SLANTED MATRICES, BANACH FRAMES, WIENER'S LEMMAS AND INVERSE PROBLEMS

The class Σ_{α}^{w} of slanted matrices with ω -summable α -slants consists of matrices \mathbb{A} such that $\|\mathbb{A}\|_{\Sigma_{\alpha}^{\omega}} = K \sum_{j \in \mathbb{Z}^{d}} \|A_{j}^{\alpha}\|_{\sup} \omega_{j} < \infty$, where A_{j}^{α} is the j^{th} slanted line of \mathbb{A} with slope α , e.g., A_{0}^{1} is the diagonal of \mathbb{A} . If for some $p \in [1, \infty]$, $\|\mathbb{A}x\|_{p} \geq k_{p} \|x\|_{p}$ for all $x \in \ell^{p}$, where $k_{p} > 0$, then we prove that $\|\mathbb{A}x\|_{q} \geq k_{q} \|x\|_{q}$ for all $x \in \ell^{q}$ for all $q \in [1, \infty]$, as long as the weight function ω has reasonable decay. This result has many applications in Banach frame theory, generalizations of Wiener's Lemma, and to sampling theory.