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ABSTRACT

The natural correspondence between bounded planar quadrature domains, in the
terminology of Aharonov-Shapiro, and certain square matrices with a distinguished
cyclic vector is further exploited. Two different cubature formulas on quadrature
domains, that is the computation of the integral of a real polynomial, are presented.
The minimal defining polynomial of a quadrature domain is decomposed uniquely into
a linear combination of moduli squares of complex polynomials. The geometry of a
canonical rational embedding of a quadrature domain into the projective complement
of a real affine ball is also investigated. Explicit computations on order-two quadrature
domains illustrate the main results.
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INTRODUCTION. This note is a continuation of [P1] and it is devoted to some
constructive aspects of the relation between quadrature domains and their lin-
ear data. We assume that the defining polynomial of a bounded quadrature
domain is given and we try to find explicit formulas for the real moments of
the domain and other naturally associated objects. Our approach is based on
the observation that a quadrature domain is the level set of the norm of the
resolvent of a square matrix, localized at a specific cyclic vector.

The first set of formulas we propose starts from the equation of a quadrature
domain, it passes through an inversion of a Hankel matrix (formula (8) in text)
and requires a logarithm of formal series (formula (9)) in order to compute all
the moments of the domain.

The second method of computing the same moments starts again from the
equation of the quadrature domain, then it identifies from this equation a square
matrix with a cyclic vector, called in the sequel the linear data of the domain,
and finally exploits Helton-Howe trace formula for seminormal operators in order
to evaluate the moments. In particular, this method gives a non-commutative
cubature formula on quadrature domains (formula (12) in text) which is exact
on all n-polyharmonic polynomials, for n specified. An error formula for this
cubature is then obtained.

The rest of the paper deals with some specific properties of the resolvent of
the linear data of a quadrature domain. The minimal polynomial which defines
a quadrature domain of order d is canonically decomposed into the modulus
square of the minimal polynomial of the associated matrix minus exactly d
moduli squares of complex polynomials, of exact degrees d — 1,d — 2,...,1,0.
Thus a natural set of parameters of a quadrature domain is exhibited.

A canonical rational embedding of the quadrature domain 2 of order d in the
exterior of the unit ball of C¢ is obtained. Then we prove that the multivalued
Schwarz reflection in the boundary of Q maps the exterior of Q into (2, and
in this transformation the boundary covers the boundary exactly once via the
identity map. A uniqueness result for this embedding of a quadrature domain
in the exterior of a multidimensional ball constitutes the subject of Section 5.
As a consequence certain rational maps from C into C™ which commute with
the reflections in the unit balls of the two affine spaces are classified.

A few simple examples of the interplay between planar domains and pairs
of matrices with a cyclic vector end the paper.

1 PRELIMINARIES

We recall from [P1] a few formulas which relate a quadrature domain to a
matrix with a cyclic vector. Although these formulas have been motivated by
the study of the L-problem of moments in the real plane, we do not make any
precise reference to this relationship; see for details [P2].

Let  be a bounded planar domain and let dA stand for the area measure in



C. The coordinate in the complex plane C will be denoted by 2. The domain 2
is called, following the terminology of Aharonov and Shapiro [AS], a quadrature
domain if there exists a distribution u with finite support in Q such that:

/Q fdA = u(f),

for every integrable analytic function f in . Quadrature domains tend to be
very rigid; they are remarkable in many respects as it is amply illustrated by
the recent monograph [Sh].

The order of the quadrature domain 2 is the cardinality of the support of
u, counting multiplicities. To be more specific, there are points A\; € Q and
constants ;;,0 < k <m(j) — 1,1 < j < m, with the property that:

m(j)—1

u(f) =" Y P,

j=1 k=0

where v and f are as above. To make the above decomposition optimal, we
assume that ; n(j)—1 # 0 for all j,1 < j < m. The order d = d(2) of Q is then
by definition:

m
d=>Y _m(j).
j=1
The quadrature domains of order one are precisely the disks, see [Sh]. In
general the equation of the boundary of a quadrature domain Q of order d is

given, up to a finite set, by a monic self-adjoint irreducible polynomial

d

Q(z,2) = Z apz"z,

k,[=0

where by self-adjoint we mean ay; = o and by monic we mean ag4q = 1. For
details we refer to [G1].

A quadrature domain ( is characterized by the existence of a meromorphic
function S(z) in ©Q, continuous on Q\ {A1,...,Am}, with the property S(z) =z
for z € 90. The function S is called the Schwarz function of Q, see [D] and
[Sh]. The poles of S(z) coincide, including the multiplicities, with the nodes
Aj,1 < j <m, of the quadrature identity. Let us define the polynomial:

P(z) = ﬁ(z - )",
j=1

so that P(z)S(z) is a holomorphic function in Q.
The following facts were established in [G1].



TrEOREM 1.1 ([G1], SECTION 6) Let Q be a quadrature domain. Then, with
the above notation, we have:

d—1
P(z):zd-"_zajdzj; (1)
j=0
and

m m(k)—1 d ‘

1 ”’Ykl Z]':O aj,dflz']
T PR VEYS . = A 2
w; ; (z — M) Qad,d—1 P(2) S(z) + A(z), (2)

where A(z) is an analytic function in Q.

An explanation of these formulas will become available later in this and
the next section. Roughly speaking, Theorem 1.1 above asserts that the first
two lines in the matrix of coefficients ay; (of the defining polynomial Q(z,%))
determine the quadrature data Aj;, v;x, as well as the polar part of the Schwarz
function S(z).

Actually there is more structure in the defining polynomial (). Namely, there
exists a linear transformation U : C? — C¢ with a cyclic vector ¢ € C? for U*
and with P(z) as characteristic polynomial, such that:

e = 1= " =2 ®

where the equality is understood in the sense of rational functions, see for details

[P1]. It is clear from the above discussion that both the polynomial Q(z,Z) or

the pair (U, ) form complete invariants for the quadrature domain .
Similarly to Theorem 1.1 we have the following result.

THEOREM 1.2 ([P1] SECTION 3) Let Q be a quadrature domain. With the
above notation we have:

u(f) =m(f(U)§8), (4)
for every analytic function f in Q. Moreover,
S(2) = —{(U = 2)71¢,€) + B(2), ()

where B(z) is an analytic function in .

To relate Theorems 1.1 and 1.2, we remark that B(z) = —A(z),z € Q.
Indeed, this follows from the fact that both the left member of (2) and —((U —
2)71¢, &) are rational functions which vanish at infinity.

NoTATION. Throughout this paper we keep generically unchanged the no-
tation introduced in this section. That is, Q2 is a bounded quadrature domain of



order d and the quadrature data are Aj,vjx,1 <j <m,0 <k <m(j)— 1. The
defining polynomial of 2 is Q(z,%) with the coefficients a;,0 < j, k < d,aqq =
1. The Schwarz function is S(z) with denominator P(z), and the linear data of
Q are (U, €). In addition, we will consider the moments of the domain :

amnz/sz"dA(z),
Q

Gnm = (U*™E,U™E),

where m,n are non-negative integers.

and the scalar products

2 FROM THE EQUATION OF A QUADRATURE DOMAIN
TO ITS MOMENTS

The aim of this section is to find explicit formulas for computing the integral of
a polynomial in z and Z on a quadrature domain Q (against the area measure),
knowing only the defining polynomial of the boundary of Q. A first naive
approach to this problem would be to use Stokes formula and one of the known
expressions for the polar parts of the Schwarz function of Q. In what follows we
go beyond this step and present two other alternative ways of computing such
integrals.

Let us recall the basic exponential transformation which relates the finite
matrix (ajk)j,k:(]d to the infinite matrix (@mn)m,n—0""

2,2 -1 & Amn
Qzz) _ exp(— > W)’ (6)
m,n=0
which is valid for large values of |z|, see for details [P2]. Thus, by taking a
logarithm at the level of formal series, the moments a,,, can be determined
from the defining polynomial Q(z,Z). In its turn, the pair of matrices (U, &) can
be used in simplifying the above computation:

o oo
U*n U*m
Qz, _ _Z £, 5)_1_2 gm_n ) (7
|P omtlz sn+1 Zm—i—lzn-l-l
m,n=0

Therefore, a direct relation between the matrix of coefficients ay; and the
Gram matrix (U*"™¢, U*™&) becomes possible. To simplify the following com-
putation we put ap = apq,0 < k < d, so that P(z) = Zk o @xz®. Note that
agqg = 1 by a convention we have adopted in the previous section.

We begin with a series of elementary computations:

d k—1
PR)U*—72) ¢ =(P(k) - PU))U*-2) 1¢==> and U1z

k=1



Later we will return to a second possible form of the same polynomial (see
formula (14) below).
Accordingly we obtain:

k—11-1

d
IPRPIU =27 el = a(U*=271e, Ut 71e)2 7

k,=1s t=0

Il
S

If we fix s,¢ in the last formula and perform the other summations we obtain
the coefficient of 2!z° in |P(2)|? — Q(2,2).

Let us recall that gx; = (U*€,U*F€) are the elements of the Gram matrix
G = (gjk) j,kzod_l- Let us also introduce the Hankel matrix:

a1 as a3z ... 1
(6] az 04 ... 0
Qa3 a4 Oy ... 0
H(a) =
Ag—1 1 0 ... 0
1 o 0 ... 0

and the matrix A(a) of coefficients of the polynomial |P(2)|? — Q(z,%):
Al@)je = ejag, —ajr,  (0<j,k<d-1).
Thus we obtain:

A(a)jk = E OrQsGr—j—1,5—k—1 = E Qjtp+19pqXh+q+1-
s P,q

Then the previous computation can be summarized in the following result.

PROPOSITION 2.1. The Gram matriz G of the linear data (U, &) of a quadra-

ture domain can be obtained from the coefficients (ajk)j,k:od of the defining
polynomial by the formula:

H(a)GH(a)* = A(a). (8)

Finally, let us write the announced formula for the moments of a quadrature
domain:

&S] [e%9)
Qmn _ 9mn
Z zm+12n+1 - —7TlOg(1 B Z zm+12n+1 ) (9)
m,n=0 m,n=0

We remark that the above transformation, from the matrix (gmn) to the
matrix of moments (@) is triangular, in the sense that a,,, depends only



on gg where 0 < k < m and 0 <[ < n. A couple of examples of low order
quadrature domains which illustrate the preceding formulas are included in the
last section of the paper.

Our next aim is to factor the Gram matrix G into the linear data (U, £) and
then to use them in another formula for the moments of the quadrature domain,
this time the computations being carried only at the level of linear algebra (and
avoiding non-linear operations such as the above logarithm).

3 A NON-COMMUTATIVE CUBATURE FORMULA

In this section we exploit Helton-Howe trace formula in the construction of a
cubature formula on quadrature domains. Traditionally, cubature formulas in
one or several variables arise from the evaluation of functions at the zeroes of
some families of orthogonal polynomials, see [ST], [Xu]. Below we approximate
the integral of a (real analytic) function on a quadrature domain Q by its val-
ues on the matrix U and some bigger matrices constructed recurrently from
U. An error formula is obtained, similar to the errors in the well studied one
dimensional theory, see [ST] Chapter IV.

Let Q be a quadrature domain of order d with the linear data (U, &) on the
Hilbert space K of dimension d. Let T be the unique irreducible hyponormal
operator, acting on the Hilbert space H, K C H, such that [T*,T] = £ ® &
and with principal function equal to the characteristic function of €2, see for
details [P1],[P2]. We recall from [P1] that K is the linear span of the vectors
{T*"&;n > 0} and that U* = T*|K.

For a polynomial p € C[z,Z],

p(Z,E)Z Z caﬁzagﬁa
a+B<n

we introduce the symmetrized operator valued functional calculus:

B
FTT= S ﬂci"IZT*WTaT*ﬁ*V. (10)
a+B<n v=0

LEMMA 3.1. With the above notation we have:

/Q pdA = 7(pH (T, T*)E, €). (11)

ProOF. Indeed, for a monomial 2"z™, Helton-Howe trace formula (see for
details [P2]) yields:

1
! / 2"ZMdA = Tr[T*™H T, T) =
Q m+1




1 = 1 &
T T*k T T T*m—an — T*m—anT*k .
) r; [7*,7] —m+1k§< £€)

m

The previous formula becomes effective as soon as we recall the block struc-
ture of the operator T. To be more precise, let us define recurrently:

U(J:Ua A02 :€®§_[U0*5U0]a
and for k > 0:
U1 = Ay, "UpAg, Ap1® = A? = [Ukr*, Upal-

We know from [P1], Theorem 4.2 that, for all £k > 0, Aj are positive matrices
on the space K. Then the operator T is unitarily equivalent to an infinite block
matrix with Uy on the diagonal, A; under the diagonal and zero elsewhere.

For a fixed positive integer n we denote by T, the (n + 1) x (n + 1)- block
truncation of T. More specifically:

U 0 0 ... 0 0

A U3, 0 ... 0 0

0 A4 U ... 0 0
T.=| . . . . .

0 0 0 ... U1 O

0 0 0 ... Ay U,

For a polynomial p(z,Z) we denote by deg.(p),degz(p) the corresponding
degrees in z and Z.

THEOREM 3.2. Let Q be a quadrature domain with associated hyponormal op-
erator T and let p € C|z,Z]. Then:

/Q pdA = n(pH (T, Ty")E, €) (12)

whenever n > min(deg.(p), degz(p))-

PROOF. Let P, denote the orthogonal projection of the Hilbert space H
onto the finite dimensional subspace K,, = K +TK + ...+ T"K. Then we find
the identities T,, = P,TP,, and T*P,, = P, T*P,, from the block structure of the
matrix T. Moreover, T*z = (P,TP,)*z = T,,*z for every z € K and k < n.

Let p(z,%) be a polynomial satisfying deg,(p) < n. For a typical monomial
in p*(T,T*) we have:

(T TOT*77€,€) = (T P,T*PoT*" 7€, €) = (T T T 7€, €),



because a < n.
Similarly, assume instead that degz(p) < n. Then, in the above notation
v < B < n, whence:

(TTOT*PE, €) = (PT* P,TPyT*P 7€, &) = (T, T, T, P 77¢, €).
This completes the proof of Theorem 3.2.

Let us remark that for analytic polynomials p(z), formula (12) reduces to the
quadrature identity (4). In the spirit of some recent advances in multivariable
cubature formulas (cf. [Xu]), relation (12) holds in particular for deg(p) < 2n+1.

For an arbitrary polynomial p, the error in formula (12) depends only on
the monomials in p of the form 2°Z° with both a and § strictly larger than n,
hence only on A"t!p, where A is the Laplace operator. Actually we can make
this statement more precise.

For a disk D(0, p) centered at zero, of radius p and a
polynomial p(z) = ", s« Capz®Z’ we introduce the norm:

llpll, = Z |caﬁ|pa+'6-
a+pB<N

In virtue of Cauchy inequalities for functions of two variables, for every positive
€, the preceding norm can be estimated from above by the uniform norm of
p(z,w) for |z|, |w| < p+ €. However, we do not make use of this estimate below.

PROPOSITION 3.3. Let Q be a quadrature domain contained in the disk D(0, p)
and let p(z,Z) be an arbitrary polynomial.
Then for every positive integer n we have:

Area(8) (p/2)"™
™ (n+1)12

= / pdA — (pH (T, Tw*)E, 6)] < AT, (13)

PROOF. Since the domain 2 is contained in the disk D(0, p), the spectral
radius of the operator T is less or equal than p. But for hyponormal operators
this implies [|T'|| < p, see [P2] and the references there.

According to Lemma 3.1 we have to estimate

{WH(T, T*) = PH(Tn, T ")), €)1
For a typical monomial in this expression we obtain:

(T TT*~" — T, T,,°T,** )¢, €)| =

wB— o Area(Q)
(T (L~ PAT* T, )] < ||+ g < 220D o,



Let p(z,%) be as above, with coefficients cog. Then

An—{—lp nt1gmntl
A+l e p=
Y capaBla—1)(B-1)...(a —n)(B —n)z2 "

a,f>n
On the other hand,

B
Ca *: aqxfp— a
| S 2SI - P)TTP 6, < €l Y leaslp™? <

a,B>n '8 +1 ¥=0 a.B>n
JEI20?™ G~ A feaglaBla = D(E=1)..(@=n)(B=n)p™F 22
4n+1 "5 (TL + 1)!(11 + 1)! >

Area(®) (/2"
T  (n+1)2
This completes the proof of Proposition 3.3.

An—Hp”p-

Suppose that f(z,w) is an analytic function of two complex variables which is
convergent in the polydisk D(0, p') x D(0, p'), where p’ > p. Then, by restricting
f to the diagonal, the norm ||f||, is finite. This shows in particular that the
functional claculus f#(T),,T*,) makes sense; and so does Proposition 3.3. Thus
the quadrature formula (12) is exact for such functions which in addition are
(n + 1)-polyharmonic when restricted to the diagonal.

4 A RATIONAL EMBEDDING OF QUADRATURE DO-
MAINS

The resolvent of the matrix associated to a quadrature domain of order d gives
a canonical embedding in an affine, or projective complex space of dimension d.
This embedding will prove to be functorial with respect to the reflections in the
boundaries of the original quadrature domain and respectively the unit sphere
in C4.

The compactification of the complex plane with one point at infinity is de-
noted in the sequel by C or P;(C). The projective space of dimension d will be
denoted by P4(C) or simply Py.

In this section we treat a slightly more general situation than that encoun-
tered in the case of quadrature domains. Namely, let d be a positive integer,

10



d > 1, let A be a linear transformation of C?, and assume for the beginning
that £ € C? is a cyclic vector for A. Let us denote:

R(z) = (A-2)7'¢, z€C\a(A),

the resolvent of A, localized at the vector &.

LEMMA 4.1. The map R : C\ o(A) — C* is one to one and its range is a
smooth complez curve.

Proor. Indeed, according to the resolvent equation we find:
R(z) —R(w) = (z —w)(A — 2) " HA —w)"*, z,we C\o(A).

Thus R(z) — R(w) # 0 for z # w. For the point at infinity we have R(c0) =
0 # R(z), for z € C\ o(4).
Moreover, the same resolvent equation shows that:

R'(2) = (A~ 2)"'R(2) #0,
and similarly for the point at infinity we obtain:

DRt = —lim ot (A~ 1) 28 = € £ 0

Actually we can pass to projective spaces and complete the above curve. Let
us denote by (2 : 21) the homogeneous coordinates in Py, and by (ug : uy :
... : uq) the homogeneous coordinates in P4. Let z = z1/20 in the affine chart
20 # 0 and w = (u1/uo, - . .,uq/ug) in the affine chart uy # 0.

Let P(z) = det(A—2z), so that P(z) is a common denominator in the rational
entries of the map R(z). Let us define the function:

(2, A)€ = P(2)R(2) = (P(z) — P(A))R(2),
and remark that ¢(z, A) is a polynomial in z and A, of the form:
q(z, A) = —AT1 4+ 0(4772).

Actually we need for later use a more precise form of the polynomial ¢(z, A).
We pause here to derive it by a series of elementary computations.

We have
d k

P(w) — P(2) Zak wh — 2

w—=z w—=z

k=0

11



i k=1 -1 4 ‘ ‘
S5 =S5 s
k=0  j=0 J=0 k=j+1

To(2)w®t + Ty (2)w? 2 + ... + Ty_1(2),

where ag = 1 and
Ti(2) = agz® + ag_12¥ 7V 4+ .. @g—pg12 + g

Note that Ty(z) = 1.
Therefore we obtain:

—q(2,A) = To(2) AT + T1(2) A% 2 + ...+ Ty 1(2). (14)

Since ¢ is a cyclic vector for A and dimV$2  AF¢ = d, we infer that q(z, A)£ #
0 for all z € C. In addition, for an eigenvalue X of A (multiple or not), we have:

(A—=XNg(\, A = P(N)E =0,

therefore g(A, A)¢ is a corresponding (non-trivial) eigenvector.
Let us define the completion of the map R as follows:

LEMMA 4.2. The map R : Py — Py is a smooth embedding, that is, R is one
to one and its image is a smooth projective curve.

Proor. Indeed, for a point A € o(A) we obtain R(1,)) = (0 : g(), A)¢),
while for two distinct points A\, u € o(A) we have R(1 : A) # R(1 : u) because
the complex lines CA and Cy are different (they belong to different eigenspaces
of the operator A).

It remains to prove that the differential of R does not vanish at any point
A € o(A). This fact in its turn follows from the observation that the vectors
(P(2),q(z, A)E) and (P'(2), Lq(z, A)¢) are not colinear for z = A, where \ €
o(A). Indeed, if these vectors are colinear, then there exists a scalar a such

that: p
(07 q()‘a A)é-) = a(Pl()‘)7 Eq(/\a A)é-)

In particular this implies the identity:

a0 A)E = o g0, A)e

which contradicts the fact that the vector ¢ is cyclic for A and dim V2, AF¢ = d.

12



Note that R(P;) is a smooth unirational curve of degree d in Py and the
rational map R has degree d. According to a classical result in algebraic geom-
etry, R(P;) is projectively isomorphic to the rational normal curve of degree d
in P4 obtained as the range of the Veronese embedding

(z0:21) — (20%: 20 Y21 o ... 21 %),

See for details [GH] pg. 178. Later on, Proposition 4.6 will make more precise
this projectivity.

Actually the cyclicity condition on £ can be dropped, because the resolvent
(A — 2)71¢ has values in the cyclic subspace generated by £. Therefore, as a
conclusion of these computations we can state the following result.

THEOREM 4.3. Let A be a linear transformation of C* and let & be a non-zero
vector of C?. Then the map R(z) = (A—2)71¢ extends to a rational embedding:

R:Pi — Py

The range of R is contained in o linear subspace E of Py of dimension equal to
dim V2, A*¢ and the values R(z) span E as a linear space.

Above, and throughout this note, by embedding we mean a (rational) map
which separates the points and the directions at every point. In particular this
implies that R(P;) is a smooth rational curve.

In analogy with the previous sections we define the open set:

Q={zeCl(4—2)"¢ll > 1} Ua(A).

The singular points a in the boundary of the bounded domain Q are given by the
equation (R'(a), R(a)) = 0. But we know from Lemma 4.1 that ||R'(a)|| # 0, and
on the other hand the Hessian H(a) at a of the defining equation ||R(2)||*> = 1

1S:
_ ( (R(a),R'(a)) (R"(a),R(a)
m”‘(mwﬂwm<mwﬂm»)

In particular rankH (a) > 1, which shows that a is either an isolated point
or a singular double point of 2. In the case of a non-isolated singular point
a in the boundary of a quadrature domain 2 it is known that a is a cusp or a
double tangency point, and in this case rankH (a) = 1, see [G1].

Our next aim is to study the reflection in the boundary of the domain
defined above. More precisely, for a point s € P1(C) we consider the multivalued
reflections in 99 as the solutions z = r1(s),...,r4(s) of the equation:

(R(s), B(2)) = 1. (16)

13



PRrROPOSITION 4.4.  The multivalued reflection s — (Tj(s))jzld satisfies:

a). Allrj(s) € Q,1<j <d, for s € P1(C) \ Q;

b). For an appropriate numbering of the r;’s, r1(s) = s and r;(s) € 2,2 <
Jj <d, for s € 01.

PRrOOF. Indeed, ||R(s)|| < 1 whenever s does not belong to Q. Therefore
[|R(2)|| > 1 for every solution z of the equation (16). For s € 90 we obtain
[|R(s)|| = 1, hence one solution of (16), say r1, satisfies r1(s) = s and all other
solutions z satisfy necessarily ||R(z)|| > 1.

In particular Theorem 4.3 and Proposition 4.4 apply to quadrature domains
Q. These domains are characterized by the property that there is an antianalytic
meromorphic extension of the root r1(s) in Proposition 4.4.b), from s € 9Q to
s € Q. Indeed, this extension is given by the Schwarz function by the fomula
ri(s) = S(s),s € Q, and conversely, if the extension of the root r; exists, then
this formula defines the Schwarz function of the domain. For the same domains,
a simple rephrasing of Lemma 4.2 reads as follows.

COROLLARY 4.5. A quadrature domain of order d is rationally isomorphic to
the intersection of a smooth rational curve of degree d in P4 and the complement
of a real affine ball.

Next we consider the case of a simply connected quadrature domain 2 of
order d. With the notation in Section 1, we have:

Q={z U -2 "¢l > 1}

modulo a finite set. So by denoting Q* = {z;Z € Q}, the set Q* is of the form
considered above ( with A = U*), and it is still a simply connected quadrature
domain. Let ¢ : D — Q* be a rational conformal map of the unit disk onto
0*, see [AS] or [G1]; let S(z) be the Schwarz function of the boundary of *
and let R(z) be the rational embedding of Q* established in Lemma 4.2.

In general the Schwarz function is subject to the identity:

(R(2),R(S(2)))=1, z€eq. (17)

Since S(#(Q)) = (%) for [¢] = 1, the rational map (¢) = R(#()),¢ € Py,
satisfies the duality relation:

Q) r(2) =1, (18)
identically on P, in the sense of rational functions. Thus, in some extended
sense, the rational map r is commuting with the reflections in the boundaries of
the unit ball of C and respectively C¢. The next section contains in particular
a partial converse to this remark.

The special nature of the defining equation of a quadrature domain is also
reflected in the following general observation.

14



PROPOSITION 4.6. Let A be a linear transformation of C* with cyclic vec-
tor & and let P(z) be the minimal polynomial of A. Then there is a unique
representation:

d—1
IP)PA~ (A =2)7"IP) = [P(2)]° = Y 1Qk(2), (19)
k=0

where Qr(z) are polynomials with positive leading coefficient and deg(Qr) =
E,0<k<d-1.

ProOF. To prove the uniqueness of the decomposition (19) we remark that
there exists a simple algorithm of finding the polynomials Q. Indeed, let us
denote:

F(2,2) = [P(2) (1 = I(A = 2)7'€|),

and assume that a representation like (19) exists. Then the coefficient of z¢ in
F(z,%) is P(z). (We assume the minimal polynomial P(z) to be monic). Hence
the polynomial F;_1(z,z) = —F(z,%) +|P(2)|? has degree d— 1 in each variable.

By assumption the coefficient v; of 24=12%~! in F;_; is positive, so that:

Fd,l(z,f) = 711/23(171@,1,1(2) + O(Zd71,§d72).

Therefore the polynomial Q4 1(z) is determined by Fy_1(z,%).
Proceeding by descending recurrence in k, (k < d — 1) we are led to the
polynomial
Fi(2,2) = Fiy1(2,2) = Qi1 (2)]
which has as leading term a positive constant -y, times z¥z*. Then necessarily
Fi(2,2) = »/?2" Qi (z) + O(2%,7°71).

Thus Qg(z) is determined by Fj(z,Z). And so on until we end by setting
FO(ZJE) =% = |Q0(Z,E)|2 > 0.
To prove the existence of the decomposition (19) we start from the identity
(14):
—P(2)(A =271 = (P(4) = P(2))(A - 2)7'¢ =

Ta1(2)+ Taa(2)AE + ...+ To(2) AT LE.
Recall that Ty(2) is a polynomial of degree equal to k,0 < k <d — 1.

Next we orthonormalize the system of vectors &, AE, ..., AT1¢:
o £
1€11°

— A{'- - <A§7 60)60
[

€1
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— A2§ — <A2§,€1>61 - <A2§a 60>60

€ )

? I

and so on.
Then
&= |¢lleo = coeo  (co > 0),
Af =cie; + (A€ egdeq  (c1 > 0),
A2§ = Cs€9 + <A2£,€1)€1 +... (62 > 0),

and so on.

These computations and relation (14) give:
—P(2)(A=2)" Y =To(2) AT+ ...+ Ty_1(2)€ =

To(z)(ca—1€a-1 + (A7 "¢, eq_a)eq2 +...)+
T1(2)(ca—2ea—2 + (A ?€,eq—s)eq—s +...) + ...+ Ta_1(2)coe0 =
ca1To(2)ea 1 + (ca_oTi(2) + (A1 eq 2)To(2))eq o + ..+
(coTa-1(2) + (A&, €0)Tg—2(2) +...)e0 =
Qo(2)ea—1 + Q1(z)ea—2 + ... + Qa-1(2)eo,

where
Qr(2) = cg—1-£Tr(2) + O(zk’l).

Hence Q(2) is a polynomial of degree k with leading coefficient ¢g_1_ > 0.
This finishes the proof of Proposition 4.6.

The case of a non-cyclic vector £ for the matrix A can be treated similarly.
If P(z) stands for the characteristic polynomial of A, then there is an integer
d', 1< d < d=deg(P), and there are unique polynomials M;(z),d < j <d
with the property that:

IPE)A -2 e = 3 M)

j=d

We omit the details.
For a quadrature domain (2, the leading coefficient of Q4_1(2) is:

Area(Q)

1/2
T )

co = [|€]l = (

The quadrature data of Q (that is the nodes and the weights) is determined by
the knowledge of the rational function (2). By comparing

Q(2,2) = |P(2)* = |Qu-1(2)* + O(z72,27%)
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with the middle term in (2), and by considering the behaviour at infinity of
these functions, we find that the rational function (2) coincides with

coQd—1(2)
P(z)
Therefore the quadrature data of Q is in a natural bijection with the pair of
polynomials P(z),Q4_1(z). The other polynomials Qg4 2(2),...,Qo(z) deter-
mine the domain  (via its defining function) and they depend on (d — 1) real
parameters, see also [G1] Theorem 10.
In the particular case d = 2 we have deg(P(z)) = 2 and:

|P(2)P(1 = [I(A = 2)7'€lI*) = |P(2)]* — |az + b]* — ¢, (20)

where a,c > 0 and b € C. Examples 6.1 and 6.2 below treat such cases.
As an application of Proposition 4.6 we discuss the structure of the expo-
nential transform:
-1 dA
o) =L [ O
T Ja ((—2)(C—w)
of a quadrature domain 2 which possesses rotational symmetries. In the above
notation, for large values of |z|, |w| we have by (6) :

[P(2)? = Shss 1Qu(2)]?
|P(2)]2 '

L Izl [w| >0,

EQ(Z,E) =

PROPOSITION 4.7 Let Q be a quadrature domain and let € be a primitive root
of unity, of order n. Assume that Q0 = €.
Then for all z € C, |P(ez)| = |P(2)| and |Qr(e2)| = |Qr(2)], 0 <k <d—1.

PROOF. From the very definition of the exponential transform, it follows by
the change of variables ( — €~!( that Eq(z,w) = Eq(ez,e 'w). In virtue of
the uniqueness of the decomposition (19) above, the e-rotational symmetry of
the functions |P| and |Q| follows.

If a monic polynomial @ satisfies |Q(z)| = |@(ez)|, then Q(z) is a product
of 2™, with m arbitrary, and factors like (2™ — a™), a # 0. This remark leads
to the following result, noted originally by the first author in [G2].

COROLLARY 4.8 Let Q) be a quadrature domain of order d and let € be a prim-
itive root of unity, of order d, so that = €.

Then there exists a complex number a # 0, so that the nodes of Q0 are
eka, 0 < k < d—1, and the defining equation of IQ has the form:

d—1
|zd _ ad|2 — chlsz’
k=0
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where ¢, >0, 0 <k <d-1.

PRrROOF. The case d = 1 leads to the defining equation |z — a|> = ¢, hence Q
is a disk.

Assume that d > 1. By degree reasons, it is clear that |Qr(2)| = cx|2
all 0 < k < d - 1. By Proposition 4.6, the constants ¢, must be positive.

For the leading polynomial P(z), of degree d, there are two possibilities.
Either P(z) = 2% — a?, with a # 0, or P(z) = z%. The latter case is excluded,
because 2 would be defined by a polynomial in |z|2, hence it would be a union
of annuli, which is not a quadrature domain.

k|2, for

5 UNIVERSALITY OF THE RATIONAL EMBEDDING OF
A QUADRATURE DOMAIN

The aim of this section is to prove that the rational embedding R of a quadra-
ture domain established by Corollary 4.5 is universal, in the sense that , in a
natural degree range, any similar embedding is the composition of a projective
transformation, a linear embedding and R.

In what follows we identify C* with a fixed affine chart of coordinates in
P;.k > 0. Thus, the unit ball centered at zero B, C C* is unambiguously
defined. An element z € Py belonging to the privileged affine chart is iden-
tified with (1 : z) € CFFl. A linear transformation o € SU(1,k) induces a
biholomorphic projective transformation a : P — Pj. In addition « is an
automorphism of the privileged ball By; the group of all these automorphisms
acts transitively on By, see for instance [H]. We call a a Mébius transform of
P, or respectively of the ball By.

Fix a pair of positive integers k,n. We begin by analyzing a smooth rational
embedding

u:Py — Pn

of degree k. That is C = u(P;) is a smooth curve in P, and any generic
hyperplane L C P,, intersects C in exactly k points u(z1),...,u(zx), where
21552k € Py

Given any point a € C' we can choose the above hyperplane to be:

L=L,={z€Pyu;(z,a) =1}.

(The scalar product was written in the fixed affine chart z = (1: 2)). Thus we
obtain the multivalued (1 to k) reflection map:

a—~ L,NC, a€C.
Ifa € CNOB,, then a € L, N C. Set by definition:

C,=C\B,, C_=CnNB,.
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In the domain of the rational embedding u we distinguish the open set ) =
u™' ().

Throughout this section we assume that , in the privileged chart of coordi-
nates, oo does not belong to the closure of the domain . This excludes from
discussion the class of unbounded quadrature domains. A full classification and
analysis of unbounded quadrature domains appears in [Sa).

LEMMA 5.1.  With the above notation, ) is a ( possibly disconnected) quadra-
ture domain if and only if there exists an anti-analytic map J : Cy — C,
continuous up to C, such that:

a). J(a)e L,NC (a € Cy),

b). J(a) = a, (a € CNOB,, =9Cy).

ProoFr. We simply remark that, given a map J as in the statement,
5(z) = u='(J(u(2))), (z€ Q)
is a Schwarz function for the set €2, and conversely.

We will prove later that, whenever the conditions of Lemma, 5.1 are fulfilled,
the order of the quadrature domain {2 is greater or equal than the degree k of
the curve C.

To fix ideas for the forthcoming proof, let us review again the embedding
of a bounded quadrature domain Q C C of order d. Let (U,&) be the linear
data of the complex conjugate domain Q*, so that R(2) = Ra(z) = (U* —2)7'¢
extends to a rational embedding R : P; — Pg4. In projective coordinates we
have

R(1:2) = (P(2): P(2)(U* = 2) '€ = (P(2) : Q(2)),
say, where Q = (Q1,---,Qq) is a d-tuple of polynomials satisfying:

deg(P) = d > deg(Q) = maz’_, deg(Q;)-

Thus R(co) =0 = (1:0:...:0). Also R(2) = R(P;) \ Bg and R(z;) =
(0: %) € H, where H is the hyperplane at infinity in P4 and 21, ..., 24 are the
quadrature nodes, that is the zeroes of P(z).

THEOREM 5.2. Letu : Py — P, be a rational embedding of degree k such that
Q = u ' (u(Py) \ B,) is a bounded quadrature domain of order d > k. Then
d = k and there exists a Mdébius transform o of P, and a linear embedding
i : P — P, with the property that u = aoio Rq.

Note that the assumption that Q is a bounded domain means simply u(c0) €
B,,, a requirement which can be satisfied by a M&bius transform of P;.
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Proor. Let us denote as above by R(z) = (P(z) : Q(2)) the rational em-
bedding of the quadrature domain Q. We denote by S(z) its Schwarz function.

Via the action of a Mobius transform a~! on P,, we can assume that u(oo) =
0. This means that, in the fixed affine charts we have:

w(z) = (p(2) : q(2)),  deg(p) =k > deg(q),
where p(2),q(2) = (q1(2),-..,qn(2)) are polynomial maps. We choose the poly-

nomial p(z) to be monic.
Since u(092) C 8B, we obtain:

therefore,

p(2)p(S(2)) = (¢(2),4(5(2))), (2 € Py). (21)

Similarly we have:

P(z)P(5(2)) = (Q(2),Q(S(2))), (2 € Pu), (22)

and we know that this is the minimal polynomial of the algebraic function S(z).
This means that we can find g € C(z)[w] with the property:

p(2)p(@) — (¢(2), ¢(@)) = 9(z, w)(P(2) P(W) — (Q(2), Q(W)))-

Indeed, by dividing p(2)p(@) — (¢(2), ¢(®@)) by P(z)P(@) — (Q(2), Q(w)) in the
ring C(z)[w], there will be no remainder since this would be of lower degree
than the degree of the minimal polynomial of S(z).

By changing the roles of z and w we find actually that g(z,w) is a polynomial
in both variables. Due to the degree assumption and the equality 2k = deg(g) +
2d we obtain d = k and deg(g) = 0. Thus g is a constant. Since the leading
coefficients of both p(z) and P(z) are equal to one, we find that g(z,w) = 1.
Moreover, p(z) = P(z) as the coefficients of the higher power of w in the previous
identity.

In conclusion, we have proved the relation:

(u(2), u(w)) = (R(2), R(w)), (2,w € C).

Since the range of the map R(z) spans the vector space C?¢, d being the order
of the quadrature domain 2, there is a uniquely defined isometry V : C¢ — C™,
such that V(R(2)) = u(z),z € C. At the level of projective spaces V induces
a linear embedding i : Py — P, and u = i o R, as desired. This finishes the
proof of Theorem 5.2.
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COROLLARY 5.3. Letr : Py — P, be a rational map such that r(P1) is a
smooth unirational curve C and r|B;1 is an isomorphism of By onto C5.

Then C is rationally isomorphic to a simply connected quadrature domain
Q) C C. Assume that deg(r) < d?, where d denotes the order of Q. Then

r=qaqoioRgos,

where a,i, Rg are as in Theorem 5.2 and s : Py — Py is a rational map of
degree d, which is one to one on B;.
In particular the degree of r is d2.

ProoOF. Let u : Py — P, be a rational embedding which parametrizes (by
assumption) the curve C. Let d' be the degree of u, or which is the same, the
degree of C.

We can define the antianalytic map J : C;. — C by the formula:

J(r(0) = r(%), (C € By).
Since necessarily r(0B1) C 0Cy C 0B,, we obtain:
<r<%),r<o> —1, (CedB).

Hence, by analytic continuation, the same identity holds for { € B;. Therefore
J(T(C)) € Lr({) nc, (C S Bl).

We also have J(r(¢)) = r(¢) for all ( € By and by assumption C is
isomorphic to the unit disk, hence it is simply connected.

Let us denote, as in Theorem 5.2, Q = u~'(C,). Thus € is a simply con-
nected quadrature domain of order d, and necessarily d < d' because the defining
equation ||u(z)|| > 1 of 2 has degree 2d’ and may not be irreducible. We remark
next that the map s = u~! o7 is well defined, hence analytic, hence rational.
By construction s is a conformal transformation of the unit disk B; onto (.
Then necessarily the rational map s has degree equal to the order of 2, see for
instance [AS]. Thus, by the degree assumption we have:

d®> > deg(r) = deg(u)deg(s) = d.d' > d°.

Therefore d = d' and Theorem 5.2 can be applied to the rational embedding
u. This proves the conclusion of Corollary 5.3.

It would be interesting to relax the degree condition in Theorem 5.2 to the
range d < k. However, additional assumptions are needed to insure that the
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conclusion of Theorem 5.2 holds. A simple counterexample is the embedding
u: P; — P» given in the standard charts of coordinates by the formula:

1 1
U(Z) = (21/227 21/222)‘

Indeed the degree of u is two and u~! (P2 \ Bs) is the unit disk, a quadrature
domain of order one.

6 EXAMPLES

The complexity of computations of the basic objects attached to a quadrature
domain increases very fast with the order. At least for order two quadrature
domains such computations are possible, and they have appeared, from different
perspectives in [AS], [D], [G1], [S]. Below we show how the matrix U and the
vector £ enter into the picture of order two quadrature domains.

6.1. THE LIMACON. Let z = w® + bw, where |w| < 1 and b > 2. Then z
describes a quadrature domain 2 of order 2, whose boundary has the equation:

Q(2,2) = |2|* — 2+ )|2|> = b*2 - b*Z+ 1 - b* =0,

see for instance [DL], Section 5.1.
The Schwarz function of 2 has a double pole at z = 0, whence the 2 x 2-
matrix U is nilpotent. Moreover, we know that:

l2[*|(U* = 2)7YEl)? = |2|* - P(2,72).
Therefore
[(U* +2)E]1” = (2 +b?)|2” + b°2 + b?Z + b — 1,

or equivalently: [[£]|? =2+, (U*E,€) = b? and ||[U*¢||2 = b% — 1.
Consequently the linear data of the quadrature domain  are:

( 0 myz 52_)1/ ) ( (® b:) 7 )
U* — p2 _2)1/2 , 62 22— 1/2 .
U (=D

This shows in particular that the pair (U, £) is subject to some other restric-
tions than U? = 0 and ¢ being a cyclic vector for U*. For an abstract version
of these restrictions, see [P1].

The rational embedding of the conjugated domain 2* can easily be computed
from the definition (15):

b 4 b —1 _(b2—2
(b2_1)1/2z (b2—1)1/2' 2 -1

R(1:2)=(-2%: Y1/22).
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Notice that in this situation Q* = (1, therefore the rational conformal map
¢:D — 0% is 2 = ¢(w) = w? + bw. According to the previous computations,
the rational map r(w) = R(1 : w? + bw) satisfies the symmetry condition (18).

6.2. TWO DISTINCT NODES.
a). Suppose that  is a quadrature domain with the quadrature distribution:

u(f) = af(0) +bf(1),

where we choose the constants a, b to be positive numbers. Then P(z) = z(z—1)

and
2Z-1)(U*—2)""¢=-U*E+ ¢ -2

Therefore the equation of the boundary of Q is:
Q(z,2) = |2(z = DI? = lU"€ — € + Z¢]|”.
According to the quadrature relations (4) we obtain:

a+b
™

ll€I* =

b
’ <U€7 6) = —-
™
Let us denote ||[U*£||? = c. Then the defining polynomial becomes:
Qz,2) = |2(z = DI =77 (alz = 1 +b(|2|* — 1)) —c.

The constant ¢ actually depends on a,b, via, for instance, the relation
Area(?) = a + b, or, whenever a = b, the fact that Q(1/2,1/2) = 0, see
[G1], Corollary 10.1.

We can choose an orthonormal basis with respect to which we have:

e(29) = (2)

The matricial elements «, 8,7 are then subject to the relations:
1B +? =7 a+b), apy+hfP=7"", |a’h*+h*=c

An inspection of the arguments shows that the above system of equations
has real solutions «, 3, given by the formulas:

5 (mc—0)?
~ w(a+b)c— b2’
e
m(a — b) + w2¢’
s mla+bec—b
T mw(a — b) + w2c’
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Let us remark that, if a = b > /4, the constant c is effectively computable,
as mentioned earlier, and becomes:

1 n a
c=— + —.
16 27

This again illustrates the special nature of the pair (U, ¢). A simple compu-
tation shows that the corresponding canonical embedding of the domain 2 = Q*
is:

R(1:2)=(2(z—=1):8(1 — 2) — ay: v2).

We remark that in both Examples 1 and 2, the matrix U and the vector &

are uniquely determined, as soon as we require that U is upper triangular.

b). In complete analogy, we can treat the case of two nodes with equal
weights as follows.

Assume that the nodes are fixed at +1. Hence P(z) = z? — 1. The defining
equation of the quadrature domain Q of order two with these nodes is:

Q(z,2) = (lz + 17 = r*)(l2 = 1> = 7*) — ¢,

where r is a positive constant and ¢ > 0 is chosen so that either 2 is a union
of two disjoint open disks (in which case ¢ = 0), or @(0,0) = 0. For details see
[G2]. A short computation yields:

Q(2,2) = 227% - 2r22 — 22 = 22 + a(r),

where

a(r):{ 1-r%)2, r<1

0, r>1

Equivalently, for the derivation of the formula of () we can invoke Proposition
4.7, which gives for 92 the equation:

|22 = 1) = ca|2%|? + c1]2]? + co,

with positive constants ¢, & = 0,1,2. Then we proceed as above.
Exactly as in the preceding two situations, the identification

IP(2)P1 = [U* =2)7¢I1%) = Q(2,2) (23)
leads to the following simple linear data:

V2r

‘f _ \/§T U* = 0 1—a(r)
0 ’ V1—a(r) 0
V2r

We leave the reader the verification of formula (23).
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6.3. DOMAINS CORRESPONDING TO A NILPOTENT MATRIX. To give a basic
example for the class of domains discussed in Section 4, we consider the nilpotent
matrix A and the cyclic vector & :

01 0 a
A=[loo0o 1], ¢e=[ns
000 c

where a, b, ¢ are complex numbers, ¢ # 0. A simple computation shows that:

_ a b c b ¢ c
(A -2~ = >+ + Z—3|2 +Io+ z—2|2 + |;|2-
Therefore the equation of the associated domain is:

2|8 < |az? + bz + c* + |b2® + cz|* + |c2? .

According to Proposition 4.4, the reflection in the boundary of this domain
maps the exterior completely into its interior.
The rational embedding associated to this example is:

R(1:2) = (=2°1a2® + bz + ¢ : b2 + cz : c2?).

Similarly one can compute without difficulty the corresponding objects as-
sociated to a nilpotent Jordan block and an arbitrary cyclic vector of it. For
instance the nilpotent n x n-Jordan block and the vector £ = (0,0,...,0,—1)
give precisely the Veronese embedding:

R1:2)=(2":1:z:...:2" 22",

See the remarks preceding Theorem 4.3.
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