Firefox

1of8

___Revised proofs

https://doi.org/10.1007/511118-022-09999-4

Corrigendum to “Asymptotics for the Unconstrained
Polarization (Chebyshev) Problem”

Douglas Hardin - Mircea Petrache? - Edward B. Saff' ©

Received: 30 June 2021 / Accepted: 22 March 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Riesz

Keywords Maximal reisz polarization - Unconstrained polarization -
Chebyshev problem - Riesz potential

Mathematics Subject Classification (2010) Primary: 31C15 - 31C20; Secondary: 30C80

The purpose of this note is to address two needed modifications in the recently published
article [3]; namely, revisions to Theorems 1.11 and 1.12 and their proofs.

In the revised Theorem 1.11, we add the condition in case (i) that A be strongly -
rectifiable and, in case (i1) we now require s > p — 2 and replace the condition on the
regularity of the energy equilibrium measure n# by the requirement that supp(ps.4) = A
and that the potential U, (s45 4, x) is constant on A, where for a positive measure v on R”
and 5 > 0:

Uy (v, x) :=f l -dv(y). (1)

lx — yI*
When @ is a finite set in R”, we also identify @ with its counting measure and write

1
Us(w, x) == Z m

YeEw

Theorem 1 (Replacement of [3, Thm. 1.11]) Forintegers p,d suchthat p = 2,1 <d < p
and A C RP compact, suppose that one of the following conditions holds:

(i) s > max{d, p —2) and A is strongly d -rectifiable with Hy(A) > 0.
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(i) p—2<s <d,theset A is d-regular and the equilibrium measure ji; s satisfies
supp(fts.4) = A and Uy (g 4, X) is constant for x € A.
Then both limits hs 4(A) and b} ,(A) exist, are finite, and

hs a(A) = h¥ 4(A). %))

D. Hardin et al.

The revision of Theorem 1.12 requires in the case s = p that A be Jordan measurable,
but no change for the s > p case.

Theorem 2 (Replacement of [3, Thm. 1.12]) If A ¢ R” is a compact set and s > p, or if
s=pand LP(DA) =0, then
0.\',;)

B p(A) = hs p(A) = O

3
Moreover, if L,(A) > 0, then for any asymptotically extremal sequence Q = {wy}n=
(for either the constrained or unconstrained polarization problem) we have the weak-%
convergence

1 « L,lA ]
N Z 8, A as N — 00, 4)

Xy

where L,| A = L,(- N A) is the restrictionto A of L.

We first address Theorem 1 and its proof. We thank Alexander Reznikov who brought
to our attention that the derivation of the inequality (4.20) in the proof of [3, Thm. 1.11]
requires modifications in the case p > d. Under the assumptions of Theorem 1, we now
conclude that the limit /7 ;(A) exists and is finite (in contrast, this was only established in
part (ii) of [3, Thm. 1.11]).

Proof of Theorem 1 We first discuss the subcase p = d of case (i). We note that the proof
of [3, Thm. 1.11] remains valid for this subcase; that is, if £,(A) > 0, s > p = d and
hi p(A) exists, then Ay ,(A) also exists and equals hf‘ Jr,(A.)A In the corrected proof given
below for Theorem 2 we establish that in this subcase /i p(A) exists and is equal to the
rightmost expression in (3). In particular it is finite if £,(A) > 0. Hence (2) holds for this
subcase.

To complete the proof of case (1) for p = d, we remark that the proof of [3, Thm. 1.14]
relies onthe s > p case of [3, Thm. 1.12], which coincides with the s > p case of Theorem
2. Thus the proof of [3, Thm. 1.14] remains valid. Then (2) follows from [3, Thm. 1.14].

It remains to consider the case (ii). We will use the following notation. For 0 < s < p,
@ C R? finite and v a positive finite measure over R”, let Py(A, v) := minyes Us (v, ¥).

QOur first observation is that under the assumptions that ) < s < d and A d-regular, the
proof of [5, Thm. 1.8] extends under weaker hypotheses as stated in the following result.

Theorem 3 (Extension of [5, Thm. 1.8]) Let f be a d -Riesz-like function and A C RP be
a d -regular compact set. If wy is a sequence of N -point configurations in R? such that

UN:=%ZSX—*\D

XEamy

Jfor a probability measure v supported on A, then Py(A,vy) — Pr(A,v).
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For the definitions of d-Riesz-like potentials f (which include Riesz potentials with
power 0 < s < d)and the f-polarization Py(A, i) of a measure o over the set A, see
[5. Defs. 1.1 and 1.7]. Note that Ps(A, i) = Pr(A, ) with f(|x[) = |x|™¥ for s > 0.

Proof of Theorem 3 The original version of [5, Thm. 1.8] required that wy C A, however
this hypothesis is not used since the main potential theoretic result needed in the proof is
the principle of descent [5, Thm. 2.3], which works in general. On the other hand, the fact
that v is supported on A is required in order to use the minimum principle for Riesz-like
f,see S, Thm. 2.5]. |

Proof of Theorem 1 (ii) continued. Suppose now that the hypotheses of (ii) hold. For
N=1,let wﬁ, be such that

Ps(A, wy) = PH(A, N). (5)

By [3, Cor. 1.9] if the empirical measures of a subsequence wﬁ, N € N, as in (5) converge
weakly to a measure v, then v is supported on A. By Theorem 3, it follows that

. PHA,N)
l|m _—

Am ——— = Ps(A,v). (6)

Furthermore, by [4, Thm. 2], v must maximize the continuous (integral) unconstrained
polarization, which therefore coincides with the maximal continuous constrained polariza-
tion (since v is supported on A):
Py(A,v) = max Py(A, )= max Pi(A, 1) 7
s(A,v) o (A, ) max (A, 1) (7N
We can then apply the result [6, Thm. 1.2], valid for constrained polarization, which implies
V = s - In particular, v has no atoms since it has finite s-energy.
Let proj, : R — A be a measurable map which assigns to any point x € R” a point
y € A such that |[x — y| = dist(x, A). Then for fixed € > 0 we set

1
A, . A .
Wy 1= proj 4 (@i N Ae), VN 1= N E Sy

A
XE")N,F.

Let yy.. € A be a point at which U (vy ¢, ¥) achieves its minimum over A. We then fix
a sequence £ = {¢;} with ¢4 — 0 and an increasing sequence N ¢ N. Up to taking a
Subsequence, we may assume that

1 *
UN::N Z;S_,—\u.

J.'E(UN

By the discussion in the preceding paragraph we see that (6) and (7) hold for such v, and
we have v = fi; 4.

By the compactness of A, via a diagonalization procedure we can find an increasing
subsequence A C NP such that for each € € £ there holds limyenr Yv.e = Vooe- Up to
taking a subsequence of € we can further assume that limecg Yoo e = Voo

Now fix § = 0. If we let

. |
O 5 7= PrOjA (@ N Ac\ B0, 8)), WNes = > b
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then we can wrile

Z"‘.\'(”N.G.é’ YN.e) —u\'(“N |_(A.,; \ B(¥oo, 8)), ¥n.e)

o 3 ( 1 1 )
N [ynv.e —proj4(OI5  |ynve —x[*)

xewly NANB(oo.8)

D. Hardin et al.

Now note that for all but finitely many indices of the subsequences A" and & there holds
|¥N.e — Yoo| < 8/3 and forany x € wﬁ M Ae \ B(Yoo, 8) there holds [proj,(x) —x| <€ <
&/6. By triangular inequality, for such N, e, x we get

1 1
[yn.e—proj4(O)F  |ywn.e

€
Corre
(8)
where for the last above estimate we have used the fact that |x — y|™ 1s regular over the
region [x — y| = §/2. From the above it follows that for each fixed § = 0 there holds

lim lim IM (WNe.5, YN,e) — Us (o [ (Ac \ B(¥oo, 8)), ¥n.e)| = 0. )
ecE NeN

[yne —projs ()| =>8/2, |yne—x[>8/2,

By using the positivity of our kernel and [3, Cor. 1.9], for all € = 0 there holds
0= Nli_)mwus(w [(RP\ (Ac U B(¥o0, 8))), Yn,e)

#wf \ A,
< lim Ul R\ A0y < tim HNAAD g
— 00

im
N—=o N
It follows that all the above terms are zero. Observing that R” \ B(yy, 8) = (R \ (A, U
B(yoo, 8))) U (Ac \ B(yxo, 8)), it follows by superposition that

llerg hlfienjlr?z(\-(w [(Ac\ B(yoo, 8)), yn,e) = lleng Alliénxr?z(\-(vw [(RP\ B(¥oo, 8)), ynv,e)- (10)

By the principle of descent, applied to the measures vy | (R”\ B(yoo., 8)) atthe points yy .,
and then to v|(R? \ B(¥x, 8)) and points yao ., we obtain

lim inflim infls oy [ (RY \ B(yoo, 8), i)
EEC €
> Iim}nff/&(v [(RP\ B(yoo, 8)), Yoo.e) = Us ([ (RP,\B(¥oo, 8)), ¥oo)- (1)

After replacing the sequences £, A by the subsequences £, N7 along which the liminf is
achieved, we now take the limit over § — 0. Again by the principle of descent, from (11)
we get

lim lim l|m Us(un (R \ B(yoo, 8)), Y .e)
d—>0ec& N

[Z alin})l{\-(vL(R” \ B(¥oo, 8)), Yoo) = Us (v, Yoo) = Ps(A, v). (12)

To justify the above equality, note that the potentials Us(v|(R” \ B(yx,d)),y) are
decreasing in § and that v has no atoms.
From (9), (10) and (12) and since for any § = O there holds Us (vy ¢, ¥) = Us (VN e.5, V)
atall y € R?, we get that
lim lim Pi(A,vy) = lim lim Us(vye, Yv.e
fim i, PL(A o) = fim i, Uy )

lim lim llm U (UN.c.5, YN.e) = Py(A, V). (13)
d—=0ecE NeN'

IV
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We now add #(wj:} \ A¢) points from A to the a);j , obtaining new configurations with N
points. This has the only effect of increasing the generated potential. Since we can apply all
the above reasoning to any initial subsequence N0 c N, we get

Py(A, N)
N

lim inf
N—o

= Py(A,v). (14)

On the other hand, the unconstrained optimum polarization is always larger than the
constrained optimum polarization, and by using (6) we have

A, N P.(A, N

Pi(A,v) = lim M > limsup g (15)

N—00 N N0

From (14) and (15) it follows that
¥A.N AN

im AN _ L PAN) (16)

N0 N N-—>00 N
as desired. O

We now address Theorem 2 and its proof. The authors thank Alex Vlasiuk for pointing
out that the derivation of equation (5.23) from equation (5.22) of [3] in the proof of [3, Thm.
1.12] did not take into account the measure of the boundary of A. We provide in Proposition
4 below, a substitute for this derivation valid in the case s = p, whereas for s = p we add
to [3, Thm. 1.12] the additional hypothesis L (9A) = 0.

Proof of Theorem 2. The proof of Theorem 2 follows exactly like the one of [3, Thm. 1.12],
except for the following changes:

®  For the case s = p, with the further hypothesis £”(3A) = 0 in Theorem 2, we can
take the sets G; := A N B; in the paragraph following (5.21) of [3], and the proof
holds verbatim.

®  For the case s = p, Proposition 4 below, applied to the sets A N B; and B; from
eq. (5.22) of [3] allows to replace eq. (5.23) therein. Observing that B is convex and

thus k_’:‘p(B) = hy p(B) by |3, Prop. 1.7], and that by [1] we have h,‘-‘p(B)_f"{“' =

(03.p) /5L, (B), it follows that h% ,(B) = (ay,) "/*L,(B). The factor 1 — 2€ in

eq. (3.23), (5.24) of [3] should be replaced by (1 — ¢, pe ﬁ )P/ with notations as in
Proposition 4 below. Noting that both these quantities tend to 1 as € — 0, the proof of
Theorem 1.12 of [3] follows with no further modifications.

The new result needed for the case s = p in Theorem 2 is the following:

Proposition 4 For s > p = 1, there exists a constant c; , > O with the following prop-
erties. Let € € (0,1/2P1"y and B ¢ RP be a ball and A C B a closed set such that
LP(B\ A) < eLP(B). Then there holds

* 1

By ,(A) < (1 = ¢ pe7) ThY (B). (17
In what follows we set A, B ¢ R’ to be as in the statement of Proposition 4. Fur-

thermore, let PF(A, N) be the optimum N -point polarization of set A, and let wf,:, be an
N -point configuration be as in (5). The proof of Proposition 4 is based on two lemmas.
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Lemma 5 Let 0 < § < min{l, s/2} and let N be a positive integer. If y € RP is such that

D. Hardin et al.

dist(y, A) < % (P*(A, N)) ¢ (18)

then
Us(py, y) = (1 —28)PH(A, N). (19)

1
Proof First note that if dist(y, wﬁ) < (P?(A, N))_} then
Us @y, y) = PI(A, N),
and thus (19) holds a fortiori. Therefore from now on we consider points y € IR” such that

1
(18) and dist(y, mi,) > (P"_"(A, N})_F hold, and our goal is to prove (19) for such y. Note
that as a consequence of this assumption and of (18), we also get

dist(y, A) < fdist(y,mﬁ,). (20)
5

Let y; € A be such that |y; — y| = dist(y, A) and let
Y2 € argmax e,y Us (@] ). @n

Note that if y" € [y, yi] and x; is the point from mi, closest to y', we have, using (20),

, ‘ ‘ 5\ .
dist(y', o) = |y~ x| = [y —x;|—[y'—y| = dist(y, o) —dist(y, A)> (l -~ ;)dlst(y‘ )

(22)
We now claim that the following chain of inequalities holds:

1

Us(@ht.y) > Us(@fy. 32) — f VU@, y+102 = ) - (2 = )| di 23)
0

-1
= Us(@y, y2) = sly2 - .v|[ min_ dist(y', wﬁ)] max Us(wy, y') (24)
Y'Ely.yal yely.ml
= (1 = 28)Us(wyy, y2) = (1 — 28) PI(A, N). (25)

We now prove the above. The bound (23) follows by Taylor expansion. Inequality (24)
follows by noting that whenever x # y' we have |Vy|x — y'| | = s|x — y'|~*~!, therefore
for y' € [y, y2] we have

1
|VMS(w§,, ,\”)| <s Z x — ¥~ <5 [ min dist(y’, mi,)] L{q(wﬁ, y.
et y'ely.yl
N

For the first inequality in (25), note that from our hypotheses on y we get |y2 — v|
[y — y| = dist(y, A) < %(P".*(A‘ N))_% and from (22) we get minyreyy, y,1 dist(y’, w‘,’;‘,)
(1- %) (Pi(A, N})_% . This gives, using the hypothesis § < s/2,

IV IA

Yely.y2

—1
)
s|y2 — yl[ min ]dist(}",wﬁ)] < —55 < 28.
S —_

To get the first inequality in (25) it now suffices to recall definition (21) of y;. The second
inequality in (25) follows by the fact that y; € A and the definition of y;, and of wf,:

PLAN) = minly (@, x) < Us(@, 1) < Us(@f. 32)
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Recall the notation, for the r-neigborhood of a closed set K ¢ R?, for r > 0:

(K)r := {x e R? : dist(x, K) < r}.

Lemma 6 There exists a constant ¢, > 0 with the following properties. Let B C R? be a
ball and let A C B be a closed set, such that for some € € (0, 1) there holds LP(B\ A) <
eLP(B). Then for each r € (0, ¢ diam(B)) we can cover all of B\ (A), by at most
f.'pif,@ balls of radius r.

Proof Let r' := r/(2,/p) and we show that we may take as the set of ball centers the
following:
We={r'k: keZ’, (r'k+-r,r'1")N(B\ (A),) £ D).
We note that the balls with centers in W and radius % are disjoint and contained in the
r-neighborhood of B\ (A), . Furthermore, we have the inclusion
(B\(A))r (B \NA=((B)\B)U(B\ A),

from which it follows that, denoting by #W the cardinality of W,
HW-LP(B,) < LP((B)\B)+LP(B\A) < (Cp~———+¢) LP(B) < (Cp+1) e LV(B).
T diam(B)

This implies that for ¢ := 2P(C), + 1 )j(pg Bp)., in which B, is the volume of the unit ball
in R?, there holds
LP(B)

#W < cpe .
rP

It remains to show that radius-r balls with centers in W cover B\ (A),. Indeed, note that
if the cube r'k + [—r', r']? with k € Z” meets B \ (A),, then it is contained in the ball
B(r'k, /pr')y c B(r'k,r), and thus

B\ (A, c | k+1-r .71 c | B0k,

r'kew r'keW
as desired. |

Proof of Proposition 4: Observe that by the same proof as in [2, Thm. 2.4], which applies

also without the restriction that the optimum polarization points belong to A, with £7 used

as the measure f¢ in the proof, there exists a constant C; , > 0 independent of N, A, such
1

that PF(A, N) = C,,-_;,N"'”’/(ﬁ”(A})"'”’ . Now, applying Lemma 5 with § := ¢ 71 we find

that for the optimum configuration wi‘, like in (5), with

1 1
1 . P I
ryim L Pra Ny s CLENANT (26)
) $(Cyp)¥
we have
Vy € (A)y, Us(oh,y) = (1 —ZeP_LT)P.?(A, N). @7

Next, for N large enough so that ry < e diam(B) we apply Lemma 6 with ry playing
the role of r, and we find a set of centers W such that, using also (26) in the second below

@ Springer

about:blank

6/29/2022, 3:44 AM



Firefox

8of 8

Revised proofs

D. Hardin et al.
inequality:
1
LP(B ~ b LP(B ~ e
B\(A)rNC UB(X.?’N), #W =cpe (; )_ s,p €711 ﬁf’( )NE s.p -N.
oW ry (A) 1 —
_(28)

By considering the new configuration wg := a)N U W whose cardinality is denoted N, we
claim that
1

1
- ~ Iz 1-2e7iT) P*¥(A, N) fory € (A,
Ne|N,N |+c,,.,p;E . Us(wg, y) = ( ) ‘ "

— €

Py (A, N) fory € B\ (A)ry.
29)
The bound in the first line of (29) follows from (27). For the second bound in (29), note
that since € < 1 < p < s, using the first part of (28) the following holds for x € W,y €
B(x,ry):
i —¥

€ Pl

Ui, y) = Ix —y|* = ry" = ; PI(A,N) = PIA,N).

We then find that, using also the fact that € € (0, 172711y,

;

PiBN) 12T PHAN) o [ i AN
Ns/p . sip Ns/p p |l —e€ Nslp
(I +C‘ P Gl — )
(30)
from which the bound (17) follows, with ¢; , =2+ 2;—%L+I—I b C\ P O
Now the proof of Theorem 2 is complete. (]

Acknowledgements We thank the anonymous referee for their carelul reading and patience in the reviewing
process.
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