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Smoothness vs. Approximation Orders: the “right”
estimates, the “right” moduli of smoothness,
characterization of approximation spaces, etc.

Shape Preserving Approximation: definitions,
approximation orders, comparison of the errors of
shape preserving and unconstrained approximation,
relativen-width with constraints, recent
developments, open problems, etc.

Remarks and Final Conclusions



Smoothness vs. Approximation
Order: classics




Smoothness vs. Approx. Order: trigonometric polynomials

Functionf Is “smooth enough”
— f can be approximated well enough

Theorem (Bernstein [1912) A continuoum-periodic
function f belongs tdLip « class,i.e., s such that

w(f,t) =0(t"),0 < a < 1,ifand only if
Ei(f) < COn .
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Smoothness vs. Approx. Order: trigonometric polynomials

Functionf Is “smooth enough”
— f can be approximated well enough

Theorem (Bernstein [1912) A continuoum-periodic
function f belongs tdLip « class,i.e., s such that

w(f,t) =0(t"),0 < a < 1,ifand only if
Ei(f) < COn .

Theorem (Zygmund [1945]) A continuoum-periodic
function f is such thatuy(f,t) = O(t) if and only if

E*(f) < Cn~!'.
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Smoothness vs. Approx. Order: algebraic polynomials

f € C|—1,1] belongs td.ip o, 0 < o < 1, class

— E,(f)<Cn“.




Smoothness vs. Approx. Order: algebraic polynomials

feC belongs tdlipa, 0 < a < ASS




Smoothness vs. Approx. Order: algebraic polynomials

Theorem (Nikolskii [1946], Timan [1951], Dzyadyk [1956)
f € C|—1,1] belongs td.Lip a, 0 < a < 1, if and only if
there exists a sequence of polynomjalsr) such that

f(iv)pn(ﬂf)<0(ﬂx2 1) S rel-11].

n n?

Advances in Approximation Theory, Nashville, May 2003 — p.5



Smoothness vs. Approx. Order: algebraic polynomials

Theorem (Nikolskii [1946], Timan [1951], Dzyadyk [1956)
f € C|—1,1] belongs td.Lip a, 0 < a < 1, if and only if
there exists a sequence of polynomjalsr) such that

f<x>pn<x>sc<”n$2 = ;) wel-1,1].
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Spaced.ip(a, p) and Lip*(a, p): 0 < p < o

Leta = r + G, wherer € Ny and0 < 5 < 1.
Lipschitz space:

Lip(a, p) = { flw(f"), 1), < Ct7}
Generalized Lipschitz space:

Lip™(a,p) = {flwjaj1(f,t)p < C17}




Spaced.ip(a, p) and Lip*(a, p): 0 < p < o0

Leta = r + G, wherer € Ny and0 < 5 < 1.
Lipschitz space:

Lip(a, p) := {f\w(f(r>,t)p < C’tﬁ}
Generalized Lipschitz space:

Lip*(a,p) = { flw|aj11(f, 1)y < Ct*}
H
Lip*(a, p) = {f\wmﬂ(f(”,t)p < Ctﬂ}
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Pointwise estimates by algebraic polynomialsp = oo

Theorem (Timan, Dzyadyk, Freud, Brudnyi)
f € Lip*(«, >), a > 0, if and only if there exists a
sequence of polynomiaig () such that

f(@) — pa(2)] < CA(2)*, =€ [-1,1].
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Pointwise estimates by algebraic polynomialsp = oo

Theorem (Timan, Dzyadyk, Freud, Brudnyi)
f € Lip*(«, >), a > 0, if and only if there exists a
sequence of polynomiaig () such that

f(@) — pa(2)] < CA(2)*, =€ [-1,1].

Question:E,(f) =0(n™ %) <<= 77
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Uniform estimates by algebraic polynomials

Theorem (Ditzian, Totik, lvanov, Tachev)
Let0 < p < ocoand0 < a < k. For f € L, we have

wy, (f; )p = O(t%)
Tk(fa IL; An(x))p,p — O(ta)




Uniform estimates by algebraic polynomials

Theorem (Ditzian, Totik, lvanov, Tachev)
Let0 < p < ocoand0 < a < k. For f € L, we have

v

fruz (.0, = 0
| Tk(f? 17 An(x))P,P — O(ta)

Ditzian-Totik modulus of smoothness:

wlf(fvt)p .= Sup ||A];Lgp()(f7)”p7

0<h<t

wherep(z) := /1 — 22.
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Uniform estimates by algebraic polynomials

Theorem (Ditzian, Totik, lvanov, Tachev)
Let0 < p < ocoand0 < a < k. For f € L, we have

v

wy, (f; )p = O(t%)
[ : Tk(f? 17 An(x))P,P — O(ta)

lvanov modulus of smoothness (Sendow ~o):

Tk(fv Y, 5)6],29 — ”w() wk(fv E 5())61“19 7

where

1 o(x) . q
(a8 = 57 | Ak .
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Spaced.ip,(a,p): 0 <p < oo

Leta = r + 3, wherer € Nygand0 < 5 < 1,andl < p < oc.

B"H!; ,1(p) or H or Lip},(«, p) space :

Lip,(a,p) = {f|wraj—|—1(f7 t)p < Ota}




SpacedLip,(a,p): 0 <p < oo

Letao = r + G, wherer € Ny and0 < 5 <1, andl < p < oc.

B"H!; ,,(p) or H or Lip}(a, p) space :

Lipi(a,p) = {Slwfuyp (1), < O}

H
Livy(a.p) = { Flwfyy,, (£ 1), < O}

The Ditzian-Totik weighted modulus of smoothness:

wlf,r(fa t)p == sup | gOrll;fz(')AIZSD(')(f’ )H ’

O<h<t p

whereyps(z) = \/<1 —x — ggo(a:)) (1 o ggo(x))
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Uniform estimates by algebraic polynomials:Lip_ (c, p) spaces

Theorem Letl <p <oocanda > 0. Then

E.(f)p=0n"") <= [feLipy(a,p).




Uniform estimates by algebraic polynomials:Lip_ (c, p) spaces

Theorem Letl <p <oocanda > 0. Then

En(f)p=0(n"")

For example,

E.(f)p = O(n™>)
En(f)p = O(n_Z'S)
En(f)p = O(n_lo)

< [ €Lip,(a,p).

<
<
<

wso(f", 1)y = O(t)
wis(f" )y = O(t'?)
wio(fP,1), = O(t)
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Some conclusions

The “right estimates” for approximation by algebraic
polynomials should be in terms of:

p = oQ. Wk(f; An(ﬂf)) or wk(f(r)a An(x))
p < ool wi(f,n 1), or w]f,r(f(r),n_l)p or

Tk(fa 1, An(x))p,p

They allow characterization of classes of functions with
prescribed order of approximation, and so are exact in th
sense.
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Shape Preserving Approximation
(SPA)




Shape Preserving Approximation (SPA): examples




Shape Preserving Approximation (SPA): examples

Copositive
approximation
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Shape Preserving Approximation (SPA): examples

Onesided
approximation

P—ff—QeA

En(f)p =it {|P-Ql, |Q < f <P}
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Shape Preserving Approximation (SPA): examples

P(:E) ..... .

Intertwining
approximation:
Hu, K., Yu [1997]

Y ={u,w}, s =2
P—f,f—Q¢eAY)

~

En(faYs)p ::inf{HP_QHp |P—f,f—QEAO(YS)}
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Shape Preserving Approximation (SPA): examples

P(x) .....

Intertwining
vs. Copositive

Y, ={b,c}, s =2
P_faf_QGAO(YS)




Shape Preserving Approximation (SPA): examples

Comonotone
Approximation

Y ={u,w}, s =2
P e A(Y})
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g-monotone approximation: definition

Definition: A function f : [a, b] — R is g-monotone ona, b] if its ¢th
divided differencesz, . . ., z,|f are> 0 for all choices of(q + 1)
distinct pointsz, . .., z, in [a, b]. Notation: f € A9a,b] or f € A4

LetY, :={y;};_;besuchthaty :=a <y < - <ys <b=:ysf
s > 1, andY, := ().

Definition: A function f : [a, b] — R is said to be imA%(Y,) iff fis
g-monotone ona, y;| and changes itg-monotonicity at the points in
Yi, e, (—1)'f € AYy;, yii1], 0 < i < s. Notation: f € AY(Y).

=x: A% is the set of all convex functions;
{(g,h) | g — f, f —h e A’Y,)} is the set of all intertwining pairs
with respect tdv;
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Errors of g-monotone approximation: notation

mESfY)x = in}ii | f — p||x: unconstrained
jUS

B E9D(f,Y)x:=E(f,YNAY)x = inf | f—p|x:g-monotone

peEY NAY

B E,(f)y = E(f,1I,)1, and B (f), := E(f, I, N A9y, :
approximation by polynomials of degreen in L, (Quasi) norm

® one(f)p = B(f, S, andod) (£)p = B(f,Swy N Ay,
approximation by splines of ordemwith N — 1 free knots
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SPA: orders of approximation

Question:How doesE(f,Y) x compare tal @ (f,Y) x?




SPA: orders of approximation

Question:How doesE(f,Y) x compare tal @ (f,Y) x?

Obvious:E(f,Y)x < E9(f,Y)x
Would be nice:ED(f,Y)x < CE(f,Y)x, f € A4




SPA: orders of approximation

Question:How doesE(f,Y)x compare taZ@ (f,Y)x?

Obvious:E(f,Y)x < E9(f,Y)x
Would be nice:E9(f,Y)x < CE(f,Y)x, f € AY,

Onesided and positive approximationGifa, b|:

f€Cla,b): En(f)oo < En(f)oo < 2E,(f)o
feCla,b]NA”% E,(f)e < E,,(LO)(f)OO < 2FE,(f)so
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SPA: orders of approximation

Question:How doesE(f,Y)x compare tab(? (f,Y)x?

Obvious:E(f,Y)x < E9(f,Y)x
Would be nice:E'D(f,Y)x < CE(f,Y)x, f € A4

Onesided and positive approximationG, b|:

f€Cla,b: En(Hoo < En(foo < 2En(foo
[ e Clabin A% En(f)ee < B (oo < 2Bn(f) oo

Theorem (Lorentz and Zeller [1969]) For ¢ € N, there exists a

. B
function f € A? such thatim sup ) = 0.

oo En(f)y

Advances in Approximation Theory, Nashville, May 2003 — p.16



SPA: orders of approximation

Question:Since, forf € A?, E\9(f), < CE,(f), is not possible in

general, and since the “next best thing” is
C
En(f)p < ﬁEn—r(f(r))p
what about
C

ED(f)y < =B (f7), 777

ik n
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SPA: orders of approximation

Question:Since, forf € A?, E\9(f), < CE,(f), is not possible in

n

general, and since the “next best thing” is

g E,_.( f(r))p

En(f)y < —
what about

ED(f), < S B, (1), 777

nr

Onesided and positive approximation:

f e Wila.b: Balfp <~ Bua(f)y  (Stojanova [1989

feW![a,bn A% EO(f), < %En_l(f’>p
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f € A?: orders of g-monotone approximation

ED(f), < (0—a)EZ () 1<p<oc

Proof: Let f € Cl{a, b] N A? (note thatf € A?is automatically in
Cl(a,b) if ¢ > 3), and letP,(z) := / qn-1(t) dt + f(a), where

B P = If' — gullp- ThenPl(z) = g,_1(z) € AT

n—1

(Le., P, € A9%), and by Holder’s inequality

%%msw—&mz/ﬂﬂwdmmw

< (b—a)? ||f =P, < b—a) |If — gull,
= (b—a)BS V(e -
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f € A?: orders of g-monotone approximation

ED(f), < (b-a)BY (), 1<p<oo

Corollaries:

1: EQ () < (b= a) ELI(F),
—2: E(Q)(f)p = CE7(7,2)q+2(f(q 2))




f € A% orders of g-monotone approximation

[ e A p = o0t B (f)as < CEu g (/)

For eachy € N, there is an absolute constarit > 0 such that, for any
n > ¢, afunctionf € C?|a, b] N A? exists such that

ED(f)oe > CoEn_o(f9)s >0 (Leviatan and Shevchuk [1995])

feA,1<p<oo E9(f), < CEL (f9),

Foranyg € N,n > ¢q,0 < p < oo, andA > 0 there exists
f € C®|a, b] N A% such that

ED(f)p > AE, o(f'9), (K. [1995])

and so evers'\?(f), < CE,_,(f'?), is NOT true.
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Intertwining and Copositive approximation: open problems

Recall the definition of intertwining approximation:

En(f,Ys)p :=if {|[P=Qlly | P— f,f — Q€ A%(Y;) }

Open Problem (intertwining approx)et0 < p < co. Does there

. ~ C
existanr € N suchthate, (/. Y.), < — L, . (f")), 777
n?“

Open Problem (copositive approxbet 0 < p < oo. Does there exist

C
anr € Nsuch thats\" (f,Y,), < —E,_.(f"), 777
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Intertwining and Copositive approximation: open problems

Recall the definition of intertwining approximation:

En(f,Ys)p :=if {|[P=Qlly | P— f,f — Q€ A%(Y;) }

Open Problem (intertwining approx)et0 < p < oo. Does there

. ~ C
existanr € Nsuch that?o, (f,Y.), < —FE,_,(f"), 277
n?“

Open Problem (copositive approxbet 0 < p < oo. Does there exist

C
anr € Nsuch thats\" (f,Y,), < —E,_.(f"), 777

EO(f,Y,), < E.(f,Y,), and sdntertwining— copositive
(positive answerandcopositive— intertwining (negative
answer)

m1<p<oo EQ(f, Ys), £ Cws(f',1), and sor cannot bel
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Some conclusions

In general, Shape Preserving Approximation by
polynomials and fixed knot splinéequires special
treatment since estimates do not follow from unconstrain

results.
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Some conclusions

In general, Shape Preserving Approximation by
polynomials and fixed knot splin@equires special
treatment since estimates do not follow from unconstrain

results.

Question 1.Can we say the same about approximation
from other spaces? e.g. approximationfime knot
spline&

Question 2.BW(f,Y,), < CE,(f),, f € AYY,) 22?2
For example) = piecewise polynomial functions.
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SPA: splines with fixed knots

Usual proof of direct (positive) results:
Functionf of certain shape- shape preserving (SP) splines with fixec
knots (e.g. Chebyshev knots) SP polynomials

Open ProblemLet 0 < p < oo, and suppose a spline (or PP)
g € AY(Y;). Prove or disprove that

E(9,Ys)p < CEn(9)y

or
Efr(Lq) (gv Yt?)p S Cw?fz(ga n_l)p :

Advances in Approximation Theory, Nashville, May 2003 — p.22



SPA by free knot splines and a
different kind of g-monotone
approximation




g-monotone approximation: free knot splines

Recall: Sy, 1s the set of all PP of orderwith N pieces;
one(Fp = B(f, SnalLy: onn(f)p = E(f, Sy, N AT)y,; and

59 () = E(f,Sny, NC2N Al

Theorem (K. and Shadrin [2003]) Letqg,r, N € N, r > ¢, and
0 < p < 0. Then, there exist constants= cq(r) andc; = ¢ (r, p)
such that, for allf € AN L,

5 (£ < crows(fy-

g — 1.2: Leviatan and Shadrin [1997], Petrov [1996]
q = 3, p = oo Petrov [1998]
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g-monotone approximation: free knot splines

Recall: Sy, 1s the set of all PP of orderwith N pieces;
one(Fp = B(f, SnalLy: onn(f)p = E(f, Sy, N AT)y,; and

59 () = E(f,Sny, NC2N Al

Theorem (K. and Shadrin [2003]) Letqg,r, N € N, r > ¢, and
0 < p < 0. Then, there exist constants= cq(r) andc; = ¢ (r, p)
such that, for allf € AN L,

~(a)
Icony(Flp < c1on e (Fp-

g — 1.2: Leviatan and Shadrin [1997], Petrov [1996]
q = 3, p = oo Petrov [1998]
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A different kind of g-monotone approximation

Approximationby g-monotoneunctions functions which are not in
A? are approximated by elements of the entire convex cohe
(Damas, Marano, Ubhaya, Zwigk

Applications in SPAMain idea: givenf € A¢, takes € Sy, a best
(unconstrained) free knot spline approximanito

(i.e.,||f — s|l, = on.(f),), and then correct to s* € A?, a best
approximant tos from A?. Hence,

|s — s, = giGHqu s —gll, < lIs = fllp,
and so

COIf =sllp < If = sllp +lls = 87l < 2[lf = sllp = 208, (f)p-
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Approximation of (non-g-monotone) splines byy-monotone f-s

|5 — s™||Lyfap] = giEHqu Is = gllL,fa

Properties ot*:

3:={z|s(z) = s*(2)} is closed

If the differences — s* has no zeros inside;, d) C (a,b) \ 3, then

s* € S|y21+14\C, d]. Hence, ifs — s* hasm — 1 < oo distinct zeros in
(c,d), thens® € S,,(14/2)+1),41C, d].

ConclusionlForr > ¢ > 2,0 < p < o0, lets € Sy, N C. Then there
IS s* € A?, a best approximant tofrom A4, which is a piecewise
polynomial of order .
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Approximation by g-monotone functions: open problem

Open Problem

Let s € Sy, (or, more generally, there is a partition|of b] into O(N)
subintervalsa;, b;] such thatts is in A? on each ofa;, b;] — this
means that is a piecewisg-monotone function o, b| with at most
O(N) pieces), and |ePxq(s), denote the set of all begtmonotone
approximants ta from A? on |a, b] in thelL,, (quasi) norm.

Prove or disproveThere exists a* € Paq(s), such thats — s* has at
mostO (V) sign changes.
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Rates of Unconstrained and Shape
Preserving Approximation: pointwise
and uniform estimates




Monotone and Convex Approximation: pointwise estimates

Theorem Leta > 0. If for a nondecreasing (convex) function
f e C|-1,1] andV n > « there is a polynomiap,,_; such that

f(@) = pna(2)] < Ap(2)®, = e[-1,1],

thenV n > « there is a nondecreasing (convex) polynomial,
satisfying
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Monotone and Convex Approximation: pointwise estimates

Theorem Leta > 0. If for a nondecreasing (convex) function
f e C|-1,1] andV n > « there is a polynomiap,,_; such that

’f(ﬂ?) _pn—l(x)| < An(x>a7 T < [_17 1] y

thenV n > o there is a nondecreasing (convex) polynomial,
satisfying

f(@) = ppa(2)] < Cla)An(z)”, =€ [=1,1].

DeVore and Yu [1985]0 < o < 2

Monotone Case:
Shevchuk [1989]a > 2
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Monotone and Convex Approximation: pointwise estimates

Theorem Leta > 0. If for a nondecreasing (convex) function
f e C|-1,1] andV n > « there is a polynomiap,,_; such that

’f(:l?) _pn—l(x)| < An($>a7 T < [_17 1] y

thenV n > o there is a nondecreasing (convex) polynomial,
satisfying

f(@) = p (@) < Cl@)An(2)”, = e [=1,1].

Yu [1985], Leviatan [1986] 0 < o < 2
Convex Case:  |\ania [< 1992} a > 2

K.[1994]. o« = 2
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Monotone Approximation by polynomials: uniform estimates

Theorem (K. and Listopad [1994])

Leta > 0, o # 2, and letf € Al be such that for each
n > o

E.(f) <n ™.

Then
EN(f) < Cla)n™.

For o« = 2 this conclusion Is not correct.
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Convex Approximation by polynomials: uniform estimates

Theorem (K. and Listopad [1994])

Leta € (0,3) U (4,00), and letf € A? be such that for
eachn > «

E.(f) <n™®.

Then
ED(f) < Cla)n™™.

For o € [3, 4] this conclusion is not correct.
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Relative n-widths with constraints:
applications in g-monotone

approximation




Relative n-widths with the constraints

mletW C X,V C X,andletM"(X, V) be the set of all linear
manifoldsM™, dim M"™ < n such thatM™ NV # ().
The quantity

dn (W, V) x = M%Iéan ?;1‘]%)/ E(f,M"NV)x

IS therelative n-width of W/ with the constrainl’ in X
(Konovaloy)

®m Remark: ifV = X, thend,, (W, V) x = d,(W)x — Kolmogorov
n-width
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Shape preserving widths of Sobolev-type classes gimonotone f-s

BV . =AlL, =L, NA?
W= ALW? =W N A whereW? .= {f]|| f©]|r, <1}

® d,(ALW,, AlLy)y, == inf = sup E(f,M"NA{Ly),
p p MnreM” fEAiW}; p

Theorem (Konovalov and Leviatan [2003) Letr € N, ¢ € N and
1 <p,p <oo. For3<q<r,

dn(Az—W;ﬂ A?I—LP/)LP/ =~ n—?“—l—q—3—|—1/p y n Z r,
and, ifg =r+1,r > 2, then

r+1wwr r+1 — =2
d (AW, AT Ly, Xn7, n>r.
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Corollaries: applications in g-monotone polynomial approximation

mlf3<g<r,1<p<oocandf e W’, then the rate of

approximationEﬁ,” (f)p Iis asymptoticallynhot faster than

m If ¢ > 3 andr = g — 1, then this rate isiot faster tham 2.
Corollary (Jackson type estimate3he estimates

ED(f)p < Cn2w(f®),1/n),

n

and, hence,
B9 (f), < Cws(f, 1/n),
are not true foy > 3 (0 < p <oo)andg >4 (0 < p < 0).
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Corollaries: applications in g-monotone polynomial approximation

mlf3<g<r,1<p<oocandf e W’, then the rate of

approximationE£q> (f)p Iis asymptoticallynhot faster than

m If ¢ > 3 andr = g — 1, then this rate isiot faster tham 2.

Corollary (g > 4,1 <p < o). Letg > 4,1 <p < oo anda > 2.
Then there exists a functighe A7 N W]LOJ such that

En(f)p < Cn™%,

and, at the same time,

E2(f)p £ Cn~2.

Advances in Approximation Theory, Nashville, May 2003 — p.35



Corollaries: applications in g-monotone polynomial approximation

mlf3<g<r,1<p<oocandf e W’, then the rate of

approximationE£q> (f)p Iis asymptoticallynhot faster than

m If ¢ > 3 andr = g — 1, then this rate isiot faster tham 2.

Corollary (4 = 3,p = 1): Letq = 3,p = 1 anda > 2. Then there
exists a functiory € A3 N'W.*! such that

En(f)l § Cn_o‘,
and, at the same time,

EP(f)1 £ Cn~®.
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Jackson type estimates for-monotone approximation: p = oc

Bondarenko and Prymalkf. p = oo, ¢ > 4, andr < g — 2, then the
rate of £\? (f)e asymptotically cannot be faster than” for all
feCr: EW(2™) > cn 2

Corollary: The estimate”'!) (). < Cws(f,1/n).. is not true for
q > 4.

Shvedov [1981] The estimates\”) (). < Cws(f,1/n) is not true
In general.

BondarenkoE® (f)se < Cwf(f,1/n)

Open ProblemProve or disprove the estimate

E®(£)oo < Cws(f,1/n)os -
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Jackson type estimates for-monotone approximation: p = oc

Bondarenko and Prymalkf. p = oo, ¢ > 4, andr < g — 2, then the
rate of £\? (f)e asymptotically cannot be faster than” for all
feCr: EW(2™) > cn 2

Corollary: The estimate IS not true for
q > 4.

Shvedov [1981] The estimates\”) (). < Cws(f,1/n) is not true
In general.

BondarenkoE® (f)se < Cwf(f,1/n)

Open ProblemProve or disprove the estimate

E®(£)oo < Cws(f,1/n)os -
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Jackson type estimates for-monotone approximation: p = oc

Corollary: The estimate”'?(f).. < Cws(f,1/n). is not true for
q > 4.

Ma and Yu [1989] B\ (f)s < Cwa(f,1/n)s
In fact, they proved”'?(f), < Cuw,(f.1/n), for1 < p < oo.

Cao and Gonska [199%4For f € C[—1,1] N A%, g € N, there exists an
algebraic polynomiagb,, € A? of degreeD(n) such that

f(z) — pp(z)| € Cwa(f,V1—2a2/n), —-1<z<1.
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Jackson type estimates for-monotone approximation: p = oc

Corollary: The estimate”'?(f).. < Cws(f,1/n). is not true for
q > 4.

Ma and Yu [1989] E\?(f)s < Cwa(f,1/n)w
In fact, they proved”'?(f), < Cuw,(f.1/n), for1 < p < oo.

Cao and Gonska [199%For f € C[-1,1] N A%, g € N, there exists an
algebraic polynomiagb,, € A? of degreeD(n) such that

f(z) — pp(z)| € Cwa(f,V1—2a2/n), —-1<z<1.

Open ProblemProve/disprove the above estimatesjor oo,
especially positive results — not much seems to be known-if2, and
Investigation of caseg = 1 andqg = 2 Is far from complete.
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Appendix: SPA In terms of
wfjr(f(”, 0 )so Moduli




Monotone approximation: ES(f)e < Cn~"wi (f7,n o
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Monotone approximation: ES(f)e < Cn~"wi (f7,n o

Yu [1987], Leviatan [1988]
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Monotone approximation: ES(f)e < Cn~"wi (f7,n o

Dzubenko, Listopad, Shevchuk [1993]




Monotone approximation: ES(f)e < Cn~"wi (f7,n o

K. and Listopad [1994]
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Monotone approximation: ES(f)e < Cn"wf (f7,n o

K. [1995]
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Convex approximation: B2 (f)e < Cn~"wi (f7), 1o




Convex approximation: B (f)e < Cn~ "wi (f7, 1)

Shvedov [1981]
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Convex approximation: B (f)e < Cn~ "wi (f7, 1)

Leviatan [1986]
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Convex approximation: B (f)e < Cn~ "wi (f7, 1)

Mania [1991]
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Convex approximation: Eﬁf)( floo T Cn7"wyi ( f n 1)

K. [1995]
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Convex approximation: Eﬁf)( floo T Cn7"wyi ( f n 1)

K. [1992]




Convex approximation: B (f)e < Cn~ "wi (f7, 1)

— K. [1994]

Hu, Leviatan, Yu [1994]
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Remarks

m Direct results for SPA in thé&, (quasi) norm

Remark 1:1 < p < oo Is essentially different fromp = oc
Example.Ma and Yu [1988] Shevchuk [1989] ESY (Hoo < Cn ™ wm (F,1n Moo

However,EﬁLl)(f)p < Cwa2(f’,1), is NOT true in general fod < p < oo.

Remark 2.0 < p < 1 Is essentially different from > 1

Example. Unconstraine#A > 0VB e RV0O<p<1VneNdf € ACs.t.
En(f)p > An®|f'|lp.
Convex (0 < p < 1): B2 (f)p < Cn~tw(f,n~ 1),

However,Vm > 2 40 < p < 1 s.t. E,(,,Q)(f)p < Cwa(f™) 1), is not true in general.

m “Co’-approximation (.e.,copositive, intertwining, comonotone,
coconvex, car-monotone).
Remark: nothingi(e., no direct results) is known i > 3.
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Remarks

m SimultaneousSPA: SPA of a function together with its derivatives
B \WeakSPA
B |nterpolatorySPA

m SPA approximation byationalfunctions (convexB. Gao,
D. J. Newman, V. A. Popgv

m Constants depending on the functipn
Example.Shvedov [1981]Vn € NVA > 0 3f € Al st. ESY (f)oo > Aws(F, 1)oo

Leviatan and Shevchuk [1998f f € A': Ef%l)(f)oo < Cws(f,1/n)oo,n > N(f)

m Estimates involving Ivanov moduli of smoothneg$f, ¢, d),, as
well as generalized Ditzian-Totik modMyfA(f, 0)p, 0 <A< 1

= Multivariate SPA
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“A mathematical theory Is not to be considered complete
until you have made it so clear that you can explain it to tf
first man whom you meet on the streetJg )



Thank You!
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