Noumal of
UNDERGRADUATE
MATHEMATICS

CONTENTS

HUGHES, C. BRUCE (Guilford College)
Inneducdble continua and some characterizations of arcs =« « « « 1
ANDERSON, DAVID (Community High Sehool)

An outrageously discontinuous fURCEAON « + « « « « o o« o o 0 o 4 11
BEAN, CAROLYN (Hendriz College)

Group operations on the power Set + « « + « o o o« ¢ o o 0 00 13
MARTIN, MARILYN (Hendrix College)

A nelation-theonetic approach to a theorem of Cantor « + + « « - 19
LEWIS, JERRY W. (Harding College)

The fwo parts of the fundamental theorem 0f caloulus + + » + « o 23
JOHNSON, CONRAD (Ottawa University)

Extensions of ondered fields = = « o o o o ¢« o v o v v 40 . . 27
TALLMAN, PETER (Fort Lewis College)

A theorem of national arctangents =« + « = + o « o o o o o 0 o . 33
PROPOSALS FOR RESEARCH

DROUE: DUBLE . wd o5 03 AWE e od e d aa ald w5 35

TEFTELIER: S B ww'd o6 s siwie 48 60 & 6.5 3.5 £ .3 o . 97

GREGORY, M. B. and METZGER, J. M. =+ « « « o ¢ « o o & o o & o & 41

BT, BEDIBE o % 99 @ 63 #ia me w & s i owmw eE e 47
REPORT ON THE FIRST CONFERENCE ON UNDERGRADUATE MATHEMATICS =+ « « + - 49

VOLUME 8 (see back cover) MARCH

NUMBER 2 1976



of

UNDERGRADUATE
MATHEMATICS

BOARD OF EDITORS

Donald W. Crowe, University of Wisconsin

K.L. de Bouvere, University of Santa Clara

Temple H. Fay, Hendrix College

G. Philip Johnson, Oakland University

Kenneth 0. May, University of Toronto

William C. Ramaley, Fort Lewis College
MANAGING EDITORS

J. R. Boyd, Guilford College

G. R. Gordh, Jr., Guilford College

The primary purpose of the Jowwal of UNDERGRADUATE MATHEMATICS is to
provide for the publication of research or expository papers written by under-
graduate students. A section, Proposals §on Reseanch, is a source of topics for
undergraduate research; solutions are on the level of papers published in this journal -

contributors to this section are both faculty and students.

The Jowwmal o¢f UNDERGRADUATE MATHEMATICS is published biannually. The price
for a subscription per volume (two issues - March and September) is $3.00 for

individuals and $5.00 for libraries and departments.
Subscriptions, manuscripts and all other correspondence should be mailed to:

Jowwmal of UNDERGRADUATE MATHEMATICS

Guilford College
Greensboro, North Carolina 27410

Published by:
Department of Mathematics

Guilford College



IRREDUCIBLE CONTINUA AND SOME
CHARACTERIZATIONS OF ARCS

C. Bruce Hughesl

INTRODUCTION. The purpose of this paper is to study local connectivity and some related
properties in irreducible continua (see Section 1 for definitions). These properties are shown
to be equivalent in irreducible continua. An arc is characterized as an irreducible continuum
having any one of these properties at each of its points. We also obtain a new proof for the
classical characterization of an arc as a continuum with exactly two non-separating points. For
terms and concepts not explained in this paper the reader is refered to [2].

The author is indebted to Dr. G. R. Gordh, Jr. for his many helpful suggestions and comments

during the development of this paper.

1. BASIC DEFINITIONS AND EXAMPLES. A continuwn is a compact, connected metric space. If
A is a subset of a continuum we denote the closure of A by A. The {nteriokr of A, denoted int(A),
is the set of all points x in A such that there is an open set U which contains x and is a subset
of A. The boundary of A, denoted bd(A), is the set of all points x such that every open set

containing x contains both a point in A and a point not in A.

DEFINITION 1. A continuum M is {areducibfe from p Lo q if no proper subcontinuum of M
contains both p and q. A continuum M is {rreducibfe if there exists points p and q in M such

that M is irreducible from p to q.
DEFINITION 2. An anc is a homeomorphic image of the closed unit interval,

An important characterization of arcs used in this paper is the following: an arc is a
connected, separable, linearly ordered topological space having a first peint and a last point
(see [1]). An element in the basis for the topology of a linearly ordered space consists of all
points that are between two given points, the set of all points which precede a given point, or

the set of all points which follow a given point.

DEFINITION 3. A continuum M is §reely decomposable if for any two distinct points p and q
in M there exists subcontinua A and B such that p is in A-B, q is in B-A, and M = A U B,

DEFINITION 4. The point p is a non-separating point of the continuum M if M-{p} is connected.
The following concept is due to F. B. Jones (see [3],[4]).

DEFINITION 5. If A is a subset of a continuum M, then M is aposyndetic at a point p with
hespect to A if there exists a subcontinuum H of M such that p € int(H) € H < M-A,

The following seven properties are those which are under investigation in this paper.

PROPERTY 1. A continuum M is semi-aposyndetic at a point p if for all q in M-{p}, either
M is aposyndetic at p with respect to q or M is aposyndetic at q with respect to p.
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2 HUGHES

PROPERTY 2. A continuum M is semi-Locally connected at a point p if for any open set U

containing p there ecxists an open set V such that p € V € U and M-V has finitely many components.

PROPERTY 3. A continuum M is aposyndetic at a point p if M is aposyndetic at p with respect
to q for all q in M-{p}.

PROPERTY 4. A continuum M is §finitely-aposyndetic at a point p if, given a set F containing
finitely many points all of which are distinct from p, M is aposyndetic at p with respect to F.

PROPERTY 5. A continuum M is continuum-aposyndetic at a point p if given any subcontinuum

H of M-{p}, M is aposyndetic at p with respect to H.

PROPERTY 6. A continuum M is connected 4m Kleinen at a point p if for every open set U
containing p there exists a subcontinuum H such that p € int(H) s H < U,

PROPERTY 7. A continuum M is fLocally connected at a point p if for every open set U

containing p there exists an open set V such that p € V € U and V is connected.

For each of Properties 1-7 if the words "at a point" are deleted, we mean that the continuum
has that property at each of its points. An arc and a circle are examples of continua which are
freely decomposable and have all of Properties 1-7 at each of their points. An arc is irreducible,
but a circle is not. In Section 3 it is shown that the only irreducible continua which have any
one of Properties 1-7 at each of their points are arcs. The following are examples of continua
having some of Properties 1-7 at certain points and not having some of the Properties at other
points. None of these continua are irreducible. The details of the examples are left to the

reader,.

EXAMPLE 1. In the plane with a cartesian coordinate system, let M = {(x,y) : 0 = x <1 and
y=0orys=x/n,n=1,2,3+++}. Let p be the point whose coordinates are (0,0) and let q be
the point whose coordinates are (1,0). It can be seen that M is semi-aposyndetic at p and aposyn-
detic at p, but M is not semi-locally connected at p. Also, M is semi-locally connected at q and
semi-aposyndetic at g, but M is not aposyndetic at q.

EXAMPLE 2. In the plane with a cartesian coordinate system, let M = {(x,y) : 0 < x <1 and
y=0ory=1/n, n=1,2,3,*++} U{(x,y) : x=0and 0 £y <1)}. Let p be the point whose
coordinates are (1/2,0). Then M is aposyndetic at p, but M is not finitely-aposyndetic at p.

EXAMPLE 3. This example is the 3-dimensional analogue of Example 2. In Euclidean 3-space
with a cartesian coordinate system, let M = {(x,y,z) : 0 < x<land 0 sy <1 and z = 0 or
z=1/n,n=1,23,**}U{(x,y,2) : x=0and 0 sy <1and 0 <z <1} U {(x,y,2) : x =1 and
0<y<1and 0 £z <1}. Let p be the point whose coordinates are (1/2,1/2,0), It can be

seen that M is finitely-aposyndetic at p, but M is not continuum-aposyndetic at p.

EXAMPLE 4. Let M be the plane continuum pictured in Figure 1. Then M is continuum-aposyn-
detic at the point p, but M is not connected im Kleinen at p.

EXAMPLE 5. Let M be the plane continuum pictured in Figure 2. Then it can be seen that M
is connected im Kleinen at the point p, but M is not locally connected at p.
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2. PRELIMINARY RESULTS. 1In this section we establish propositions that will be important

in proving the theorems of Section 3. We begin by stating one of the most basic theorems of
continua theory (for a proof, see [2], page 47).

LEMMA 1.  (Boundary Bumping Theorem) 1§ U is an open subset of a continuum M and C is a
component of U, then U-U contains a Limit point of C {that is, bd(U) N T £ ¢).

PROPOSITION 1. A continuum M is semi-Locally connected at p if and only if M is aposyndetic
at q with respect to p fon each q 4in M-{pl.

PROOF. {4if) Let U be an open set containing p. An open set V must be found such that
p € V< Uand M-V has finitely many components. For each q in M-{p} there exists a subcontinuum
Hq and an open set Oq such that q € 0q € Hq € M-{p}. The collection (0q : q € M-U} covers M-U.
Since M-U is compact, there is a finite subcollection {0qi :1<1i=<n}of {0q i q € M-U} covering
M-U, where each Oq; is contained in the corresponding continuum Hqj- Let H = U{Hqi :1=<1isn)
and let V = M-H. Then p € V < U and M-V has at most n components,

{only 4§) Let q be a point different from p in M. Then a continuum H must be found such
that q € int(H) € H € M-{p}., There exists an open set U containing p such that q is not in U.
Since M is semi-locally connected at p, there is an open set V such that p € V £ U and M-V has
finitely many components. Let H be the component of M-V at q. Since M-V is closed, it follows
that H is a continuum. Because V is contained in U and q is not in U, we have that q is not a
limit point of V. Since M-V is the union of finitely many closed components, it follows that q
is not a limit point of M-H. Therefore, q € int(H) < H < M-{p}.

PROPOSITION 2. 14 an {wreducible continuun 1 is aposyndetic at p with nespect to q, then 1
48 aposyndetic at q with nespect 2o p.

PROOF. Let a and b be points in I such that I is irreducible from a to b. There exists a
continuum H such that p € int(H) € H € I-{q}. Let V = I-H and let K and Kp be the components
of V at a and b, respectively. By the Boundary Bumping Theorem, it can be shown that K; N H # ¢
and K, N H # ¢ because bd(V) < H. Suppose that there exists a point c¢ in I-H such that c¢ is not
in K; or K. Then K; U H U Kj, would be a proper subcontinuum of 1 containing a and b, which

contradicts the fact that I is irreducible from a to b. Thus, q is in either K, or Ky. Assume
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without loss of generality that q is in K,. It follows that q is in int(Eb) and K, is a continuum
not intersecting int(ll). Therefore, q € int(¥Xy) < K, € I-{p} and 1 is aposyndetic at q with
respect to p.

LEMMA 2. T4 a continuum 1 {8 {rneducible grom a to b and H) and H, are disjoint subcontinua
o4 1 containing a and b, respectively, then I-H,, I-H,, and I-(H, U H) are connected.

PROOF. To show 1-H, is connected, it can be assumed that b is not in H; otherwise, Hl = 1.
Suppose that I-H, = A U B is a separation with b in B. Since HU B is connected and BN A = ¢,
it follows that H U B is a proper subcontinuum of I containing a and b, which contradicts the
fact that I is irreducible from a to b. Similarly, it can be shown that I-H, is connected. To
show that I-(H, UH,) is connected, it can be assumed without loss of any generality that ”1 U H, #
I and that b is not in Hl' Observe that I-(H1 U Hz) = (I'”l)'Hz’ Suppose that (l-Hl)-H2 is not
connected; that is, there exists a separation SUT = (I'Hl)'Hz' Since I-Hl and H2 are both
connected, it follows that Hz US and H2 U T are connected. Since I is connected, either S n H1 #
¢orTn “1 # ¢. Therefore, either ll1 UusSvu H2 or H] UTUu H2 is a proper subcontinuum of I
containing a and b, which contradicts the fact that I is irreducible from a to b,

PROPOSITION 3. 14 H is a subcontinuum of an irreducible continuum 1, then int(H) 48 connected.
PROOF. Let a and b be points such that I is irreducible from a to b. Let H, and Hp be the

components of I-int(H) at a and b, respectively. It is clear that int(H) c I-(H; U Hy). If

p € I-(Hy UHp), then p € H. For if p is not in H, then H; U H U Hy, would be a proper subcontinuum
of I containing a and b, which contradicts the fact that I is irreducible from a to b. Since

I-H € Hg U Hp, it follows that p is not a limit point of I-H and p € int(H). Therefore, int(H) =
I-(H, U Hb) which is connected from Lemma 2.

PROPOSITION 4. If H, and H, are subcontinua of an {ureducible continuum I such that
int(l’ll) n int(Hz) # ¢, then H NH, 48 a continuum.

PROOF. Let a and b be points such that I is irreducible from a to b. Since I is irreducible,
every subcontinuum of I with non-empty interior separates I into two sets, one containing a and
one containing b (possibly empty). Let I-H = A U B, and I-H, = A2 U B, be separations where
ais in A; and A, and b is in B and B,. Let A = Tﬁz—trﬁzﬁ and let B = Tﬁ:—TTTQD. By Lemma 2,
it follows that I-(A U B) is connected. It is easy to verify that H1 n H2 = (I-(A U B)), which
is a continuum,

PROPOSITION 5. 1§ an inreducible continuum I L8 aposyndetic at p with respect to S and I
48 aposyndetic at p with respect to T, then I is aposyndetic at p with respect to S U T.

PROOF. There exists continua H; and H, such that p € int(H,) € H, < I-Sand p € int(H)) <
H2 < I-T. Therefore, p € int(Hl n H2) < H1 n H2 € I-(S U T) and, by Proposition 4, H1 n H2 is
a continuum.

PROPOSITION 6. A continuum M 4s freely decomposable if and only if M is aposyndetic.

PROOF. (onky 4§) Given p and q in M, it must be shown that M is aposyndetic at p with
respect to q. Since M is freely decomposable, there exists continua A and B such that p is in
A-B and q is in B-A and A U B = M. Since A-B is an open subset of A which contains p, it follows
that p € int(A) € A € M-{q}.

{4{§) Given p and q in M, it must be shown that there exists subcontinua A and B such that
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P € A-B and q € B-A and A U B = M. For each x in M-{p} there exists a continuum Hy and an open
set Uy such that x € Uy € Hy © M-{p}. Also, there is a continuum H and an open set U such that

P € UCHcM-{q}. The collection4 = {U} U {uy : x € M-p} covers M and therefore there exists

a finite subcollection {Ui :i=1,2,,..,n} of & that covers M. Let Hj be the continuum associated
with Uj for i = 1,2,...n. Let Ay = U(H; : 1 <i <n and p € Uj} and let By = UH; : 1 =i <n and
q € Uj}. For each m such that 1 <m <n let A = UH; : 1 <i<nand H; N Ap.y # ¢} UA,_, and
let B = U{Hi : 1 £i=<n and Hi n Bm_1 £ ¢} U Bm'l' Let A = U{Ap : 1 <m sn)} and let B = U{By :
1 sm <n}, It follows from the connectedness of M and the fact that {H : i =1,2,...n} covers

M that A UB =M. It is clear that A and B are continua and that p € A-B and q € B-A, since each

Hi for 1 £ i <n contains at most one of p and q.

PROPOSITION 7. 14 C 48 a connected proper subset of a continuum M, then there exists a
point p in M-C such that p is a non-separating point of M.

PROOF. On the contrary, suppose that C is a connected proper subset of M and every point
in M-C separates M. A transfinite sequence of open subsets of M will be constructed such that
the collection of these open sets covers M but contains no finite subcollection covering M. This
will be a contradiction to the fact that M is compact. Choose{x,}in M-C and let Ay UB, be a
separation of M-{x } where C S A . Notice that A, is open and A U {x } is a continuum. We
proceed to define by transfinite induction an open set A, for each ordinal A. If XA is an ordinal
such that i-1 exists, then let X, = U{AY Py AU {xY Py < A}, If xA # M, then choose X, in
M-X,. Since C ¢ Ao S XA’ we have by assumption that X, separates M. Let A, U By be a separation
of M-{x,} where A)\_l u {xx_l} < AA. If XA = M, then let A, = M. If A-1 does not exist (i.e. X
is a limit ordinal), let Ay = U{AY !y < A}. Notice that Ay S Ag whenever a < 8. Let u be the
first ordinal such that A, = M. It follows that u is a limit ordinal, for suppose that u-1 exists.
Then Au'l # M and X, =M. In this case X, = A, U {xu-l} = M, but Bu-l # ¢ which is a contra-
diction. Therefore, u is a limit ordinal and % = {AA : A <u} is a cover of M by open sets since
M= Au = U{AA : A <u}., Suppose that there is a finite subcollection of % which covers M. Then
let o be the greatest ordinal such that Ay € U. Since A, # M, there exists an x in M-A,. But
Ag € A, for each ordinal § such that As € U, Thus % does not cover {x} and no finite subcollec-
tion of {Ay : X < u} covers M. This is the desired contradiction.

COROLLARY 1. Eveny non-degenerate continuum M contains at Least Awo non-separating points,

PROOF. Choose x in M. It follows that {x} is a connected proper subset of M and by Prop-
osition 7 there exists p in M-{x} such that p is a non-separating point of M. Also {p} is a
connected proper subset of M and therefore, there exists q in M-{p} such that q is a non-sepa-

rating point of M. Hence, p and q are non-separating points of M.

In Theorem 3, it will be shown that a continuum with exactly two non-separating points is

an arc. Thus, an arc has the minimal number of non-separating points for a non-degenerate
continuum.

3. MAIN RESULTS.

THEOREM 1. 1§ I is a continuum inneducible from a to b, then the gollowing are equivalent:
(@) 1 48 semi-aposyndetic at p;
(b) I 4is semi-Locally connected at p;
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{e) 1 .48 aposyndetic at p;

(d) I .4s ginitely-aposyndetic at p;

{e) 1 L8 continuum-aposyndetic at p;

(4} 1 is connected .im kLeinen at p; and,
{g) 1 .48 Locally connected at p.

PROOF. (a) implies {b). By Proposition 1, the continuum I is semi-locally connected at p
if and only if I is aposyndetic at q with respect to p for each q in I-{p}. From Proposition 2,
it follows that I is aposyndetic at q with respect to p for each q in I-{p}.

(b} implies {c). Again this is a consequence of Propositions 1 and 2,

{e) implies (d). This is a consequence of applying induction to the result obtained in
Proposition 5.

{d) implies {e). Let !l be a subcontinuum of I-{p}. Since I is aposyndetic at p, it
follows from Proposition 5 that 1 is aposyndetic at x with respect to p for each x in H. Thus
for each x in Il there exists a continuum Hy such that x € int(Hy) € Hy € I-{p}. If Ux = int(Hy)
for each x in H, then {Ux : % € H} is an open cover of H which has a finite subcover {UXi HS S
1,2,...,k}. Fori=1,2,...,k let Ci be the component of I-Uy; at p. For each i =1,2,...,k
there are at most two components of I-Uxi, else H together with the components of I-Ux; at a and
b would be a proper subcontinuum of 1 containing a and b. Thus, since p is not in H, it follows
that p € int(C;) for i = 1,2,...,k. Applying induction to the result obtained in Lemma 4, we
find that C = N{¢; : i = 1,2,..,,k} is a continuum containing p in its interior and C < I-H.
Hence, 1 is aposyndetic at p with respect to H.

{e) implies {§)}. Since I is continuum-aposyndetic at p, it is clear that I is semi-aposyn-
detic at p and, hence, 1 is semi-locally connected at p. Therefore, if U is any open set
containing p there is an open set V such that I-v has finitely many components {Hj : i = 1,2,...,k}
and p € Vg U, Each H; (i=1,2,...,k) is a continuum so I is aposyndetic at p with respect to
Hy (1 =1,2,...,k). Applying induction to Proposition 5, we have that I is aposyndetic at p
with respect to U{H; : i =1,2,,..,k}. Thus, there exists a continuum H such that p € int(H) ¢
Hel-uH; : i=1,2,...,k} =V gU.

() implies (g). If U is any open set containing p, then there exists a continuum H such
that p € int(H) € H < U. From Proposition 4, it follows that int(H) is an open connected subset
of U containing p.

{g) implies {a). Let q be a point different from p in I. There exists an open set U such
that p € U and U g I- q and an open set V such that p € Vc U and V is connected. Thus, V is
the required continuum to show that I is aposyndetic at p with respect to q.

THEOREM 2. 1§ I 48 an {ureducible continuum, then the following are equivalent:

(@) 1 48 an ane;

(b) 1 .45 semi-aposyndetic;

(e} 1 4a semi-Locally connected;
{d} 1 is aposyndetic;

(e} 1 4s §initely-aposyndetic;

{(§] 1 {8 continuum-aposyndetic;

{g] 1 is connected im hleinen; and,
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(h) 1 48 Locally connected.

PROOF. It is clear that every arc is semi-aposyndetic. The equivalency of statements (b)
through (h) follows immediately from Theorem 1. It remains to be shown that a continuum I which
is irreducible from a to b and locally connected is an arc. We will first define a binary relation
"< between each pair of points of I and show that this relation is a linear order on I (see (1],
Axiom 1, page 5). It will then be shown that the topology generated by the relation "<'" agrees
with the usual topology on I and that "<" defines a first point and a last point in I. Since every
continuum is separable, we will have established that I is a connected, separable, linearly ordered
topological space having a first point and a last point. Hence, recalling the remark that was made
after Definition 2 in Section 1, it follows that I is an arc.

From Proposition 6 we have that I is freely decomposable. Therefore, given two distinct
points x and y in I, there exists subcontinua Hx and Hy such that I = Hx U Hy and x € Hy-Hy, and
y € Hy-Hx. Since I is irreducible from a to b either a € liy and b € Hy or a € Hy and b € Hx. If
a € Hy, then define x <y and if a € Hy, then define y < x. Suppose x <y. This means there exists
y-Ax-
Suppose also that y < x. Then there exists subcontinua Ay and By such that I = Ay U By and y and

subcontinua Ax and By such that I = Ay U By and x and a are in Ax-By and y and b are in B

a are in Ay-Bx and x and b are in By-Ay. It follows that Ax U Bx is a proper subcontinuum contain-
ing a and b which contradicts the fact that I is irreducible from a to b. Thus, if x <y, then it
is not true that y < x. It is clear that for any distinct x and y in I, either x <y or y < x.

In addition, if x < y, then x is diferent from y. It remains to be shown that if x <y and y < z,
then x < z. If x <y, then there exists subcontinua A, and By such that a and x are in Ax-By and

b and y are in By-Ax, and I = A, U By. If y < z, then there exist subcontinua Ay and B, such that
a and y are in Ay-B; and b and z are in Bz-Ay, and I = A, UB;. If x is in Ay-B;, then it follows
that x <z, But if x is in Bz, then Ay U By is a subcontinuum that contains a and b and does not
contain y. This contradicts the fact that I is irreducible from a to b.

It will now be shown that the topology generated by the relation "<" agrees with the usual
topology on I. For any x and y in I let Rxy = {p : x < p <y}. If p is in Rxy, then there exists
continua Hyy and Hpp such that a and x are in Hax‘”pb and p and b are in “pb‘“ax with I = Hax U
Hpb. Thus p € int(Hpb) and if q € “pb then x < q. Also, there exists continua Hap and Hyp such
that a and p are in Hap‘“yb and y and b are in Hyp-Hap with 1 = Hap U Hyp. Thus p € int(Hap) and
if q € Hap then q <y. It follows that p € int(Hpb) n int(Hap) < ny is open in I.

It remains to be shown that if p is an open subset U of I, then there exist x and y in I
such that p € Rxy € U. First, if H is a subcontinuum of I and x <y in H, then ny < H. For

suppose there exists p in R, such that p is not in H. Since x < p <y, there exists a continuum

Hax containing a and x thatxgoes not contain p and a continuum Hyy, containing y and b that does
not contain p. It follows that Hy, UH U Hyp is a proper subcontinuum of I containing a and b,
which contradicts the fact that I is irreducible from a to b. Also, if H is a subcontinuum of I,
then H has at laest two non-interior points. For suppose there exist distinct x,y,z in H-int(H).
Without loss of generality, assume that x <y < z. Then y € Ry, < H and since Rx; is open, it
follows that y € int(H). In addition, if p is in I, then P is a limit point of R = {x : p < x}.
For suppose p is not a limit point of R and let L = {x : x < p or x = p}. Since no point of L is
a limit point of R and R is open, it follows that L U R is a separation of I which contradicts the

fact that 1 is connected. Similarly, p is a limit point of {x : x < p}.
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Let p be a2 point in an open set U of 1. From Theorem 1, I is semi-locally connected and
thus there exists an open subsct V of U containing p such that I-V has finitely many components
{H; : 1 =1,2,,..,n}. If z € bd(V), then z € I-V and z is not in int(Hj) for 1 <i = n. Since
bd(V) = U{bd(l) : i = 1,2,...,n) and card(bd(;)) =2 for 1 s i <n, it follows that bd(V) is
finite. Therefore, let x and y be the points in bd(V) such that x < p <y and if z is in bd(V)
and x £ 2z # y, then z < x or y < z. It follows that Rxy € V. For suppose on the contrary that
there exists z in Ryy such that z is in Hj for some i <n. Since z € Rxy, then z € bd(H;).
Assume without loss of generality that if q € H;j, then q < p. For each h in H; let U, = {q : q
< h}. Each U, is open. For each h in Hy n Rxy there exists h' € H;j such that h <h' < p. For
if no point in H; is between h and p, then h would be in bd(H;) and thus bd(V), which is a con-
tradiction. The collection {Uj, : h € H;} covers H;, for if h € Hj then there exists h' such
that h < h'., Suppose {Uhk : k=1,2,...,j} is a finite subcollection of {Uy : h € H;} which
covers Hj. Then there exists m < j such that hy < hy or hy = hy, for k < j. It would follow
that h, € ny N bd(H;), which is a contradiction. Therefore, no finite subcollection of {Up :
h € H;} covers Hj which contradicts the fact that H; is compact. Thus p € ny €V cU and the
theorem is proved.

THEOREM 3. A continuum M £s an are if and only i M has exaetly two non-separating points.

PROOF. ({only {4) It is easy to see that an arc has exactly two non-separating points,
namely its two endpoints.

(£§) Let p and q be the two non-separating points of M. It follows that M is irreducible
from p to q. For if on the contrary there was a proper subcontinuum I of M containing p and q,
then by Proposition 7 M-1 would contain a non-separating point of M, which is a contradiction,
It will be shown that M is aposyndetic and it will then follow from Theorem 2 that M is an arc,
Given x and y in M, it must be shown that M is aposyndetic at x with respect to y. If x is
different from p and q, then let A, U B, be a separation of M-{x} where p € A and q € B,. If
x is the same as p or q, then let A; = ¢ and B, = M-{x} or let A= M-{x} and B, = ¢, respectively.
Assume, for the moment, that y € B,. If y is different from p and q, then let A, UB, be a sep-
aration of M-{y} where p € A, and q € B,. 1f y is the same as p or q, then let A, = ¢ and B, =
M-{y} or let A, = M-{y} and B, = ¢, respectively. It follows that (A, U {xh) n (8, U {y}) = ¢,
for if not, since A1 U {x} is connected, Al U {x} would have to lie entirely in Bz’ Then B2 U
{y} would be a proper subcontinuum of M containing p and q, which contradicts the fact that M
is irreducible from p to q. Hence, there exists z in M-(A1 U {x}u B2 U {¥y1. Let Ay UB, be
a separation of M-{z} where Al U {x} s A3 and B2 Uliyls By, Thus, Aj U iz} is a continuum with
X in A, and A3 is an open set. Therefore, let H = Ay U {z} and it follows that x € int(H) € H ¢
M-{q}. A similar arguement holds if y is in Al instead of B,. lence, M is aposyndetic at x
with respect to y and M is an arc,
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