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Abstract. We discuss the qualitative behavior of the polynomials

p:(z) of best uniform approximation to a function §f that is

continuous on a compact set E of the z-plane, analytic in the
interior of E, but not analytic at some point of the boundary
of E. Particularly, we survey results on the asymptotic behavior

of the zeros of the p:(z) and the extreme points for the error
f(z) - p:(z). The theorems and examples presented support a

"principle of contamination,”™ which roughly states that the existence
of one or more singularities of f on the boﬁndary of E adversely
affects the behavior over the whole boundary of E of a subsequence

»
of the best approximants pn(z).

§1. Introduction.

Let E be a compact set in the complex plane C whose comple-
ment C \ E with respect to the extended plane C:= C U {»} is con-
nected. By the classical theorem of Mergelyan (cf. [18]), every func~
tion f that is continuous on E and analytic in the (2-dimensional)
interior ﬁ of E «can be uniformly approximated on E, as closely
as desired, by algebraic polynomials. To measure the rate of this
approximation we consider the sequence of polynomials of best approxi-

mation.
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Let 9n denote the collection of all algebraic polynomials of

degree ¢ n, and "."E denote the sup norm over E. Then for each
n=20,1,2,..., there exists a p: = p:(f) € 9n satisfying
1.1 WE - pXli, = inf Uf I
(1.1) p g = in plip .
pG?n

and p: is uniquely determined by {(1.1) provided <card(E) 2 n + 1.

¥e set

»
(1.2) e, = en(f.;)-= e - anE .

and note that, with the previously mentioned assumptions. on E and

f, Mergelyan's theorem asserts that

(1.3) e, ! o.

As is well-known, the rate of decay in (1.3) is intimately relat-
ed to the smoothness properties of f. For example, if A(E) denotes
the collection of all functions f analytic on the compact set E,
then under mild geometric assumptions on E the theorem of Bernstein-
Walsh (cf. [18]) asserts that

(1.4) feA(E) < limsup [e 1'/7 < 1.

N

That is, the error in best polynomial approximation decays exponen-
tially (geometrically) if and only if f has an analytic continuation
to some open set containing E. Furthermore, there exist, in this
complex setting, more refined theorems of the Bernstein-Jackson type
that relate the modulus of continuity of f over E to the rate of

decay of e (cf. [1]., [2]). The following two examples of this

slower than geometric convergence are probably familiar to the reader:

If fl(x) = |x| on E:= [-1,1], then
c
2 1
(1.5) - < en(fl) $ = n=1,2,...

Here and below c denote positive constants independent of n.
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If fy(z) = vz on the disk E:= {z : |z - 1| ¢ 1}, then

Co
(1.6) = ¢ enlfy) <

oL
= .
It is the purpose of thié paper to study the gualitative behavior
of the polynomials of best approximation to f 1in the case when f
has one or more singularities on the boundary of E (such as the
functions fl' f2 defined above). We shall present theorems that

support the following general property:

Principle of Contamination. Let f be continuous on E and analytic
in ﬁ. where E is a compact set with connected and regular comple-
ment . If £ has one or more singularities on the boundary of E
(i.e., £ € A(E)). then these singularities adversely affect the be-

havior over the whole boundary of E of a subsequence of the best

»*
polynomial approximants Py to f on E.

By the assumption that € \ E is regular we mean that this set
possesses a classical Green's function with pole at infinity. In
particular, regularity holds if € \ E 1is simply connected; that is,

if E 1is a continuum (not a single point).

Of course the principle of contamination is not a mathematical
theorem. Rather it is a rough summary of rigorous theorems to be dis-
cussed below. It is hoped that the statement of this principle will
lead to further supporting theorems as well as to comparisons with
other methods of approximation for which "the contamination” is non-

existent or less severe.

The outline of this paper is as follows. In Section 2 we discuss
theorems and examples concerning the asymptotic behavior of the zeros

of the best approximants p:(f). Such results are intimately related

to the possibility of using these approximants to obtain analytic con-
tinuations of f. In Section 3 we consider the behavior of the ex-

*
treme points for the error f - pn(f). The latter results are signi-
ficant for purposes of comparing e, with the rate of convergence on

a subset of the boundary of E.

Before embarking on the theorems that support the principle of
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contamination, we wish to emphasize three important limitations of the

principle.

(i) The principle refers only to best polynomial approximation. As

we shall see below, best rational approximants may not exhibit

the same 1ill effects.

(ii) The principle applies specifically to best polynomial approxi-

mants. For example, a sequence of '"near-best"” polynomials
a, € Pn . n=20,1,..., satisfying
3
e ~ anE £ 2 If - pn(f)HE R n=20,1.,2,...,

may behave qualitatively better than the p:(f) at those

points of the boundary of E where f{ is analylic.

(iii)} The principle refers only to some subsequences of the polyno~-

mials {p:)T. It is possible that there are other subsequences

with less contaminated behavior.

Although we shall deal mainly with best uniform approximants,
there do exist theorems that support the principle of contamination

for sequences of best LP polynomial approximants to f.

§2. Zeros of Best Polynomial Approximants
We assume here and throughout that E 1is a compact subset of C
with connected and regular complement. For f € C(E) N A(g); that is,

f 1is continuous on E and analytic in the (possibly empty) interior

ﬁ of E , we ask the following question. What can be said about the
locations (in the complex plane) of the zeros of the polynomials

2
pn(f) of best uniform approximation to f on E? This question was

studied by J. L. Walsh [19], [20], for the case when f 1is analytic

on E (f € A(E)) but not entire. Walsh's results are analogues of
the classical theorem of Jentzsch [11] which states that the partial
sums S of a power series {(about 2z = 0) with finite radius of

convergence r > O have the property that every point on the circle

|[z] = r is a limit point of the set of zeros of the polynomials

s ,n=20,1,2,...
n
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More recently Blatt and Saff [5] investigated the zeros of p:(f)

for the more delicate case when f has one or more singularities on

the boundary 8E of E. They proved the following.

THEOREM 2.1 ([5]). Suppose f € C(E} N A(ﬁ) . but f is not analytic
on E. Assume further that f does not vanish identically on any
component of the interior ﬁ. Then every boundary point of E 1is a
limit point of the set of zeros of the sequence of best uniform

approximants (p:(f))T to f on E.

In particular, if f 1is continuous on the interval 1I:= [a.b]
of the real axis and if f 1is not the restriction to I of a
function analytic in a neighborhood of I, then every point of I

»* -
attracts zeros of the sequence of best approximants {pn(f)}1 to f

on I. In Figure 2.1 we illustrate this fact for fl(x) = |x| on

[-1,1] by plotting the zeros of pgs(fl).
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Figure 2.1 Zeros of p;G(fl) , where
£,(x) = |Ix] on E = [-1.1]

Notice that in Theorem 2.1 we assume f € A(E)} and so, from

(1.4)., the errors e = en(f,E) of (1.2) satisfy

(2.1) lim sup [e ]l/n = 1.
n-o n
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Thus there is a subsequence A = A(f,E) of integers for which
. 1/n
(2.2) lim [e . - e ] =1, n € A
a n-1 n

In the proof of Theorem 2.1 it is shown, more geﬁerally, that, for any
subsequence A satisfying (2.2)., the Jentzsch-type behavior holds for
the zeros of {p:(f)}neA. We further remark that Theorem 2.1 applies

not only to the zeros of the p:(f) but also to their a-values; that
is, to the roots of p:(f,z) = a, where a 1is any complex constant.
Indeed, the function f (z):= f(z) - a satisfies f € C(E) N A(B)y,
fa € A(E), and the polynomials of best uniform approximaton to fa

. »*
are just pn(f) - a«. Thus we have

COROLLARY 2.2. Suppose f € C(E) N A(ﬁ), f € A(E), and f is not

identically constant on any component of B. Let zy be any boundary
point of E, U(zo) a neighborhood (open disk) about Zg- and A a

subsequence of integers for which (2.2) holds. Then, for every
constant a and every sufficiently large n € A, the equation

*
pn(f.z) = a has a root in U(zo).

In Figures 2.2 and 2.3 we illustrate this corollary for the

case of fl(x) = |x|] on E =[-1,1] by plotting the roots of
* » .
p26(f1'z) = -5 and p26(f1.z) = -1 , respectively. The reader

should note the strong resemblance in Figures 2.1, 2.2, and 2.3.

Recalling the classical theorem of Picard concerning the behavior
of an analytic function in a neighborhood of an isolated essential
singularity, we can summarize Corcllary 2.2 by saying that the

»*
sequence {pn(f))neA has an "asymptotic essential singularity”™ at

each point of JE. In the context of normal families of analytic
functions, we see that no point of JE 1is a normal point for the

sequence {p;(f))T‘ As shown in [5], this fact holds even when f is
constant on some component of ﬁ: that is, we have

THEOREM 2.3. Suppose f € C(E) N A(g). but f € A(E). Then the
sequence (p:(f))T does not converge uniformly in any neighborhocod of

a boundary point of E.
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Figure 2.2 Roots of p;G(fl'z) = -5 , where
fl(x) = |x| on E = [-1,1]
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Figure 2.3 Roots of p;ﬁ(fl'z) = =i , where
£,(x) = Ix] on E = [-1.1].

The above results show that polynomials of best uniform

on have an undesirable property: Consider a function




86

f € C(E) n A(ﬁ) that is analytic at some boundary points of E, but
is not analytic at all the boundary points (e.g. fl(z) and fz(z)

in the Introduction). Then, in any neighborhood of an analytic

boundary point, the sequence (p:(f)}T fails to converge to the

analytic continuation of f. We remark, however, that it may be

»*
possible for some subsequence of {pn(f)} to converge in a

neighborhood of an analytic boundary point.

It is somewhat surprising that the Jentzsch-type behavior of

zeros and a-values described in Theorem 2.1 and Corollary 2.2 need

not hold for polynomials of "near-best" approximation; that is, for

polynomials {qn)T. q, € @n. that satisfy for some fixed constant

K>1,

»*
(2.3) NE - q llp < KIE = p (f)ll; = Ke . n=1,2,...

% Examples of this type were construcgted by Grothmann and Saff {10] and
Saff and Totik [15] where the only boundary points of E that attract

zeros of the g, are the singular points of f. To be more specific

: we describe the results of [15] dealing with the absolute value

function.

Let f{(x) = |x| on E = [-1/2,1/2] and let g{(z) be the

analytic extension of f defined by

z, for Re z 2 0O ,
(2.4) g(z):= -z, for Re z (O

In [15] a sequence {qn}T, q, € @n, is constructed such that

| C
(2.5) g -~ q“"El < el n=1,2,...,
where
2
E;i= {z € C: |Re z] < 1, [Im z] < |Re z]|7}
(i.e., E1 is a parabolic region with 2z = O a double point of

aEl). Since E C El and f 1is the restriction to E of g. we have
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e ¢
- q g ¢S (Ke (F.E). no=1.2....

where the last inequality follows easily from (1.5). Also, from

(2.5). we see that the q, converge uniformly to g on the region

El‘ Thus, since g(z) # O for z{#0) € El' it follows that only one

point of E (namely, =z = 0) can be a limit point of zeros of the

sequence {qn)T.

The above example illustrates that "near-best” polynomial
approximants may behave qualitatively better than the best polynomial
approximants. Indeed, in [15]., Saff and Totik have shown that for the
class of piecewise-analytic functions f on [-1,1] it is possible to

construct polynomials q, satisfying (2.3) that converge uniformly

and ‘geometrically in some open disk about each point of [-1.1] where

f 1is analytic (see Theorem 4.1).

In comparison to best polynomiai approximants, best rational
approximants can also have qualitatively much better behavior. To
illustrate this statement we return to the approximation of the
absolute value function f{x) = |[x}] on E = [-1,1]. In [3]. Blatt,
Iserles and Saff proved the following.

*

PROPOSITION 2.4. Let Rn = Pn/Qn denote the unique real rational

function of degree at most n of best uniform approximation to lxl
on [-1,1]. Then for each n = 1,2,... , all the zeros and all the

3
poles of Rn lie on the imaginary axis. Moreover,

» [ z, for Re z > O,
lim R (Z) =
oo D -z, for Re z < O.

Thus, unlike the behavior of the zeros of the best polynomial
approximants to |x| on [-1.1]. only one point of [-1,1] attracts the
zeros of the sequence of best rational approximants. Furthermore, the
best rational approximants converge to the analytic continuation of

|x] in the right—hand and left-hand planes.

Thus far we have discussed only Jentzsch-type theorems concerning
the limit points of zeros of best polynomial approximants. Much more

information is provided by Szego~type theorems that concern the

i
R

4
J
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limiting distributions of these zeros. In order to state such results
we need to introduce some terminology from potential theory (cf.

[17]).

Let MH(E) denote the collection of all unit measures that are
supported on the compact set E where, as above, we assume that
T\ E is connected and regular. Then it is known that there exists a

unique measure Mg € K(E) that minimizes the energy integral
-1 ’
1nli= [[rog 2=l an(e)du(z)

over all pu € H(E). The measure Mg is called the equilibrium

distribution for E and (since T \ E 1is regular) we have

supp (uE) = 8E. For example, if E 1is the closed disk J|z] ¢ r, then

duE = ds/27r , where ds is arclength measured on the circumference
l]z] = r. If E = [~1,1]., then dpup is the arcsine distribution,
duE = (1/7)dx/V1 - x2.

*
Next, to each nonconstant best polynomial approximant pn(f) we

associate a discrete unit measure u:. called the zero distribution of
*
p, (f). by
»* .
number of zeros of pn(f) in B

(2.6) b (B):= T .
n

for Borel sets B C C, where we count the zeros according to their

multiplicity.

We can now state the theorem of Blatt, Saff, and Simkani

concerning the limiting distribution of the zeros of best polynomial

approximants.

THEOREM 2.5 ([6]). Suppose f € C(E) N A(ﬁ) . but f € A(E). Assume
. further that f does not vanish identically on any component of ﬁ_

»*
Then v =~ conuerges in the weak-star topology to Hp as n > ©

through a sequence A = A(f,E) of positive integers.
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Consequently, for any Borel set B C C,

(2.7) pp(B) < lim inf 07(B) ¢ lim sup vX(B) < pup(B). n € 4.
n n E
n-o n-
In the above theorem, A is any sequence of integers for which

(2.2) holds. We remark that since Supp(uE) = GE, the assertion of

Theorem 2.1 that'’each point of JdE 1is a limit point of the sets of

zeros of {p:(f))T is an immediate consequence of (2.7).

In Theorem 2.5 the convergence of the zero distributions to the
equilibrium distribution of E holds only for suitable subsequences.
In [10], Grothmann and Saff have shown that for any admissible compact
set E, there exists a function f satisfying the hypotheses of

Theorem 2.5 and a subsequence v: of the measures (2.6) such that
k

lim v (B) = 0 for all bounded sets B C C.
koo Tk

Although the results of this section have been concerned only
with best uniform polynomial approximants, theorems analogous to
Theorem 2.5 have been proved by Simkani [16] and Blatt, Saff and
Simkani [6] that apply to best LP polynomial approximants (as
measured by a line integral over a rectifiable Jordan curve)} and to
best uniform rational approximants having a bounded number of free
poles.

§3. Behavior of Extreme Points.

In this section we present further evidence for the principle of

contamination by examining the behavior of extreme points in best
polynomial and best rational approximation. We first recall the

classical result that, for a real-valued f continuous on the

interval [-1,1] , there exist n + 2 points
- (n) (n) (n)
1 ¢ Xy < Xy < ... X< X2 <1

such that

(3.1) l(e - 2™y ) = we - p:"[_l'l] . ko= 1,....n+2
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s ¥y (M)y LoD o My (D) -

(3.2) (f pn)(xk ) = =(f pn)(xk+1) ., k= 1,...,n+1,

»* »*
where P, = pn(f.x) is the best uniform approximation to f on
[-1,1]. A set of points (xﬁn)};t? satisfying (3.1) and (3.2) is
called an alternation set for the error f - p:. Ve remark that such
an alternation set need not be unique. For the special case when
f{x) = xn+1 ., the error xn+1 ~ p:(x) is just the Chebyshev

polynomial of the first kind and the corresponding alternation set is

(3.3) e P
{cos(n+Y)}k=o

It turns out that for an arbitrary real-valued f € C[~1,1], there is

»
always a subsequence of the errors f - P, for which the

corresponding alternation sets have the same limiting distribution as
the points {3.3); that is, the arcsine distribution. This fact was
first proved by Kadec [12], who also provides estimates for the rate
of this convergence. Further improvements in Kadec's result were
obtained by Fuchs [9] and Blatt and Lorentz [4]. Unfortunately, the
method of proof of Kadec's theorem (as well as its generalizations)
relies heavily on the fact that consecutive points in an alternation

set and the zeros of p:(f) - p:_l(f) interlace; a fact that has no

analogue for the approximation of complex-valued functions. To
circumvent this difficulty, Kroo and Saff [13] used., instead, a
potential theoretic argument to establish a Jentzsch-type result
concerning the denseness of extreme points._ To state their result we

need to introduce some notation.

Let E CC be a compact set with connected and regular

complement. Given f € C(E) N A(ﬁ) , we set

* *
(3.4) A (f)i= {z € E ¢ |f(2) - p (f.2)] = 0f - p (£)N;} .
and refer to An(f) as the set of extreme points for f - p:. Ve
remark that each set An(f) consists of at least n + 2 points. To

measure the denseness of a set A in a set B (A,B C C) we define
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{3.5) p(A.B):= sup inf |z - E|.
Zz€EB f€A

The main result of Krod and Saff asserts that there is a subsequence

of integers n for which the sets An(f) become dense in the

boundary @&E. More precisely, we have
THEOREM 3.1([13]). If f € c(E) n A(E). then

(3.6) lim inf p(A_(f).8E) = 0.
n-s

Furthermore, there exists an entire function g such that

(3.7) lim sup p(A_(g).dE) > 0.
N~ n

In the proof of this theorem it is shown, moreover, that if A

is any increasing sequence of integers for which the errors e, of

(1.2) satisfy

€e._1 " © 1/n
(3.8) lim[en - “] =1, n€A4,
n-e - n-1 ®n
then
(3.9) lim p(A _(f),8E) =0 . n € A.

n=—o

The second part of Theorem 3.1 asserts that denseness need not hold

for all subsequences ~ a fact that was first proved by G.G. Lorentz

[14] for the Kadec case of a real function on a real interval.

Theorem 3.1 is the analogue of Theorem 2.1 concerning the
denseness of zeros of best polynomial approximants. However, there is
an important difference - namely, in the latter theorem we require
that f have a singularity on dE (f € A(E)) ., while Theorem 3.1

applies as well to functions f that are analytic on E.

Theorem 3.1 shows that the polynomials p:(f) of best uniform

approximation have another undesirable feature. Suppose, for example,

that E 1is a Jordan arc or a Jordan region and consider a function
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f € C(E) N A(g) that is analytic at some but not all points of the
boundary J0E (such as the functions fl(z) and f2(z) in the

Introduction). Since f ¢ A(E) . the rate of decay of the errors e

is slow (not geometric). However, it would seem reasonable to expect
that on those subarcs of JE where f 1is analytic (say, a subarc

')y, the rate of convergence of {p:(f)}T to f is faster.

Unfortunately this is not the case since, by Theorem 3.1, for

infinitely many n this subarc must contain points of An(f) ; that

is,

UE = pr(£)l = If - pr(f)l; = e

for infinitely many n.

What can be said about the denseness of extreme points for the
case of best rational approximation? While this question has not yet’
been answered in full generality. there is an important case for which
results are known - namely, for best real rational approximation to a
real-valued function f on [-1,1]. We now describe these results in

the context of the Walsh array.

Let ﬂm n be the collection of all real rational functions

with numerator in ym and denominator in ﬂn. For real-valued

f € C[~-1,1], we let rX = (f) denote the best uniform
m,n m,n

approximation to f on [-1,1] out of %m A These best approximants

are typically displayed in the following doubly-infinite table called

the Walsh array.

E.3 * *
Tor T11  Tai
»»* E.3 »
Toz Tiz2 Ta2
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Notice that the first row of this array consists of the polynomials of

* »*
best uniform approximation (rm 0= pm). We know, therefore, that

extreme points are dense for the approximants in the first row. But
what about other sequences formed from the array such as the diagonal,

}

! " : 3
other rows, or a "ray sequence” that consists of rationals (rm n

for which the ratio m/n has a finite limit as m,n - ® ?

To state the main result [8] of Borwein, Grothmann, Krod and Saff

concerning the denseness of such extreme points, we first recall that,

for each pair of nonnegative integers (m.,n) , the best approximant
»* »* »* . . . R
Thmon = pm.n/qm.n is characterized by the following equioscillation
property: There are m + n + 2 - d points

- (m.n) (m.n)
(3.10) 1 ¢ Xy < ... < X nr2-d <1,
where

d:= d(m,n):= min{m - deglp:'n , n ~ deg q:‘n}
such that
(3.11) l(f-r:'n)(xl({"‘-n))[ - ||f—r:’nll[_1,1]. k = 1,...,m+n+2-d,
(3.12) (f—r:_n)(xf(’“'“)) = —(f—r:‘n)(x}((:‘in)). K = 1.....ménel-d.

Next, we measure the denseness of the extreme points (xim.n)}T+n+2—d

in [~-1,1] by defining

(f):= sup min |x - xém'n)l.

(3130 Pnon x€[~-1,1] k

The main result of [8] is the following.

THEOREM 3.2. Let the sequence of nonnegative integers n = n(m)

satisfy
(3.14) n(m) { n(m + 1) ¢ n{(m) + 1 , n{m) ¢ m ,
for m=0,1,... . If f e€cC[-1,1], f ¢4 . om=0.1,... .

m,n{m)
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then
(3.15) lim inf[m __nim ]p (f) ¢ =
N log m m,n{m)

Notice that Theorem 3.2 applies in the case of ray sequences of
the form n(m) = [cm] for any constant ¢ ¢ 1 , where [-] denotes the
greatest integer function. If ¢ < 1 , we deduce from (3.15) that

lim inf p (f) = O
N m,[cm]
which means that the extreme points are dense in [-1,1]. 1In other

words, if we proceed down the Walsh array at an angle of less than
w/4 with the first row, then the Jentzsch-type (denseness) result

holds for the extreme points.

Of course, Theorem 3.2 gives no information about the important
case of diagonal sequences; that is, when we proceed down the table at
an angle of w/4. In [8]. it is shown that denseness need no longer
hold for such sequences. In fact, for a diagonal sequence, all
alternation points can occur in an arbitrarily small subinterval of

[-1,1]. More precisely we have

THEOREM 3.3. For every 2 > e > O , there is a function f € C[-1.1]

* (f) has no

such that for each n =1,2,... , the error f T in

extreme points in (-1 + e.1].

Returning to the behavior of extreme points for best polynomial
approximation, a Szego-type limiting distribution result has recently
been obtained by Blatt, Saff and Totik [7]. To describe this result

we must first associate a unit measure with each extremal set An(f)

in (3.4). For the Kadec case of real approximation on an interval,
one can use the discrete unit measure that is supported in an

(n + 2) - point alternation set {xy}'r> (cf. (3.1) and (3.2)). For

complex approximation, the notion of alternation set is replaced by

that of an extremal signature, which is a subset of An(f) consisting

of at most 2n + 3 points. However, unlike the case of real
approximation, the cardinality of an extremal signature can vary from
n+ 2 to 2n + 3 points. Thus it is not immediately clear how to

select n + 2 points from An(f) in order to define a discrete



95

measure. This difficulty was resolved in [7] by selecting as the
subset of An(f) an (n + 2)-point Fekete subset which we denote by
9n+2. To be precise, $n+2 is an (n + 2)-point subset S gf
An(f) for which the Vandermonde expression
V(S):= T |z - t]
z,teS

Z#L

is as large as possible.

Next,

by defining

(3.16) A (B):=

for any Bor

as in (2.6), we associate a unit measure An with 9n+2

number of points of 3n+2 in B

el set B

n + 2

cCc.

With the above notation we can now state

THEOREM 3.4

([7]). Suppose f € C(E) N A(E) and let ¥ be an

n+2

(n + 2)~-point Fekete subset of the set of extreme points An(f)

defined in
weak-~star t

through a s

(3.4). Th
opology to

equence A

en the measures An of (3.16) converge in the
the equilibrium distribution Mp as n 2@

= A(f.E) of positive integers.

§4. Concluding-Remarks

The results of the preceding sections have hopefully convinced

the reader that best polynomial approximants have significant

drawbacks.

Moreover,

in a sense, "near-best may be better than best.

In [15] Saff and Totik construct such near-best polynomial

approximants for the case of piecewise-analytic functions f on
[-1,1] (such as f(x)

of their results.

THEOREM 4.1
and B > 1

polynomials

Suppose
is given.
qn € 9n

= |x| on [-1,1]). The following is a sample

f € Ck[—l.l] is plecewise analytic on [-1,1]
Then there exist constants ¢,C > 0 and

, n=1,2,... , such that for every x € [-1,1]

.
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(4.1) l£(x) - d4_(x)] ¢ nﬁ—” exp(-enld(x)17) .

where d(x)} denotes the distance from x to the nearest singularity

of f in [-1,17.

Notice from (4.1) that the q, converge geometrically in an open

interval and hence in an open disk about each point of [-1,1] where f

is analytic.

ACKNOWLEDGEMENT. The author is grateful to Dr. Jon Snader and

Mr. Hongzhu Qiac for generating the graphs in Section 2.

REFERENCES

[1] J.M. Anderson, A. Hinkkanen and F.D. Lesley., On theorems of
Jackson and Bernstein type in the complex plane, Constr.
Approx. (to appear).

[2] V.V. Andrievskii, Approximation characterization of classes of
functions on continua of ;he complex plane, Math. U.S.S.R.
Sbornik, 53 (1986), 69-87. '

[3] H.-P. Blatt, A. Iserles and E.B. Saff, Remarks on the behavior
of zeros of best approximating polynomials and rational
functions, IMA Series No. 10, pp. 437-445, Oxford Univ. Press
(1987).

[4] H.-P. Blatt and G.G. Lorentz, On a theorem of Kadec (to appear).

[5] H.-P. Blatt and E.B. Saff, Behavior of zeros of polynomials of
near best approximation, J. Approx. Theory 46 No. 4 (1986),
323-344.

[6] H.-P. Blatt, E.B. Saff and M. Simkani, Jentzsch-Szegd type
theorems for the zeros of best approximants, J. London
Math. Soc. (to appear).

[7] H.-P. Blatt, E.B. Saff and V. Totik, The distribution of extreme
points in best complex polynomial approximation (ICM Technical
Report #87-0015) (to appear).

[8] P.B. Borwein, R. Grothmann, A. Krod and E.B. Saff, The denstity
of alternation points in rational approxtimation (ICM Technical
Report #87-010) (to appear).

[9] W.H. Fuchs, On Chebysheuv approximation on sets with several
components, in "Proc. NATO Adv. Study Inst., Univ, Durham,

1979." pp. 599-408. Academic Press, New York, 1980.



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

R.

97

Grothmann and E.B. Saff, On the behavior of zeros and poles
of best uniform polynomial and rdtional approximants (ICM
Technical Report #87-009). To appear in: Proceedings of
Antwerp  Conference 1987 (A. Cuyt, ed.).

Jentzsgb, "Untersuchungen zur Theorie analytischer

Funktionen," Inangural-dissertation, Berlin, 1914.

.I. Kadec, On the distribution of points of maximum deviation

in the approximation of continuous, Amer. Math. Soc. Transl
26 (1963), 231-234.
Krod and E.B. Saff, The density of extreme points in complex

polynomial approximation, Proc. Amer. Math. Soc. (to appear).

.G. Lorentz, Distribution of alternation points in uniform

polynomial approximation, Proc. Amer. Math. Soc., 92 (1984),
401-403.

.B. Saff and V. Totik, Polynomial approximation of piecewise

analytic functions (ICM Technical Report #87-017) (to appear).
Simkani, Asymptotic Distribution of Zeros of Approximating
Polynomials, Ph.D. Dissertation. University of South Florida,
Tampa (1987). A

Tsuji, Potential Theory in Modern Function Theory, 2nd ed.,
Chelsea Publ. Co., New York, (1958).

.L. Walsh, Interpolation and Approximation by Rational

Functions in the Complex Domain, Amer. Math. Soc.

Colloquium Publications, Vol. 20, (1935, 5th ed., 1969).

.L. Walsh, Ouverconvergence, degree of convergence and zeros of

sequences of analytic functions, Duke Math. J. 13 (1946),
195-234. :

.L. Walsh, The analogue for maximally convergent polynomials

of Jentzsch's theorem, Duke Math. J. 26 (1959), 605-616.



