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ON FREELY DECOMPOSABLE MAPPINGS OF
CONTINUA

G. R. Gordh, jr., Greensboo and C. B. Hughes, Kentucky, USA

Abstract, We introduce and study a generalization of monotone mappings called
freely decomposable mappings. Among the results established are the following:
(1) The limit of an inverse scquence of locally connected (semi-locally) connected
continua with freely decomposable bonding mappings is cloally connected (semi-
locally connected). (2) Every freely decomposable mapping onto a locally connected
continuum without separating points is monotone. (3) Every freely decomposable
mapping on a locally connected unicoherent continuum is monotone. (4) Every
freely decomposable mapping onto [0,1] is confluent.

1. Introduction

The purpose of this paper is to introduce and study a generali-
zation of monotone mappings called freely decomposable mappings. This
class of mappings shares with the monotone mappings the property
of preserving local conncctedness in inverse limits. More precisely, it
will be shown that every inverse sequence of locally connected conti-
nua with frecly decomposable bonding mappings has a locally con-
nected limit.

The fact that monotone mappings preserve local connectedness
in inverse limits was established in [1]. The more general problem of
determining when the limit of an inverse sequence of locally connected
continua is locally connected has been studicd in [4] and [6].
However, the authors arc unaware of any previously studied generali-
zation of monotone mappings which preserves local connectedness in
inverse limits.

Some of the most basic facts about freely decomposable mappings
arc stated in the abstract. Frecly decomposable mappings on several
special types of continua are considered in the final section.
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2. Preliminaries

A continuwm is a compact connected metric space and a
mapping is a continuous surjection.

Throughout the paper f: XY will denote a mapping of con-
tinua.

If X is a continuum, then X = 4 U B is a decomposition provided
that A4 and B are proper subcontinua of X. The continuum X is freely
decomposable if for each pair of distinct points a and b in X, there exists
a decomposition X = 4 U B such that ae A\B and b€ B\ 4.

We shall make frequent use of the fact that a continuum is semi-
-locally connected if and only if it is freely decomposable [8].

The continuum X is aposyndetic at p with respect to the subset
K if there exists a subcontinuum /f of X such that

peint(H) € Hs X\K.

If X is aposyndetic at p with respect to each subcontinuum of X not
containing p, then X is said to be continuum-aposyndetic at p. If X
is continuum-aposyndetic at each point, then X is said to be continuum-
-aposyndetic.

We define the continuum X to be freely decomposable with respect
to points and subcontinua if for each subcontinuum C of X and cach
point ae€ X\ C there exists a decomposition X = 4 U B such that
ae AN\B and C < B\ A.

The following lemma was mentioned in [9] without proof. It is
a consequence of Theorem 4 of [3]; sce also Theorem 2 of [7].

LEMMA 1. A continuum is locally connected sf and only if it is
continuum-aposyndetic.

THEOREM 1. The continuum X is locally connected if and only
if it is freely decomposable with respect to points and subcontinua.

Proof. If X is frecly decomposable with respect to points and sub-
continua, then X is continuum-aposyndetic, and hence locally connec-
ted by Lemma 1.

Now suppose that X is locally connected, C is a subcontinuum of
X, and ae X\C. Using the fact that thc decomposition space X/C
is freely decomposable, it follows easily that there is a decomposition
X = AU B such that ae A\B and C = B\A.
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3. Freely decomposable mappings

The mapping f: XY is said to be freely decomposable if for
each decomposition Y = A4 U B there exists a decomposition
X = A"V B’ such that f(4')< 4 and f(B') < B. If, for each decom-
position ¥ = 4 U B, the sets f~1(4) and f~1(B) are connected, then
[ is said to be strongly freely decomposable.

Notation. Hereafter we shall refer to freely decomposable mappings
as FD mappings and to strongly freely decomposable mappings as
SFD mappings.

Letf: X>Yandg: Y= Z be mappings of continua. The fol-
lowing fact are immediatc conscquences of the definitions.

(1) If f is an SFD mapping, then f is an FD mapping.

(2) If f is a monotone mapping, then f is an SFD mapping.

(3) If f and g are FD mappings (SFD mappings), then g o f is an
FD mapping (SFD mapping).

(4) If g o f is an FD mapping (SFD mapping), then g is an FD
mapping (SFD mapping).

We now describe a method for constructing SFD mappings which
yields numerous cxamples of non-monotone SED mappings. Other
specific cxamples of FD and FSD mappings will be given in the final
two sections.

Let Y be a continuum, XK a compactum, and z: KxY->Y
the projection mapping. Let F be a non-cmpty proper closed subset
of Y, and let 2 be the upper semi-continuous decomposition of Kx Y
whose non-degenerate elements are of the form K x{y} for yeF.
Let X =(KXY)2 and let D: KXY -> X be the decomposition
mapping. Decfine f: X - Y to be the unique mapping such that
n=foD.

It is easy to verify that if C is subcontinuum of ¥ such that
Cn F#@, then f~'(C) is connccted. Consequently £ is an SFD map-
ping whenever the following condition is satisfied:

(*) For each decomposition ¥ = AU B, the sets AVUF and BUF
are non-empty.

A simple example which satisfies (*) occurs when Y is a finite
tree and F contains the end points of Y. In particular, if ¥ = [-1,1]
and F = {—1, 1}, then X is just the suspension of X and f is the
projection of X onto [—1, 1].

Notice that the mapping f is non-monotone whenever X is not
connected.
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4. Inverse limits with freely decomposable bonding mappings

We begin with a theorem which characterizes semi-local connec-
tedness and local conncctedness in terms of the existence of certain
IFD mappings.

Let & be a family of mappings on a continuum X with arbitrary
continua as images. The family & is said to separate points if for each
pair of distinct points @ and b in X there exists an f in & such that
f(@) # f(b). The family F is said to separate points from subcontinua
if for each subcontinuum C of X and each point a € X\ C there exists
an f in & such that f(a) ¢ f(C).

THEOREM 2. Let # bea famil y of FD mappings on a continuum X.

(1) If F separates points and 1Im (f) is semi-locally connected for
each f in F, then X is semi-locally connected.

(2) If & separates points from subcontinua and Im (f) is locally
connected for each f in F, then X is locally connected.

Proof. (1) It suffices to show that X is freely decomposable. Let
a # b in X and choose f in .# such that f(a) # f(b). Let Im(f) =
= AU B be a decomposition such that f(a) e A\ B and f(b) € B\ 4.
Let X = A’V B’ be a decomposition such that f (4)s 4 and f (B') € B.
Now ae A\B’ and be B\ A’ as required.

(2) According to Theorem 1 it sufficies to show that X is freely
decomposable with respect to points and subcontinuia. The proof is
analogous to that for (1).

In what follows let (X,,f,) be an inverse sequence of continua
with limit X and projection mappings =,: X > X, The reader is
referred to [1] for basic facts about inverse limits.

LEMMA 2. The bonding mappings f, are FD mappings if and only
if the projection mappings 7, are FD mappings.

Proof. Since a1, is an FD mapping, then since 7, = f o T4y it
follows that f, is an FD mapping.

Now suppose that cach bonding mapping is an FD mapping.
Given m we must show that 7, is an FD mapping. Let X,=4,Y B,
be a decomposition and choose a decomposition X4 1= Ams 1V Bma i
such that fu(Ams1) € Ay and f,(Bpy ) & Bn. Continue this process
inductively to obtain a sequence of decompositions X, , = AmexYUBmik
such that foyi- 1(Apmsi) € Amak-1 a0d frix-1(Bmsw) S Bmas- - Let
A denote the limit of (Ay4x fmsklAmsxsr) and let B denote the
limit of (Bpixs fmexlBmars ). One can verify that X = AU B is a
decomposition, 7, (4) € A and 7,(B) € B, Thus =, is an FD
mapping.
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THEOREM 3. Let (X, f,) be an inverse sequence of continua with
FD bonding mappings and limit X.
(1) If each X, is semi-locally comnected, then X fis semi-locally
connected.

(2) If each X, is locally connected, then X is locally connected.

Proof. Tt suffices to observe that {,} s a family of FD mappings
on X which separates points from subcontinua. The desired conclu-
sions follow immediately from Theorem 2.

5. Some basic propertics of freely decomposable mappings

The mapping f: XY is said to be confluent [2) if for each sub-
continuum C of Y, every component of f~!(C) is mapped by f onto C.

THEOREM 4. If f: XY is a confluent FD mapping, then f is
an SDF mapping.

Proof. Let Y = 4 U B be a decomposition, and let X = 4’V B’
be a decomposition such that f(A4') € 4 and f(B’) < B. Denote by
O the component of f~'(4) which contains A4’. It sufficcs to show
that Q = f~'(4). If not, there exists a component Q' of f~!(4)
distinct from Q. Thus Q' < B’, and consequently f(Q') € B which
contradicts the confluence of f.

THEOREM 5. If Y = (0,1} and f: X - Y is an FD mapping,
then f is confluent.

Proof. Suppose that f is not confluent. There exist a subinterval
[a, 6] of [0, 1] and a component Q of f~1({a, b]) such that f(O) #[a, b].
Assume without loss of generality that 0 % a and b¢ f (0).
Let {x,} be an increasing sequence in Y\{0, 4} converging to a. For
each n let X = 4, U B, be a decomposition such that f(4,) < [0, x,)
and f(B,) < [x,, 1]. Since B,,, € B, and Q < B,, it follows that
B =n{B,} is a continuum containing O and f(B) = [a,1]. Now
F7([,1]) = B\Q. Consequently, there is a subcontinuum QO of X
such that 0 < Q" < B\f~!([b, 1]) and Q#(Q'. Thus f(Q") € [a, b)
contradicting the fact that Q is a component of f~!([g, b]).

THEOREM 6. If Y #s locally connected and f: XY is an SFD
mapping, then f is confluent.

Proof. Suppose that f is not confluent. There exists a subconti-
nuum C of ¥ and a component Q of f~'(C) such that f Q) # C.
Let a e C\f(Q). By Theorem 1 there is a decomposition ¥ — AU B
such that 2 € A\B and f(Q)< B\ 4. Now f~'(4u C) is a continuum
containing Q and f~'(4) and Q N f~4(4) = O. Let O’ be a subcon-
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tinuum of X such that Q < Q'c f~H{AV NS (A) and Q # O'.
Thus f(Q’)  C contradicting the fact that Q is a component of f~!(C).

Example 1. Let X be an cquilateral triangle, let Y be a simple
triod inscribed in X with its end points at the vertices of X, and let
f: XY be a mapping which »collapses¢ X onto Y. Then f is an FD
mapping which is not confluent (hence not SFD).

LEMMA 3. Suppose that Y is locally connected and that f: X ->Y
ts an FD mapping. If ¥ 1s a non-separating point of Y, then f~'(y) is
connected.

Proof. According to ([11], p. 50) there exist arbitrarily small con-
nected open sets about y whose complements are connccted. Thus
there is a seqeunce of decompositions Y == 4, v B, such that
ye A, 1 SAN\B, for cach n, and {y}=n {4,}. Let X =4,UB,bea
sequence of decompositions such that f(A4)) € A, and f(B;) € B,.
Since 4] 24, 2...24,2 ..., theset f~'(y) = U {4} is a con-
tinuum.

THEOREM 7. Let Y be a locally connecred continuum which con-
tains no separating points. If f: X->Y is an FD mapping then f is mo-
notone.

COROLLARY L. If Y is a manifold (zwith or swithout boundary)
and Y o [0, 1), then every I'D) mapping f: X ->Y is monotone.

Let X be a continuum. The following sct valued functions were
defined in [8].

K (x) = {y e X: X is not aposydentic at x with respect to y}
L(x) = {ye X: X is not aposyndetic at y with respect to x}.

THEOREM 8. If Y is semi-locally connected and f: XY is
an FD mapping, then f(R(x)) = f(x) and f(L(x)) = f(x) for each
x i X.

Proof. Suppose that y e K(x) and f(x) # f(¥). Since Y is freely
decomposable there is a decomposiion Y =4 U B such that
fx)e AN\B and f(y)e BN\A. Let X = 4"V B’ be a decomposi-
tion such that f(A4’) € A and f(B’) < B. Thus

xe AN\B < Int(4d) c A' < X\{»},

so X is aposyndetic at x with respect to y which is a contradiction,
Consequently, f (x) = f(y) as desired.

The proof that f(L (x)) = f(x) is similar.
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COROLLARY 2. Suppose that X is a continuum whit the property
that for each pair of points x and ¥y either K(x)N K(y) # Q or L(x)n
N L(y)#@. Then every FD mapping from X onto a semi-locally connected
continuum is constant,

6. Freely decomposable mappings on some special types of
continua

The continuum X is wunicoherent if for each decomposition
X = AUB the set AUB is connected. If each subcontinuum of X
is unicoherent, X is said to be hereditarily unicoherent. A dendroid is
an arcwise connected hereditarily unicoherent continuum. A dendrite
is a locally connected hereditarily unicoherent continuum.

The next theorem is an immediate conscquence of the definitions.

THEOREM 9. If X is unicoherent and f: X—>Y is an SFD map-
ping, then Y is unicoherent.

Example 2. FD mappings nced not preserve unicoherence. To sce
this, let X denote the cone over the compactum {xe[—1,1): x =1,
x= —1, or x= +n/(n+1) for some natural number n}. Let
Y= X/{—1,1}, and let f: XY bc the decomposition mapping.

THEOREM 10. If X is unicoherent, Y is locally connected, and
J: XY is an FD mapping, then [ is monotone.

Proof. By Lemma 3 it suffices to show that f~'(») is connected
in case Y\{»} is not connccted. Since Y is locally connected, there
are at most countably many components, say Q,, of Y\{»}. For cach
n let g, be the monotone mapping of Y onto the locally connected
continuum Q,u {y} defined by

x if xe Q, and

y if xe Y\Q,.

Since y is a non-separating point of Q,U {v} and g, o f is an FD map-
ping, it follows from Lemma 3 that f~Yg;'(») is connected for
cach . It is easily seen that f~!(y) = n {/ e "N} Let H, =
= f"!gi !(¥)) and inductively define H, = f~'(g;'(») N H,_,.
Then f~Y(y)=n{H,} and H,,, < H, for each n. But by the
unicoherence of X, each H, is connccted. Thus S~ () is connected
4s required.

gu(x) = [

COROLLARY 3. Every FD mapping on a dendrite is monotone.

FD mappings on dendroids need not be monotone (see Example 2).
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THEOREM 1. If X is hereditarily unicoherent, Y is semi-locally
connected, and f: XY is an FD mapping, then f is monotone. Con-
sequently, Y is adendrite.

Proof. Suppose that f is not monotone and let y be a point of ¥
for which f-!(y) is not connccted. Let Q, and Q, be distinc compo-
nents of f~'(y) and let I be a subcontinuum of X which is irreducible
from O, to O, (i. e., f meets Q, and Q, but no proper subcontinuum
of I does). Let xe IN\f~(y). There is a decomposition ¥ = AUB
such that y € AN\ B and f(x) € B/4. Let X = A’ B’ be a decomposition
such that f(4) = 4 and f(B)< B. Now O, v Q, < A" and x¢ 4'.
Thus, by hereditary unicoherence, 4’ U I is a proper subcontinuum
of I which meets Q, and Q,. This contradicts the fact that 7 is irre-
ducible O, to Q..

Since monotone mappings preserve hereditary unicoherence, Y
is a dendrite (e. g., Corollary 2.1 of [5]).

Example 3. Let X denote the »sin 1/x curve« and lct a and b be the
end points of the limit arc. Let Y = X/{a, b} and let f: XY denote
the decomposition mapping. Then X is hereditarily unicoherent and
f is an SFD mapping, yet f is not monotone. Thus Theorem 11 fails
without the assumption that Y be semi-locally connected.

The continuum X is said to be drreducible if there exist points a
and b of X such that no proper subcontinuum of X contains a and b.
The continuum X is indecomposable if there docs not exist a decompo-
sition X = AV B.

It is well-known that every indecomposable continuum is irre-
ducible (e. g., [10], p. 212).

The next two theorems are immediatc consequences of the de-
finitions.

THEOREM 12. If X is indecomposable and f: XY s an FD
mapping, then Y is indecomposable.

THEOREM 13. If Y is indecomposable and f: XY is any map-
ping, then f is an SFD mapping. '

Example 4. Although indecomposability is preserved by FD map-
pings, irreducibility is not. To see this, let /* denote the familiar
indecomposable sbuckethandle« continuum lying in the plane as des-
cribed in ([10], p. 204). Denote by I~ the reflection of I* across the
y-axis and let X = I* U I~. Define f: XY to be the decomposition
mapping which identifies points of the form (x, y) and (—x, y) whene-
ver 0 < x < }. One can verify that X is irreducible and f is an FD
mapping, but Y is not irreducible.
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We now establish that irreducibility is preserved by SFD mappings
and by FD mappings onto locally connected continua.

THEOREM 14. If X is irreducible and f: XY is an SFD map-
ping, then Y is irreducible.

Proof. Suppose that X is irreducible from a to 5 and that Y is
not irreducible from f(a) to any other point. It follows (see [10],
Theorem 4, p. 192) that there is a decomposition Y = AU B such
that f(a)e AN B. Now X =f-Y(A)uf-(B) is a decomposition
and without loss of generality, bef-!(B). Thus f~!(B) contains a
and b contradicting the rireducibility of X.

THEOREM 15. If X is irreducible, Y is a nondgenerate locally
connected continuum, and f: X Y is an FD mapping, then [ is monotone.
Consequently, Y is an arc.

Proof. Suppose that X is irreducible from a to 5. We begin by
showing that Y is an arc with end points f (a) and f (b). If not, let C
be a proper subcontinuum of Y containing f(a) and f(b). Let p e Y\C.
By Theorem 1 there is a decomposition ¥ = AU B with peAN\B
and C< B\ 4. Chosc a decomposition X == 4’ U B’ such that f(AH<s A
and f(B’) = B. Thus, a and b belong to B’ which is a contradiction.

Assumne that the arc Y is ordered form f(a) to f(b). Notice that
/ is an SFD mapping by Theorems 4 and 5. Furthcrmore, Y (a)
and f~*(f(b)) are connected by Lemma 3. If f is not monotone, there
exists a £ in Y such that f(a) < ¢ < f(b) and f~'(¢) is not connected.
Let O be a componcnt of f~!(s), let O, be a subcontinuum of
S~ ([f(a), £]) which properly contains Q but does not contain ), and
let Q, be a subcontinuum of f~'([¢, f(8)]) which properly contains Q
but does not contain f-(z). Then f(Q, U Q,) = [z,, t2] where
t1 <t <t Now f~Y([f(a), :,])V Q,V QU ¥ ([t,, f (B))) is a sub-
continuum of X which contains a and b, but does not contain - Yo).
This contradicts the fact that X is irreducible from a to b. Consequently
f is monotone.

REFERENCES:

(1) C. E. Capel, Inverse limit spaces, Duke Math. J. 21 (1954), 233-246.

[2] J. J. Charatonik, Confluent mappings and unicoherence of continua, Fund.
Math. 56 (1964), 213-220.

[3] H. 8. Davis, A note on connectedness im kleinen, Proc. Amer. Math, Soc.
19 (1968), 1237-1241.

[4] M. K. Fort, Jr. and J. Segal, Local connectedness of inverse limit spaces,
Duke Math. J. 28 (1961), 253-260.

(5] G. R. Gordh, Jr., Concerning closed quasi-orders on hereditarily unicoherent
continua, Fund. Math, 78 (1973), 61-73.



146 G. R. Gordh, Jr., and C. B. Hughes

[6] —_ and S. Marde$ié, Characterizing local connectedness in inverse li-
mits, Pacific J. Math, 58 (1975), 411-417.

[7] C. L. Hagopian, On generalized forms of aposyndesis, Pacific J. Math. 34
(1970), 97-108.

[8]1 F. B. Fones, Aposyndetic continua and certain boundary problems, Amer.
J. Math. 53 (1941), 545-553.

[9) ., Concerning apsyndetic and non-aposyndetic continua, Bull. Amer.
Math. Soc. 58 (1952), 137-151.

(10) K. Kuratowski, Topology, Vol. II, PWN, Warsaw; Academic Press, New
York, 1966.

[11] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloquium Publications
28, Providence, 1942.

(Received February 23,1977) G. R. Gordh, Jr.
Guilford College
Greensboro, North Carolina 27410

C. B. Hughes
University of Kentucky
Lexington, Kentucky 40506

O SLOBODNO RASTAVLJIVIM PRESLIKAVANJIMA KONTINUUMA
G. R. Gordh, Jr., Greensboro i C. B. Hughes, Kentucky, USA

SadrZaj

U ¢&lanku se uvodi i proucava jedna generalizacija monotonih pre-
slikavanja koja su nazvana slobodno rastavljiva preslikavanja. Medu
dokaznim rezultatima su ovi: (1) Limes inverznog niza lokalno pove-
zanih (semi-lokalno poveczanih) kontinuuma sa slobodno rastavljivim
veznim preslikavanjima je lokalno poveazn (semi-lokalno povezan). (2)
Svako slobodno rastavljivo preslikavanje na lokalno povezan kontinuum
bez separirajuéih totaka jc monotono. (3) Svako slobodno rastavljivo
preslikavanje na lokalno povezan unikoherentan kontinuum je mono-
tono. (4) Svako slobodno rastavijivo preslikavanje na [0,1] je kon-
fluentno.



