,[x,],...,|x |}. An elementary
construction provides a radially defined f.p. isotopy Y:nﬂ‘x[o,1]-+m@

with the following properties:
i) Yo = id;
ii)  .v,|B} = id for each t in "

iii) HYt(x) -1 (") Il <3||x-yll for all x,y inR" and t in "
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if x is in R™\ By and ||x-yll <6, then [ly; () -v; (| <v;

m, _ M

Let £ : Mx I" > R™ x 1" be given as in the hypothesis. Construct

a map u :

(v/3)-fibration.
phism such that ?t =

map such that f{__ =

i) £
i) £
iii) £}
iv) £

An application
If we are

M x I" where F

1" > [0,1] such that u™’(0) = C and if u(t) < 1, then £, is a

Define ¥ : R® x I" > R™ x I" to be the f.p. homeomor-
Define £' : M x I" +R™ x I" to be the f.p.

Then we have the following properties:

ft for each t in C;

ft over Bg for each t in In;
is a v-fibration over R" \ °Br3n for each t in In;

is a 36-fibration for each t in I".

of Lemma 9.2 to £' yields the desired F : M x [" +R"x 1",

n,

additionally given a sliced Z-embedding g : F X R" x 1

is a compact Q-manifold and fg is projection, then con-

sider the following commutative diagram:

. --1
FxRUx 10 29%Y " L pxpmxi® ——— & _pMx 1"
lf
proj R"x 1" f!
l?
m_ .n
1", |

The composition along the top row is a sliced Z-embedding, so when we

produce f from f' using Lemma 9.2 we can assume that fg(id X \7-1) is pro-

jection. But ¥~

IIBI; x I™ = id. This shows that fg|F x B'; x I" is projection.



79

PROPOSITION 9.4. Suppose m is a positive integer and R"C 3B is
an open embedding. For every € > 0 there exists a § > 0 such that if
u >0, Mis a Q-manifold, and £ : M x I"+Bx 1"isa proper f.p. map
such that f is a sliced §-fibration over B’; x I" and ft is an approxi-

mate fibration for each t in C, then there is a proper f.p. map

-~

f : Mx In + B x In which is a sliced u-fibration over g™

1
is f£.p. e-homotopic to £ rel [(M x I™) \ £7-(Bf x 1™1 u M x Cl.

X In and which

Moreover, if we are additionally given a compact Q-manifold F such
that F x B is a Z-set in M and £|F x Bx I" : Fx B x I" + B x I" is
projection, then we can additionally conclude that z"IF x Bx IV is pro-

jection and that the homotopy from f to f is rel F x B x 1",

PROOF. Let e : R -+ S' denote the standard covering projection of
period 8 as defined in Section 8 and let el=exeeexe:R" + T" be the

product covering projection. As in [11, Section 8] we regard 'I'm-1 X R

as an open subset of ﬁ'; so that the composition ™! x id : B'; =
3"2"1 x [-2,2] » 'I""'1 x [-2,2]) ¢ Tm'l xR c §'; is the inclusion.

Letp >0 and £ : M x "+ B x 1" be given. Since f is a sliced
§-fibration over 'l‘m'l x [-3,3] x 1" we can use Proposition 8.1 to find a
compact Q-manifold M', a f.p. map £' : M' x I" » T"1 x g} x 1" = T"x 1"
which is a sliced 8'-fibration, and a f.p. open embedding
Yo f']‘(‘[‘m'l x (-2,2) x In) - M x 1" so that the following diagram

commutes:

Mt x 1D £ ;’[’mx "

Y idxexid

£ x (-2,2) x 1Y —fl-w'“'l x (-2,2) x 1"
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Here §' is small if 6 is and we regard ¥ as an inclusion map.

Now form the following pull-back diagram:
M £ R™ x P

p e" x id
Mex? — £ P g?

It follows that p is a bundle projection so that we may write
M' = M't x I™ where M"' is a Q-manifold (M"' 2 p'l(M' x {pt.}) and
assume that p and f" are f.p.

It follows from elementary facts about pull-backs that f" is a
sliced §"-fibration (where the size of &" depends on the size of ¢')
and that fg is an approximate fibratiocn for each t in C.

Using Lemma 9.3 we can find a £.p. map £ : M't x I" = R™ x I" with

the following properties:

3 = £ : .
i) Et ft for each t in C;

ii) ?t is a y-fibration over Bg for each t in I;

iii)  there is a f.p. ¢"'-homotopy G from
e et ) x 1 to i‘:l(f")"l(B'; x 1™ which is

rel (f")'l(B'; x C).

Consider the following commutative diagram:
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e

GO — B)x1"
pl e™x id
v
- ' o
(e « 1) — £l g
A
n
h ™ x 1" id
" idxexid
™ xrx 1"
U
£ () <1 > B0 1" ——H

The right-hand vertical composition is the identity by our choice
of notation. The left-hand composition is a f.p. homeomorphism by using

elementary facts about pull-backs. Let u : r® - [0,1] be a map such

that ul(1) = 87 _ and u'(0) =" \ B). Define F:Mx 1" B x 1"
as follows:
. <m n
- f(x,t) if f(x,t) ¢ (B \ BZ) x I
f(x,t) =

cth~ (x,1) WE (X)) if £(xt) € B x 17

This f satisfies the conclusions of the Proposition.

We now discuss the case when we are additionally given a compact
Q-manifold F such that F x B is a Z-set in M and fIF x B x 1" is projec-
tion. We want to conclude that %]F x B x I" is projection. First note

when we use Proposition 8.1 to wrap f up to get f' : M' X - T" x In,
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we are provided with a sliced Z-embedding g : F X ™x "> M x I? for

which f'g is projection and for which the following diagram commutes:

Ex T x 1" g » Mt x I
A
idx ex id 1)
Tm-l n -1 Tm-l n
F x x (-2,2)x1 c £77( x(-2,2)x1")

Next observe that there is a sliced Z-embedding § : F X R x 1%+ M
such that f''§ is projection and the following diagram commutes:

-~

FxR® x I £ M
idx e™x id p
ExTx 1" —8 oy xI"

To define § recall that M' = {(x,t,y,t) € M' x I" x R" x I"|£'(x,t) =
(e™(y),t)}. Then set g(x,y,t) = (g(x,e"(¥),t),(y,t)) for each (x,y,t)

n

in F x R™ x 1", That § is a sliced Z-embedding follows from the con-

struction and the fact that p is a covering projection. Now when
n

Lemma 9.3 is used to construct f, simply insist that £g|F x BI; x I is

projection. This will imply that F|F x B x I" is projection.

The next result generalizes Propositions 9.1 and 9.4. It is the

main result of this section.

THEOREM 9.5. Suppose m 2 0 is an integer and 2(X) x R"c—B is an
open embedding. For every € > 0 there exists a § > 0 such that for

every u > 0 there exists a v > 0 so that the following statement is

true:
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if M is a Q-manifold and f : M x "+Bx1"isa proper
f.p. map such that £ is a sliced §-fibration over cs(x)><B§><In
and a sliced v-fibration over [c,(X) \ &, ,,(X)]1x BT x 1" and f
3 1/3 3 t
is an approximate fibration for each t in C, then there is a
proper f.p. map f:MxI"+>B x I" which is a sliced u-fibra-
tion over cl(X) X BT

rel [(Mx 1M\ £1¢8

x 1" and which is f.p. e-homotopic to f

m

() x B x 1™3 v [M x CI.
3

2/3

Moreover, if we are additionally given a compact Q-manifold F such
that F x B is a Z-set in M and £|F x Bx I" : Fx B x I" B x I" is
projection, then we can additionally conclude that ?IF x B x I" is pro-

jection and that the homotopy from f to f is rel F x B x 1",

REMARKS ON PROOF. First note that Proposition 9.1 is the m = 0 case
of this theorem. For m 2 1 the proof is similar to the proof of Proposi-
tion 9.4. The major changes are as follows. In wrapping up Theorem 8.2
must be used instead of Proposition 8.1 because of the extra é(X)-factor.
This introduces a submersion into the proof and therefore the engulfing
result Thoerem 7.9 must be used instead of Theorem 7.8 for the analogue
of Lemma 9.2. Finally the radial squeeze Y of R™ x I" in Lemma 9.3 must
now be followed by a radial squeeze of E(X) x I™ towards the vertex.

This is similar to the procedure of Proposition 9.1. (]



SECTION 10:
THE MAIN RESULTS

In this section we present our main result on deforming a param-
eterized family of e-fibrations to a parameterized family of approximate
fibrations (Theorem 10.2). It will follow from this that the space of
approximate fibrations from a compact Q-manifold to a compact polyhedron

is uniformly LC® for every n 2 0. We begin with a key lemma.

LEMMA 10.1. Let B be a polyhedron, n 2 0 an integer, and C a closed
subset of 3I" which is collared in I". For every open cover & of B there
exists an open cover B of B so that the following statement is true:

if M is a Q-manifold and £ : M X M+Bx1"isa proper

f.p. map such that ft is a B-fibration for each t in I" and an

approximate fibration for each t in C, then for every open

cover y of B there is a proper f.p. map f' :MxI"+Bx 1" such

that f{ is a y-fibration a-close to ft for each t in I" and

| . s
ft ft for each t in C.

Moreover, if we are additionally given a compact Q-manifold F such
that F x B is a Z-set in M and f|F x B x ™ FxBxI">BxI"is pro-
jection, then we can additionally conclude that £'|F x B x " is pro-

jection.

PROOF. We first treat the case where B is an m-dimensional compact

polyhedron. Assume that B has a fixed triangulation and label the bary-

1
1’

center of some i-simplex of B. Let C; denote the closed star of b; in

centers of B as bg,bg,...,b b;,...,bT,bg,..., where b; is the bary-

the second barycentric subdivision of B. We identify C; with CI(A;)><Bi

84
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where A; is a compact polyhedron and we consider E(A;) x R' as an open

subset of B so that the following two properties are satisfied (here

1.2 = Ty < T < eee < = 1.3):
; NN i i Py x gP ; .
i) Ce (A \ 2, . (A1) 1xBLculc (A¥) x B |[i+1<psm,l<q};
3V 1/3%7j 3 Ti 4 T
. i i . P P I;:
ii) CZ/S(Aj) x By misses U{cri(Aq) x Brill +1<ps<m,ls<q}.

(In the course of the proof we will often produce a map which is an
e-fibration over some compacta Ci’ i=1,2,...,k and then declare that
the map is an e-fibration over uCi. Of course this is incorrect, but in
each case it is easy to see that we could introduce some more notation
and produce a map which is an ¢'-fibration over compact neighborhoods of
the Ci' The desired conclusion would follow from the remark following
Proposition 2.2 in [2].)

Let € > 0 be given (since B is compact, we will replace the open
covers o, B, and Y of B in the hypothesis with positive numbers €, §,
and u, respectively). We can inductively define small positive numbers
80’60’61’61""’em’6m with the following properties (choose

0 < e, <e/(m+l):

0

i) 61 < 5(61) where 5(61) is given by the handle lemma
(Theorem 9.5) for the open embeddings é(A;) x R* €8
(we apply the handle lemma independently for each j);

ii) ai < 61_1/2;

iii) g; < e/ (m+1);

iv) any map to B which is ei-close to a (Gi_l/Z)—fibration is

itself a Gi_l-fibration.
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Set § = Gm and let u > 0 be given, Let f : M X 1™+ B x I" be
given as in the hypothesis where we assume that f is in fact a sliced
§-fibration. We will produce a f.p. map f' : M X "+ B x 1™ e-close to
f such that f; is a u-fibration over each cl.l(Ai) x Bi.l for each t in

1" and fé = ft for each t in C. It suffices to construct a sequence of
" -
i 1’ f1 is

maps £ = fm+1,fm,...,f1,f0 = f' such that £* is ei-close to f .

a y-fibration over c. (Ap) X BE for i s p<m, eachq, and t in In, and
i i

fi = ft for t in C. First inductively define small positive numbers

V_1Vgs oV by setting v _, = U and for i = 0,...,m-1 choosing vi <u

1
such that vy < v(vi_l) where v(vi_l) is given by the handle lemma for
the open embeddings E(A;) x R'CB. Using the appropriate handle lemma
we inductively produce the maps £t (starting with i = m) so that
i) £! is a sliced v, ,-fibration over c_ (al) x BL x 1"
i-1 T j T,
for each j,

ii) £t is ei-close to f1+1,

c s i Li+l o i oi
iii) £ = ¢ over B \ ujal[cz/stAj) X 83],
iv) f; = ft+1 for each t in C.

In order to apply the handle lemma inductively simply observe that

£ is a 6, -fibration. Also observe that f' is a sliced u-fibration
over cr.(Ag) X Bg_ x I" for i < psmand q 2 1.

Ile is not zompact, then the procedure is similar. Assume that B
has a fixed locally finite triangulation and for each barycenter of b let

C, denote the closed star of B in the second barycentric subdivision of

b

B. Define subsets S,,5,,S;,... as follows. Let S, = U{Cblb is the bary-

center of a principal simplex of B}, S2 = U{Cblb is the barycenter of a

top dimensional proper face of a principal simplex of B}, etc. One then
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modifies the map f over a neighborhood of Sl, then over a neighborhood
of Sz, etc., just like in the compact case. This process is 'locally
finite."

If we are additionally given a compact Q-manifold F as in the
hypothesis, then using the full strength of the handle lemma in the con-
struction above will allow us to conclude that £'|F x B X " is

projection. O

THEOREM 10.2. Let B be a polyhedron, n 2 0 an integer, and C a
closed subset of 3I" which is collared in 1. For every open cover o of
B there exists an open cover 8 of B so that if M is a Q-manifold and
£:MxI">BxI"isa proper f.p. map such that ft is a B-fibration
for each t in I" and an approximate fibration for each t in C, then
there is a proper f.p. map F:MxI">B x I" such that %t is an approx-
imate fibration a-close to ft for each t in I" and ?t = ft for each t
in C.

Moreover, if we are additionally given a compact Q-manifold F such
that F x B is a Z-set in M and £|F x B x I" : F x Bx 1" » B x I" is
projection, then we can additionally conclude that %]F x B x I" is

projection.

PROOF. Just as in [2, Section 6] this theorem follows immediately
from Lemma 10.1 by an induction argument. Briefly, one constructs f as
a limit of maps £1 . M x 1™ > B x I™ which are chosen inductively by

Lemma 10.1 so that f* is close to f and each ft is a Bi-fibration. ad

COROLLARY 10.3. 1If M is a compact Q-manifold and B is a compact

polyhedron, then the space of approximate fibrations from M to B
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endowed with the compact-open topology is LC" for each non-negative

integer n.

PROOF. Recall that since M and B are compact the compact-open
topology coincides with the uniform topology. We consider B to have a

fixed metric. Let € > 0 and n 2 0 be given and choose B = B(&/3) > 0

n+l 1 n+l

by Theorem 10.2 with C = 3I™! so that any f.p. map £:MxI™ " +BxI

with ft an approximate fibration for each t in 31n+l and ft a B-fibra-

tion for each t in In+1 is f.p. (e/3)-homotopic rel M X 31n+1 to a f.p.

- n+l 1

map £ : Mx1I

each t in In+1.

+ B x I™" such that ft is an approximate fibration for

Now choose 0 < y < €/3 so that any map to B which is

y-close to an approximate fibration is a B-fibration.

n+l

Choose § > 0 so that if £ : M x 31l + B x 81n+1 is any f.p. map

with the property that for each s, t in 8In+1 fs is §-close to ft’ then

. . +
there exists a f.p. extension g : M x In+1 > B x I" 1

is y-close to g, for all s, t in In+1.

of £ such that g

To complete the proof we claim that if £ : M X BIn+l + B x 31n+1

n+l

is a f.p. map such that fs is d-close to ft for all s, t in 3l and ft

is an approximate fibration for each t in 31n+1, then there exists a f.p.
extension £ : M x In+1 + B X Im'1 of f with the property that ?s is €-
n+l

close to §t for all s, t in I

each t in In+1.

and ft is an approximate fibration for

This is obvious from the choices made above. 0

REMARK 10.4. A (possibly non-locally compact) metric space (X,d)

is said to be uniformly LC" if for every € > 0 there exists a § > 0 such

n+l

that every map f : 3I + X with the diameter of f(31n+l) less than ¢

~, n+l

extends to amap f : I + X with the diameter of f(1n+1) less than €.

If in the statement of Corollary 10.3 we fix a metric for B, then the
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proof shows that the space of approximate fibrations from M to B en-
dowed with the uniform topology is uniformly LC" for each non-negative

integer n.

In (13] it is shown that if £ : E - B is an approximate fibration
between connected ANRs, then f'l(b) is shape equivalent to the homotopy
fiber of f for each b in B. From this it follows that if f,g : E > B
are homotopic approximate fibrations between (not necessarily connected)
ANRs and b is in B, then £ 1(b) is shape equivalent to g *(b). For
example, if f,g : E ~ B are homotopic approximate fibrations and f is
cell-like, then g is cell-like. Or, if f,g : E - B are homotopic
approximate fibrations and f is monotone, then g is monotone. With these
facts in mind the following two corollaries follow immediately from

Corollary 10.3.

COROLLARY 10.5. If M is a compact Q-manifold and B is a compact
polyhedron, then the space of cell-like maps from M to B endowed with

the compact-open topology is Lc™ for each non-negative integer n.

COROLLARY 10.6. If M is a compact Q-manifold and B is a compact
polyhedron, then the space of monotone approximate fibrations from M to
B endowed with the compact-open topology is LC" for each non-negative

integer n.

As a final offering we remark that the following weak version of
Theorem 10.2 holds when B is any ANR. The proof is exactly like the

analogous result in [2, Section 61.

COROLLARY 10.7. Let B be an ANR and let n 2 0 be an integer. For

every open cover o of B there exists an open cover § of B so that if
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M is a Q-manifold and £ : M x I" » B x 1" is a proper f.p. map such that
ft is a B-fibration for each t in In, there there is a proper £.p. map

f:MxI"+Bx I" such that %t is an approximate fibration a-close to

ft for each t in In.
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