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A METRIC FOR THE PRODUCT
OF COUNTABLY MANY SETS

C. Bruce Hughes

INTRODUCTION. In a topology seminar at Guilford College, Dr. Elwood Parker asked the
question: is the product of countably many metric spaces metrizable? While working on this
question, the author discovered a metric that did not induce the usual product topology in all
cases, but was a metric that could be applied to the product of countably many sets. Further
investigation of this metric revealed many interesting properties (for example, the metric is
an ultrametric and the space is totally disconnected, perfect, complete, and homogeneous). Also,
different ways of obtaining known results were found (for example, the Cantor set is homogeneous
and the irrationals are topologically complete). In addition, it was found that the topology
generated by the metric agrees with the usual product topology when each of the countably many
sets is assumed to have the discrete topology. For definitions not in this paper, refer to [2].

OEFINITION OF THE METRIC. For any infinite sequence of nondegenerate sets {X;}, let X =
MX;. An element x in X will be denoted by its coordinates in the following manner: x = (xi) =
(xl, Xy, xa,...) where X, is in X, for each natural number n.

If x and y are distinct elements in X, then define the distance between x and y by d(x,y) =
1/n where n is the first natural number such that X, differs from Yo If x and y are the same
element in X, then define d(x,y) = 0. 1In Theorem 1 it will be shown that d is a metric for X.
Throughout this paper, (X,d) and (ﬂxi,d) will refer to any metric space defined in this manner.

Note that in (X,d) an e-neighborhood N(x,e) is simply a "1/n-neighborhood" N(x,1/n) where n
is the largest natural number such that 1/n 2 e. Also, N(x,1/n) contains any element y in X
such that x; = y; whenever 1 <1i <n.

DEFINITION 1. A metric p on a set S is an ultrametric if p(x,z) < max{p(x,y), o(y,z)} for
any x,y,z in S,
Ultrametrics are an interesting topic in themselves and the reader is refered to [3] for

an excellent introduction to the subject by J. E. Vaughan.

THEOREM 1. d is an ultrametrnic for X.
PROOF. For any x,y in X it is clear that:
1. d(x,y) = 0;
2. d(x,y) = 0 if and only if x = y; and,
3., d(x,y) d(y,x).
Observe that the triangle inequality is implied by the ultrametric inequality: d(x,z) < max{d(x,y),

(]

d(y,z)} for any x,y,z in X. Clearly this inequality holds if x = z. If x # z, then d(x,2z) = 1/n
for some natural number n. Hence, if d(x,y) 2 1/n, the inequality holds. If d(x,y) < 1/n, then

X = Ys whenever 1 £ i £ n. Since X, = Yn and Xp # 2,s 1t follows that y, # z,. Therefore,

93
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d(y,z) 2 1/n and the inequality holds.
The following theorem gives one of the odd properties of ultrametrics.

THEOREM 2. I{ o is an ultrametric on a set S, then for any x,y in S and any €,8 > 0 such
that ¢ = 8, elther N(x,e) N N(y,8) = ¢ ox N(x,e) N N(y,6) = N(y,8).

PROOF. 1t will be shown that if N(x,e) N N(y,8) # ¢, then p(q,x) < e for any q in N(y,$).
Let z be in N(x,e) N N(y,6). Then p(q,x) <max{p(q,y), p(y,x)} < max{p(q,y), max{p(y,z), p(z,x)}}
< max{p(q,y), o(y,2), p(2,x)} < max{§,6,e} = €.

Also, observe that the e-neighborhoods in (S,p) are closed.

For any sequence of topological spaces {X;}, the product space of {Xj} with the usual
(Tychonoff) topology J will be denoted as I*X;. The basis for X, consists of the sets II*U;

where each U; is open in X; and U; = Xj for all but finitely many indexing elements i.

THEOREM 3. The space (NXj,d) 48 homeomonphic £o T*X; where each X; i8 assumed to have the
discnete topology.

PROOF. It will be shown that if U is an e-neighborhood in (1X4,d), then U € J; and, if V
is a basis element for J, then V is the union of e-neighborhoods in (nX;,d).

Let U = N(p,1/n) for some p in IXj. Then U = NU; where U; = {p;} whenever 1 <i <n and
Ui = Xj whenever i > n. Thus, U € J.

Let V = 1IV; where each V; is open in Xj and V; = Xj for all but finitely many natural
numbers i. Let n = max{ i : V; # X5}. Then V = |{N(p,1/n) : p € V}.

An immediate result of Theorem 3 is that the order of the factors of NIXj does not matter.
This is true because the order of the factors of II*X; does not matter.

DEFINITION 2. A topological space S is totally discomnected if S has no nondegenerate
connected subsets,

DEFINITION 3. A topological space S is perfect if every point of S is a limit point of S.

DEFINITION 4. A metric space S is complete if every Cauchy sequence of points in S
converges to a point in S.

THEOREM 4. (X,d) 4is (a) totally disconnected, (b) perfect, and (c} complete.

PROOF. (a} It is shown that any nondegenerate subset M of X is the union of two mutually
separated sets. Let n be the first natural number such that there exist p,q in M with p, # qn.
Let A =M N N(p,1/n) and B = M - A, Clearly A and B are disjoint and, since p € A and q € B,
each is non-empty. Observe that A € N(p,1/n) and if b € B, then N(b,1/n) N N(p,1/n) = ¢. Since
M=AUB, it follows that M is the union of two mutually separated sets,

{b) For any p in X and any natural number n, it must be shown that N(p,1/n) contains some
q # p in X. Pick q such that q; = p; for all natural numbers i except i = n+l. Let qu41 be
different from pp4;. It follows that q € N(p,1/n) and q # p.

(e) Let {x}} = {(x;))} be a Cauchy sequence in X. For each natural number j, there eists
a natural number N(j) such that if n = N(j), then d(xn,xN(j)) < 1/j ; and hence, (xj) = (xj)N(j)
whenever n 2 N(j). There exists a point p in X such that p; = (xj)N(' for each natural number
j. The sequence {x,} converges to p because for each natural number j, N(p,1/j) contains x,
for all k 2 max{N(i) : 1 =i < j}. In words, for any natural number j, the terms of {x,]} can
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be made to agree in the first j coordinates by going sufficently far out in the sequence.

DEFINITION 5. A topological space S is countably compact if every infinite subset of S has
a limit point in S,

In metric spaces, compactness is equivalent to countable compactness (see [1], page 19).

THEOREM 5. (X,d) 44 compact if and only if X; 48 a finite set for each natural number i.

PROOF. {only if) Suppose there exists a natural number n such that X, is infinite. Choose
a sequence of distinct terms {(x;j);} such that [xn)k # (xn)j whenever k ¥ j. Since for any p in
X, N(p,1/n) contains at most one term of {(xj)y}, it follows that {(xj)y} does not have a limit
point in X, which contradicts the countable compactness of (X,d).

(£§) If X; is a finite set for each natural number i, let {(x{),} be any sequence of distinct
terms in X. There exists P, in X1 such that P, = (xl)k for countably many natural numbers k.
Assuming there exist P, in XI, P, in Xz"“’ p, in X, such that P; = (xi)k vhenever 1 <i <n
for countably many k, it is clear that there exists P, in X)» P, in X,,000y Ppyy 10 Xy such
that P; = (x;) whenever 1 <1i < n+l for countably many k. It follows that p = (p;) is in X and
that p is a limit point of {(xi)k} because, for each natural number n, N(p,l/n) contains countably

many terms of {(x;)y}. Thus, every infinite subset of X has a limit point in X.

DEFINITION 6. A topological space S is Locally compact if for every point in S there exists
an open set U containing that point such that the closure of U is compact.

THEOREM 6. (X,d) 4s Locally compact if and only if there exisis a natwwal number n such
that X; 448 a finiet set fon all i 2 n.

PROOF. (only if) A proof by contradiction can be constructed similar to the one in Theorem 5.
{<§) Again following the proof for Theorem 5, it can be shown that N(x,1/n) is compact for each

x in X.

THEOREM 7. (X,d) 448 separable if and only &f X; £8 a countable set for each natural number i.
PROOF. ({only if§) Suppose there exists a natural number n such that X, is uncountable. Let
C be a countable dense subset of X. There exists p in X-C such that pn # ¢ for all c in C.
Since N(p,1/n) contains no point of C, it follows that p is not a limit point of C which is a
contradiction to the denseness of C.
(4§) If X; is countable for each i, then fix a point p in X. Let x belong to the set D if
and only if there exists a natural number N such that if n = N, then Xp = pp- It is clear that
D is countable. D is dense because N(q,1/n) contains the point (ql’ Qyse+»s Qs Ppyps pn+2,...)

which is in D where q is any point in X and n is any natural number.

DEFINITION 7. A topological space S is Locally separable if for every point p in S there
exists an open set U containing p such that U is separable.

THEOREM 8. (X,d) 4s Locally separable if and only if there exists a natural number n such
that X; 48 countable for all i = n.

PROOF. [only 4§} As in Theorem 7, it can be shown that no neighborhood has a countable
dense subset by assuming there exist infinitely many natural numbers i such that X; is infinite.
{i§) By following the methods of Theorem 7, a countable dense subset of N(x,1/n) can be con-
structed for each x in X.
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The following definitions and lemma are introduced in order to prove a strong homogeneity
property of (X,d).

DEFINITION 8. A topological space S is homogeneous if given any two points x and y in S,
there exists a homeomorphism h from S onto S such that h(x) = y.

DEFINITION 9. A function f from a set S onto S is an {nvofution if fof(x) = x for each x
in S.

DEFINITION 10. A function f from a metric space (S,p) into a metric space (S°,p”) is an
Lsometric embedding if (x,y) = p”(£(x),£f(y)) for each x and y in S, If f is an isometric em-
bedding of S onto S, then f is an .{sometny.

Notice that if f is an isometry, then f is a homeomorphism.

LEMMA 1. Fox each natural number i, Let X; and Y; be nondegenerate sets and Let £5:%; » Y3
be a function. Dedine a function £ from (nx;,d) dnto (ny,,d) by £(x) (£5(x;)) gor each x in
IX;. Then

(a) d(x,y) 2 d(f(x),f(y)) gor each x and y 4n nX;;

(b) f 48 continuous;

le) if each f; is onto, then f is onto; and,

(d} if each £; 4s 1-1, then £ is an isometrnic embedding.

PROOF. (a) If x = y, then f(x) = f(y) and d(x,y) = d(f(x),f(y)) = 0. If x # y, then d(x,y) =
1/n for some natural number n. It follows that X; =3 whenever 1 < i < n-1. Thus, fi(xi) =
fi(yi) whenever 1 < i g n-1 and d(f(x),f(y)) < 1/n.

(b) follows directly from (a).

{e) If y is in nY;, then for each i there exists x; such that fi(xi) = Y- Thus f(x) = y.
(d) If x = y, then f(x) = f(y) and d(x,y) = d(f(x),f(y)) = 0. If x # y, then d(f(x),f(y)) =<
d(x,y) = 1/n for some natural number n. Since X, # Yn’ it follows that fn(xn) # fn(yn) and

d(£(x),£(y)) = 1/n.

THEOREM 9. For any x and y in (X,d) there exists a function £ from X onto X that takes x 2o
y duch that £ {8 both an involution and an isometry.
PROOF. For any p in X define f£(p) = (£;(p;)) by
Pi if xj # p; # ¥4
fi(Pi) = 9% if p; = Y5
vi if pj
It is easy to see that f(x)

X .
1
=y and fof(p) = p for all p in X. Since each f; is onto and 1-1, it
follows from Lemma 1 that f is an isometry.

An immediate consequence of Theorem 9 is that (X,d) is always homogeneous., The following
corollary is a consequence of Lemma 1.

COROLLARY 1. Fon each natural numben i, Let X; and Y; be nondegenerate setls such that
card(Xj) < card(Y;). Then there exists an {sometric embedding of (nx, ,d) into (nYi,d) and a
continuous gunction grom (ny;,d) onto (“xi'd)‘

PROOF. Since card(X;) = card(Y;), it is clear that there exists a 1-1 function f;:X; -+ Y;
for each natural number i. By Lemma 1(d), £:(NX;,d) ~ (HYi,d) defined by f(x) = (f;(x;)) is an
isometric embedding. Also, for each natural number i, there exists an onto function gitY; ~+ Xi'
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By Lemma 1{b) and (e}, g:(1Y;,d) - (1X;,d) defined by g(x) = (gj(x;)) is a continuous onto
function,

THEOREM 10. Let x be the product with the usual topology. Then (1X;,d) x (mY,,d) 4s homeo-
monphic Lo (mX; * ¥;),d).

PROOF. If z is in (Xj,d) x (mY;,d), then z = [x,y] = [(xl, xz,...),(yl, yz,...)]. If 2
is in (N(Xj x Y;),d), then z° = [(xl,yl), (xz,yz),...]. Observe that open sets of the form
N(x,1/n) x N(y,1/n) form a basis for the topology on (nxi,d) x (HYi,d). Define h:(HXi,d) x (HYi,d)
= (I(X; = ¥3),d) by h{(z) = z”. Obviously, h is 1-1 and onto. If U = N(z”,1/n), then h~l(U) =
N(x,1/n) x N(y,1/n). Thus, h is continuous. If V = N(x,1/n) x N(y,1/n), then h(V) = N(h[x,y],1/n)
= N(z°,1/n). Thus, h is open,

The following two lemmas are needed to show that, if Xi is countably infinite for each nat-
ural number i, then (X,d) is homeomorphic to the irrationals.

LEMMA 2. 14 D is acountable dense subset of the real Line R, then R-D is homeomonphic to
the set of ‘wwational numbers.
This was a result obtained in acourse taught by J. R. Boyd at Guilford College (see [1],p.42).

LEMMA 3. There exists a countable collection 4 = {I"(ml My, eeesMy)in 44 a natural number,
MMy, ... ,m  aKe integers} each element of which is a closed interval in the real Line R having
the following properties:

(a) In*l(ml,mz,...,mn,mn+l) L8 a proper subset of I%(m ,m,,...,m ) and if In+l(j1,j2,..

N IAm,m,,...,mJ) # ¢, Lhen j; = m; whenever 1 <1i =n.

(b) The set E of all endpoints of members of & is a countable dense subset o4 R.

(e) For each n, the collection {(m ,m,,...,m)m ,m,...n are integers} covers R-E.

(d) Fon any infinite sequence of integers {m,m,,...}, NMI"(m ,m,,...,m )in &8 a natural
numben} exists and {4 a singleton set not in E and {5 distinet §rom n{In(jl,jz,...,jn) m s a
natural number where {j,,j,,...} 48 any infinite sequence of integers different from {my,m,,...}.

(e) T4 x 4is 4in R-E, then there exists an infinite sequence of integens {x,,x,,...}such that
X = n{In(xl,xz,...,xn):n 8 a natunal numbend,

(§) The members of o intersected with R-E form a basis fon the usual topology on R-E as a
subspace of R.

PROOF. For n = 1 the members of o will consist of the closed intervals having succesive

"jn+1)

integers as endpoints. That is, Il(ml) = [ml,m1+1] for any integer m, (see Figure 1). For n = 2
and any integers m and m,, let the interval Iz(ml,mz) be determined in the following manner:
12(m,,0) = [m+1/2,m +3/4], 12(m ,1) = [m,+3/4,m,+7/8], 1%(m,,2) = [m,+7/8,m +15/16], - -
12(m1,-1) = [m,+1/4,m +1/2], 12(m1,-2) = [m+1/8,m +1/4], -+
For higher values of n, the process becomes more complex to describe, but it is clear from the
figure how the intervals can be determined. The following are examples of the intervals for n = 3:
I3(m1,0,0) = [m+1/2+1/8,m,+1/2+1/8+1/16] = [m,+5/8,m +11/16].
I3(m1,1,0) = [m)+1/2+1/4+1/16,m +1/2+1/4+1/16+1/32] = [m +13/16,m +27/32].
1*m,,0,-1) = [m)+1/2+1/16,m,+1/2+1/8] = [m +9/16,m,+5/8].
It is easily seen that properties (a) through (¢) and {§) hold.
{d) 1f {m ,m,,...} is an infinite sequence of integers, then n{In(ml,mz,...,mn):n is a nat-
ural number} exists because the intersection of nested closed intervals always exists. The inter-

section is a singleton set because the diameter of In(ml,m ..,mn) approaches zero as n approaches

2%
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cee I]‘(-3) Il(-2) 11(_1) 11(0) 11(1) 11(2) ese
-3 -2 -1 0 1 2 3
12(-1,-1) I12(-1,1) +«- 12¢0,-1) 12(0,1) ¢«
e I12(-1,-2) 12(-1,0) e 1%(0,-2) 12(0,0)
-1 -7/8 -3/4 -1/2 -1/4 -1/8 0 1/8 1/4 1/2 34 7/8 1
13(0,0,0) see 13(0,1,-1)

see 1300,0,-1) 13(0,0,1) +-- 13{(0,1,0) ---

1/2 9/16 5/8 11/16 23/32 3/4 25/32 13/16 27/32 7/8 15/16 1
FIGURE 1

infinity. The intersection is not in E and is distinct from n{In(jl,jz,...,jn):n is a natural

number} where {j;»j,,-..} is any infinite sequence of integers different from {ml,mz,...}
because of (a}.
(e) Because of (e}, for each n there exist integers XysXyseeesXy such that x is in

In(xl,xz,...,xn) where x is in R-E. Because of (d), x = n{In[xl,xz,...,xn):n =1,2,...}.

THEOREM 11. Foxr each natuwral number i, Let X; be a countably infinite set. Then (X,d) is
homeomonphic to the inrational numbenrs.

PROOF. since each X; is countably infinite, X; is thought of as consisting of the integers.
Thus, the points in X are sequences of integers (x,,X,,...)}. Let ¥ and E be as defined in Lemma 3.
A homeomorphism h is defined from X onto R-E. Because of Lemma 2, R-E = S is homeomorphic to
greee)) = NIR(x, X, 000X ) s
n=1,2,...}. Because of Lemma 3[e), h is onto. Because of Lemma 3{d), h is 1-1. To show that

the irrationals. If (xl,xz,...) is a point in X, define h((xl,x

h is continuous, by Lemma 3(§) it suffices to show h™1({S n In(pl,pz,...,pn)) is open in X for

any natural number n and any integers p ,p,,...,p,. It is clear that hl(s n In(pl,pz,...,pn)) =
{x in X: x; = pj for 1 <1i s n} = N(p,1/n) where p is a point such that the first n coordinates
of p are PysPyseesPye To show h is open, it suffices to show h(N(p,1/n)) is open in S where n
is a natural number and p is a point in X. It is clear that h(N(p,1/n)) = {h(x): x; = p; for

1 <i=s<n}=5n1%p,,p,, --,p,) which is open in S by Lemma 3{4}.

COROLLARIES ABOUT THE CANTOR SET AND THE IRRATIONALS. Let C be the Cantor set and let I
be the irrationals. Recall that x denotes the product with the usual topology.

(1). (X,d) 4is homeomonphic to C if and only if X; 44 finite fonr each natwual number i.
PROOF. Any compact totally disconnected perfect metric space is homeomorphic to C ([2],
Corollary 2-98, page 100). Recall that Theorem 5 states that (X,d) is compact if and only if

X

i is finite for each natural number 1i.
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(2). The usual product of countably many finite discrete spaces is homeomonphic to C, and

the usual product of countably many countably inginite discrete spaces L4 homegmonphic Lo I.

PROOF. This is a result of Theorem 3.

(3). C .is homogeneous.
PROOF. See Theorem 9 and (1).

(4). There exist metnics fon C and I such that C can be {sometrically embedded in I.
PROOF. See Corollary 1.

(5). There exists a continuous function from I onto C.
PROOF. See Corollary 1.

(6). The innationals are topologically complete (i.e. homeomorphic 2o a complete space).
PROOF. See Theorem 4.

(7). CxC is homeomorphic to C.
(8). IxI 48 homegmorphic to I.
(9). 1IxC is homeomonphic Lo I.
PROOFS OF (7), (8), AND (9). By Theorem 10 we have (IX;,d) x (IIY;,d) is homeomorphic to

((X; x Y;),d). Letting each Xj and Y; be a nondegenerate finite set gives (7). Letting each
Xj and Y; be a countably infinite set gives (8). Letting each Xj be a countably infinite set

and each Y; be a nondegenerate finite set gives (9).
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