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Abstract. While Szego type asymptotics of orthonormal polynomials are

class{éal. there has been a longstanding lack of corresponding results

for Lp extremal polynomials, p # 2. In particular, in a 1969

paper, Widom raised the question of p = «©. Here we fill some of the

gaps for 1 {( p { =.

1. Introduction
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(1.1) E p(w)i= inf ||(xn—P(x))w(x)lle[_l'1],

Pes .

where yn-l denotes the class of real polynomials of degree at most

n-1. It is easily seen that there is at least one monic polynomial

n
Tnp(w.x) = X + € 9n such that

(1.2) "Tnp(w'x)w(x)"Lp[-l.l] = Enp(w)'

¥e call Tnp(w.x) an Lp extremal polynomial for w. We define also

the normalized extremal polynomials

(1.3) pnp(w.x)lz Tnp(w.x)/Enp(w).

n=1,2,3,..., satisfying

(1.4) Hpnp(w.x)w(x)HLp[_l'l] = 1.

¥hen p = 2, pnp(w.x) is just the orthonormal polynomial of degree n

for the weight w2.

This paper addresses the asymptotics of Tnp(w'x) in C\[-1,1]

as n - «. Under general conditions on w, Fekete and Walsh [3] and
Widom [11] established nth _root asymptotics. For example, if
w(x) > 0 a.e. in [-1,1], their results imply that

(1.5) lim ['I'np(w.z)]l/n = ¢(z)/2,
n-o

locally uniformly in €\[-1,1], where

(1.6) e(z)i= z + sz—l . z € C\[-1,1],
is the usual conformal map of €\[-1,1] onto {C : |C] > 1}. Here
the branch of the nth root is chosen so that [Tnp(w.z)]1 ™ pehaves

like z at o,
The asymptotics for Tnp(w.z) itself have proved more elusive.

In his 1969 paper, Widom [12, p.205] remarked that even in the case of



85

weights on [~-1,1], Szegdé type asymptotics for Tnm(w.z) had not yet
been established. While Widom obtained asymptotics for Enm(w) and

its analogue in more general situations than that treated here, he
could not turn these into asymptotics for the polynomials. In this
paper, we shall fill this gap, at least for 1 < p { @, p # 2.

Of course for p = 2, everything is classical: Assuming the

Szego condition,

1
(1.7) J log w(x) dx/ 1--x2 > -,

Szegd (see [10]) proved that locally uniformly in C\[-1,17,

(1.8) lim p_o(w.z)/e(2)™ = (2r) V/2D72(F(9): w(2)7)),
n=->x

where

(1.9) F(¢):= w(cos ¢)|sin ¢|1/2. ¢ € R,

and D(+;¢) 1is the Szego function

_ 1 " 1+ue ¢
(1.10) D(F(¢); u):= exp I log F(¢) — -1 de | ,
-7 1-ue

ju] < 1. Taking z = @ formally in (1.8). we see also that
(1.11) lim E_,(w)2” = (2v)}/2D%(F(9): 0)
n-o

(2#)1/2exp[§% fﬂ log F(¢)d¢]

-

2172601,

after some elementary manipulations, where

1 —
(1.12) Gfw]:= exp[w_l J log w(x)dx/Vﬁ—x2}
-1

is a geometric mean of w. See [5,8] for recent reviews.
We have used the term "strong asymptotics” in our title to des-
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cribe (1.8). Other commonly used names are power asymptotic, Szegd

asymptotic, or full exterior asymptotic. We can now state our main
result:
Theorem 1.1. Let 1 < p < ® and w € Lp[-l.l] be a non-negative
function such that for each r < o , w—l € Lr[-l.lj. Let
(1.13) o= (T(1/2)T((p+1)/2) /T (pr2+1)} 1P,
and
. 1/p
(1.14) Fp(¢)-= w(cos ¢)|sin ¢| . ¢ € R.
Then
: -1+1/p

(1.15) lim E__(w)2" = o G[w].

now DP P
Furthermore, uniformly in closed subsets of €\[-1,1], we have

n -2 -1,.2

(1.16) lim Tn (w.z)/{e(z)72} =D “(F _(¢): ¢(z) “)D(F_(¢): 0).

n-o P P P
and
(1.17) lim p__(w.z)7e(z)" = (20 )7 1D72(F_(9): o(z)” ).

noo TP P P

For p = =, we shall prove:

]
(=]
o,

Theorem 1.2. Let w(x) be positive and continuous in [-1,1].

let

(1.18) o =1,

and

{(1.19) F,(¢):= w(cos ¢), ¢ € R.

[}
8

Then (1.15 6) and (1.1 rema valid for p
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We note that our condition on w—l in Theorem 1.1 implies
SzegE'é condition and severely restricts the zeros of w: It allows
zeros of logarithmic, but not algebraic, strength. We shall prove a
lim sup result corresponding to (1.15) under only Szegd's condition -
see Theorem 2.2. If we could prove a matching lim inf result, then at
least for 2 < p < @, the Szego-type asymptotics (1.16) and (1.17)
would follow under only Szego's condition (1.7).

This paper is organized as follows: In Section 2, we obtain

asymptotics for Enp(w) and in Section 3, we obtain the asymptotics

for Tnp(w.z).

2. Asymptotics for E_ (w).
np

First we list Bernstein’'s explicit formula for E__{(w) and

np
Tnp(w.x) for special w:
Lemma 2.1. Let q be a positive integer and S(x) be a polynomial

of degree 2q, positive in (-1,1), possibly with simple zeros at
1, and let

(2.1) Vix)i= {(1-x2)/8(x)}172,  x € (~1.1).

and for O < p § =,

(2.2) Vo (x):= (1-x2)"VPly(yy,  x e (-1.1).
Further K let ap be defined by {1.13) for 0 < p K ® b 1.18

for p = ®, and let the Szego function and geometric mean be defined

by (1.10) and (1.12) respectively. Let n 2 q.

{(a) ZIThen for 1 £ p £ =,

-n+1-1/p
. = o 277 G .
(2.3) Ep(Vp) = 9, [v,]

and for 0 < p < 1,

-n+1-1/p
) g7n* G )
(2.4)  E (V) S o v,1-

(b) Let
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(2.5) 7 (x):= 2‘““’Pc[vp](z"“D‘Z(V(cos¢);z) + %D 2(V(cose):z 1)},

X:= cos B; z:= eie; 8 € [0,7]. Then Tn(x) is a monic polynomial of

degree n, and for O < p ¢ »,

_ -n+l-1/p
(2.6) "Tnvp”Lp[-l,I] = ap2 G[Vp].

while for 1 {( p ¢ =,

(2.7) Tnp(Vp.x) = Tn(x).
Finally,
(2.8) I (x)V(x)] ¢ 2‘“*1“’Pc[vp]. x € [~1.17.

and for u € C\[-1,1],

-n-1/ -2 -
(2.9) I (@)/(27 T Perv e ()™ 3 (V(cos #): w(w)7)) - 1]
-2n-
< lo(uy 2972072,
Proof. See Theorem 13.1 in [7}, which is just a reformulation of
statements in Achieser [1,pp.250-4]. O

We can now prove:

Theorem 2.2. Let O < p < ® and w € Lp[—l.l] be a _non-negative

function. Then
(2.10) lim sup Enp(w)2n—1+1/p < apG[w].
N~

where, if the integral in the definition (1.12) of Gfw] diverges to

-o, we interpret G[w] as O.

Proof. We remark first that G[w] < ® is an easy consequence of the
arithmetic~geometric mean inequality (cf.[10]) and the fact that w €
Lp[—l.l] implies w € Ls[—1.1] for s < p. For a given n, and
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0 (p <<=, let Vp(x) be a function given by (2.2), fulfilling the
hypotheses of Lemma 2.1. Let € € (0.1) and we(x):= max{w(x).e},

x € [-1,1]. Further let % be a measurable subset of [-1,1] with
"W"L (%)  ®», and let §&:= [-1,1]\%. With the notation of Lemma 2.1,
(-

we have, for n 2 q,

(2.11) Egp(w) < Egp(we) < T ow uL JL-1.1] = I ow, L () + uanenL L (6)
$ vy uy (y)nv “e"fm(y)
-n+1-1/p 1
+ {270 c[vp]}puv W uE L&)

-n+1-1/p p
< 27n* G[V
< o, (vp,1}

-1 4P “Pyy~1l, P
X {IIVp we"Lw(g) + ap v we"Lp(E)}

Now taking S(x):= (1—x2)R2(x) in Lemma 2.1, where R(x) 1is a poly-

nomial positive in [-1,1], we see that
vVl x) = (1-x) Y BPIR)w (x)
and
vVl ) (x) = R(x)w_(x).
Let g(x) be a continuous positive function in [-1,1]. We can

choose a sequence R = Rn—l € 9n_1 of polynomials converging

uniformly in [-1,1] to g as n = ©. Then (2.11) yields

— P
(2.12) lim sup {E (w)2® 1+1/P}
n=x np

< agG[(1—x2)—1/(2p)g(x)_l]p

x {N(1—x2)1/(2p)g(x)"e(x)"£m($) + o Pligw "LP(E)}
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Next, we claim that (2.12) holds more generally for any measur-

able function g{x) that is bounded above and below by positive con-

stants. To see this, note first that for such a g(x}. we can choose
continuous functions gm(x). m=1,2,..., bounded above and below by
positive constants independent of n, such that

lim g _(x) = g(x) a.e. in [-1,1]7.

moo "

For example, we can choose

g (x):i= dt.

j g(t)dt/j
[x-1/m,x+1/m]N[~1,1] [x-1/m,x+1/m]N[-1,1]

“
Furthermore, we can choose a measurable set ¥ C ¥ such that

meas(¥\F) 1is as small as we please and

a3

lim g _(x) = g(x) uniformly on
moo "

>

Let &:= [-1,11\%. As & and g are bounded above and below by

positive constants independent of n. inequality (2.12}) yields for

each m,

- P
(2.13) lim sup{E (w)2® ‘*”p}
o np

..l]p

¢ oP or(1-x®) T Plg ()

1/(2p)

~

x {“(1—x2) -4 {x)w (x)nL (%) + a Ug W "L (8)}

and so, on letting m =2 @, we get

P
lim sup{E (w) on~ 1+1/P}

< oP er(1-x%) "M (3Pl 1P

1/(2p)

x {H(l-xz) g(x)w (x)“L (g) g;Pugw&uf (2)}
P
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Since we can choose & C % such that meas(g\ﬁ) is as small as de-
sired, we obtain via Lebesgue's Dominated Convergence Theorem, that
(2.12) holds (as claimed) for any measurable g that is bounded above
and below by positive constants.

Now, we can choose % to omit small intervals containing -1

and 1. Then (1—x2)1/(2p)we(x) is bounded above and below by posi-

tive constants on %, and the same is true for

J(l—xz)—l/(2p)we(x)_1, x € %

g(x):=
1, x € §.

Thus, if and xg denote the characteristic functions of % and

Xg

§ respectively, we obtain from (2.12)

_ p
(2.14) lim sup{E (w)2" 1+1/P}
n-—x np

-1/(2p)

< 0P GLw, (x)xg(x) + (1-x°) xg(x)1P ,

P
-pP P
X {1 + ap "we"L (E)}
p
Choosing % such that meas(&) is as small as desired, (2.14) yields

n-1+1/p p
lim sup{Enp(w)2 }

< o G[w 1°P.
n=® P €

Finally, (2.10) follows by writing

L. log+w ,

-1 + -
log W, = log v, e

and observing that since log+w6(cos ¢) 1is bounded above by the inte-

grable function log+(w(cos ¢) + 1) for e < 1, we have

r T
Iim j log+we(cos ¢)de = J log+w(cos $)de
e~0+ Yo o

and, by the Monotone Convergence Theorem,
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. T+ -1 T+ -1
lim log w_(cos ¢) "d¢ = log w(cos ¢} "de¢. a
3
e=0+ Yo o
Theorem 2.3. Let w(x) be a bounded non-negative Riemann integrable
function on [-1,1]. Then
(2.15) lim sup E__(w)2™" ! ¢ G[w]
. ne < .
n-o

Proof. Let V be a function given by (2.2), fulfilling the hypo-

o0
theses of Lemma 2.1. We obtain

-n+1 -1
2 GLV NV, “wil

-1
E w(¥) < urnvmuLm[_l'l]uv°° “"Lm[—1,1] = L-1.1] -

by (2.6) and (1.18). Choosing S(x):= (1—x2)R2(x) as before, and
then choosing R{x) to approximate the reciprocal of a continuous
positive function g, we obtain

n-1

lim sup Enm(w)2
-

-1
< G[gllilg “wl
L,[-1.1]
Since w is Riemann integrable, a theorem of M. Riesz on one-sided
approximation [4.p.73] ensures that we can choose a continuous func-

‘tion g = g4 (even a polynomial) such that

w(x) < g(x) in  [-1.1]

and

1
I (g(x)-w(x))dx < 6,

for any given &8 > 0. This g yields the desired result if w has a
positive lower bound in [=~1.1]. When the latter condition fails, re-

place w by w, as in the previous proof, and then let & - O+. o

We now turn to the corresponding asymptotic lower bounds. To-

gether with Theorems 2.2 and 2.3, they immediately yield (1.15).
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Lemma 2.4. Let 1 ( p < ® and w € Lp[—l,l] be a non-negative func-
-1

tion such that w € Lr[~1.1] for every r < o, Then

(2.16) lim inf E__ (w)2” 1*1/P 5 5 gLy,
now PP P
If p=1 or p=o, (2.16) remains valid provided w jis positive

and continuous in [-1.,1].

Proof. Let 1 <p<® and r >s > 1, with r ' +s ! =1, and

s { p. An easy consequence of Holder's inequality is that if H—l €

[-1.1] and JH € L [-1.1]. then

pr/s
-1,-1
(2.17) NJHNI _ 2 WJh _ HH “# _
Lp[ 1,1] L s[ 1,1] Lpr/s[ 1.1]
(see [6,Lemma 3.1]). Let p/s(x) be a function given by (2.2), ful-

filling the hypotheses of Lemma 2.1. Applying (2.17) with J(x):=
~1 R
{xn—P(x)}Vp/S(x) and H(x):= Vp/s(x) w{x), we obtain

_

pr/s

Enp(w) En,p/s(vp/s)”vp/s

i~

[(-1.1]

- 2_n+1—s/P p/sG[ p/s]" p/s" _1"

pr/s[ 1.1]

by (2.3) and as p/s 2 1. Choosing S(x):= R2(x). where R(x) does

not vanish in [-1,1]. and choosing R(x) to uniformly approximate a
function g(x) positive and continuous in [-1,1], we obtain
lim inf E__(w)2 1*s/P

n-e np

G[(1-x )(1 S/p)/2g(x) T (1-x )(l s/p)/2 (x)—lw(x)-lﬂ_l
p/s [-1.1]
pr/s

Choosing g(x) to approximate (1-x )(1 S/p)/zw(x)_1 in a suitable

sense, we obtain

. -1+s/p
lim inf E__(w)2" 2 o, GLwIning
n-® np p/ pr/s[ 1.1]
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Here I|1IlL [-1.1] = 2S/(pr) -1 as r -, and also then s - 1,

pr/s

so o - 95 Then (2.16) follows.

p/s

Finally in the cases p = 1, =, the proof is much easier: Since

o«
w is positive and continuous, one can choose a sequence {Rn}l of

polynomials such that

Rw-=1 as n - o,

n
uniformly in [~1,1]. By suitable choice of V1 and V_, we easily
obtain (2.16). o

We remarked in Section 1 that our conditions on w-l imply

Szegd's condition (1.7)., and we now briefly justify this. Note that
then also G[w] > 0. Suppose that for some s > O, wle LS[—I.I].

By the arithmetic-geometric mean inequality [10,p.2],

1 1
exp{w_1 I log w_5/3(x)dx/v1—x2} ¢ vl I w—5/3(x)dx/\/1-x2
1 .

-1 -

-1, -1,s/3 172

< w iw uLs[_l'l] 1 < w,

—2_
N{1-x<) L3/2[—1,1]

Hence (1.7).

3. Asymptotics for Extremal Polynomials.

The main new ideas of this paper are contained in Lemmas 3.1 and

3.2, where standard L2 techniques [8] are turned into Lp ones:

Lemma 3.1. Let 2 { p {(® and w € Lp[-l.l] be a non-negative func-

tion that {s positive on_a set of positive measure. Let n 2 1, P(z)
be olvyn 1l of ree n with leading coefficient A, and let

(3.1) A= E (w4,

Then for z € C\[~-1,1],
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- 5 1/2
(3.2) ]P(z)/pnp(w.z)—ll < d(z) {"P""Lp[—1.1] -~ A } + lja-11,
wvhere d(z) denotes the distance from =z to [~1,1].
Proof. Suppose first p < », Note that as pnp(w.x) is an extremal
polynomial for wP., we have

1
J Ipnp(w'x)|p-2pnp(w.x)w(x)wp(x)dx = 0,

for each w € yn-l {(cf.[2.p.9]). Let
- -2
wix)i= Ip (w.x) [P75WP(x). x € [-1.1].

By its normalization, we see that pnp(w.x) is the orthonormal poly-

nomial of degree n for w(x), that is

1 2n
J pnp(w.x) w(x)dx = 1,

and
1 ~

J_lpnp(w.x)w(x)w(x)dx = 0, T € yn—l
Let

a(x):= P(x) - Ap, (w.x),
a polynomial of degree { n-1. Let ejn(x). j =1.2,...,n, denote
the fundamental polynomials of Lagrange interpolation at the zeros
Xin+Xone o Xpo of pnp(w.x). We have

n
atx) = 3 alx;)e (0.

By a well-known formula [8,p.6], [4.p.114, eqn.(6.3)], we have
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e, (x) = Ajnpn_l(xjn)(vn_l/vn)pnp(w.x)/(x—xjn).

where xjn, j = 1,2,....n, are the Gauss-~Christoffel numbers of order
n for ;. while pn_l(x) is the orthonormal polynomial of degree
n-1 for ; and Tt and v, are the leading coefficients of
pn_l(x) and pnp(w.x), respectively. Here, as ; is a weight on

[-1.1],

{4.p.41] and so we obtain for =z € C\[-1,1],

(3.3) [P(z)/p,(w.2) = Al = la(z)/p, (w.2)]

|

n
< J217\jnlpm_1(xjn) Ha(x; )1/ 1z-x

n

n

-1 5 1/2( n 5 1/2
d(z) {jzlkjnpn—l(xjn)} {jilxjnq (xjn)}

N

1 N /
a {1 2eormax) .

by orthonormality, and the exactness of the Gauss quadrature formula.

Here

2

jl P2(x);(x)dx - ZAII P(x)p__(w x);(x)dx + A
-1 np-

1 R
I:= J a2 (x)w{x)dx
-1 -1

1 .
j P2(x)w(x)dx - A2,
-1

since A 1is the coefficient of pnp(w.x) in the expansion of P(x)
in the orthonormal polynomials for w. Taking account of the defini-
tion of w and using Hélder's inequality with parameters 2/p and
1-2/p. we obtain

2 p-2 _ 2 _ 2 _ 2
I« "Pw"Lp[-l.1]"pnp(w'x)w(x)"Lp[—l.l] A% = "Pw"Lp[—l.l] A
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Then (3.2) follows from (3.3).

Finally, if p = ®, we can simply let p = © in (3.2), noting

that (as is well-~known) Enp(w) and pnp(w,x) respectively converge

to Enm(w) and an("-x) as p = @, 0

Proof of (1.16) and (1.17) when 2 ¢ p ¢ ©®. Suppose first p < o,
Let Vp be a function given by (2.2), fulfilling the hypotheses of

Lemma 2.1. Note that by (2.3), (2.7) and (2.8).

(3.4) [P (V_.x)V(x)] ¢ a;‘

np(¥p x € [-1,1],

while by (2.3), (2.7) and (2.9), for u € C\[-1,1],

1 1

(3.5)  Ip (Vo u)/{(20,) Lo ()"0 73 (V(cos )i w(w)1)) - 1

¢ Je(uy 2972072,

where 2q 1is the degree of S. Let ¥ C [-1,1] be a measurable set

for which

Hwil { o,

Lo (%)

and let &:= [-1,1]\%. Further, let

A= E_(W)/E (V).

Substituting P:= pnp(vp) in (3.2) yields for z € C\[-1.1],

(3.6)  Ip, (V,.2)/p (w.2) - 1]

1/2
¢ d(z)7! {upnp(vp,x)w(x)uf [-1.17 - A2} + |A-1]
P

¢ d(z)7! {[upnp(vp.x)Vp(x)uLp(g)nv;lwuLm(g)

2 1/2

-1,,~1 ] 2}

+ g0V “wi - A + |A-1
b L (&) |
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¢ d(z)‘l{[uv'lwu + o luvT Ly ]2—A2}1/2+ lA-1]
< p 'L (%) * % YL (8) '

A glance at the right-hand side of (2.11) indicates its similarity to
this last right-hand side and we proceed in a like fashion. Take
S(x):= (1—x2)R2(x) and R = Rn(x) where Rn(x) has degree q-1 =

q,-1 < {n-2)/2 and Rn(x) = g(x) uniformly in [-1,1] as n - o,

where g(x) 1is positive and continuous in [-1.1]. Set

1 1

hn(f.z)t= (2ap)_ p(z)nD-z(f(cos $): o(z) ).

and with f (x):= w(x) (1-x2)17(2P) (54 that £,(cos 9) = F_($)).
write
h (f .z)
(3.7) ORI I
Pnp(W.Z) n"n’'n
where
p. (V. .z} h (V.z)
a =a (V. .z)i= =P g =B (V z)i= 0 \
n < %l Prp (¥ 2) n = Pl Prp(Vp 2
hn(f .Z)
An = An(vp'z):= hn(V,z)
Then, for V(x) = R_(x)"1, V(%) = Rn(x)‘1(1-x2)'1/(2p). inequality

(3.5) together with the fact that q ¢ n/2 imply

(3.8) lim 8_ =1,
na  °
uniformly in closed subsets of C\[-1,1]. Also, since V = g-l uni-

formly on [~1,1], we see from (1.10) that

1

(3.9)  lim A = DT2((£,8)(#): #(2)7 1),

n-—-e

uniformly in closed subsets of C\[-1,1]. Furthermore, from (1.15)
and (3.6) we get for any closed set K C C\[-1,1],
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(3.10) lim sup la_ - 11 < 6, B(g.%.K).
n n Lo (K) K
-1
where 6K:= td(z) "Lm(K) and

2 1/2
B(g.%.K):= {[HgprLm(g) + a;lungLp(g)] - G[gfp]z}

Gref 1 - 1.
+ |G[g pl |

Since

lep By~ € a1 ig -t =1+ la HIB =1 ]+ B TN -1+ N [ e -1].

it follows from (3.7) - (3.10) that

3.11 13 ”Eﬂiﬁﬂil - 1"
- ) l:_,:up pnp(W.Z) LQ(K)

_2 _1
$ WD ((fpg)(¢): e(z) ) - luLw(K)
+'uD_2((fpg)(¢); w(z)'l)uLw(K)aKB(g,g,K),

Much as in the proof of Theorem 2.2, we note that (3.11) holds, more
generally, when g 1is any measurable function bounded above and below

by positive constants. Choosing % such that fp is bounded above

and below by positive constants in %, we take

fp(x)_l. x € F

g(x):=

Since we can choose meas(§) as small as desired (note that w(x) is

positive a.e. in [-1.1]). we get B(g.%¥.K) » O and D—2((fpg)(¢);

¢(z)"!) » 1 uniformly on K. as meas(&) - O. Then (3.11) yields
(1.17).

Finally., if p = =, the proof is substantially easier, since
then our hypotheses on w ensure that we can choose V_ = Vm'n in
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Lemma 2.1 such that V_ - w uniformly in [~1,1] as n - @, ]

Next, we turn to the cases 1 ¢ p < 2. The method below works
also for 2 {( p { ® under the hypotheses of Theorems 1.1 and 1.2, but
we preferred to include Lemma 3.1 because of its greater potential:
it requires little more than asymptotics for Enp(w). whereas Lemma
3.2 places awkward restrictions on w—1=
Lemma 3.2. Let 1 < p < 2 < q satisfy p—'1 + q—l =1 and let u,w
be non-negative functions on [-1,1] that are positive on a set of

positive measure and satisfy u € Ll[—l.l] and uw_1 € Lq[—l.l]. Let

©
{pn}o denote the orthonormal polynomials for u satisfying

1
J_lpn(x)pm(x)u(x)dx = 6mn' m,an=0,1,2,... ,

Let P(z) be a polynomial of degree n, with leading coefficient A,

and let A and d(z) be as in Lemma 3.1. Let
- (p-1)/p
(3.12) W(x):= [((x"n)/z)“(p 1y . x € [1.,9).

Then for =z € C\[-1,17],

(3.13) [P(z)/pnp(w.z) -1}
< |A-1] + 2d(z)_1|pn(z)/pn (w.z)llAlw[quuL [-1 l]A—l]
p o ,
-1 -1 -1
x {Hilp_ _uw "l _ + d(z) “fip_ uw "l _
n-1 Lq[ 1,1] n Lq[ 1,17},

Progof. We shall use Clarkson's inequalities [2,p.3] for 1 < p < 2:
For f,g € Lp[—l.l].

P P 1/(p-1)
] el
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Letting P:= P/A, f:= Pw and g:'= Tnp(w,-)w, we note that

HE+gh = 2N (f+g) /21 2E__(w),

L[-1.1] L[-1.1] 2 2k,

and so Clarkson’s inequalities yield

p/(p-1)

6 - men7

1/(p-1) ;
} - (28, (n)P/ P

5w P P
< 2{"PW"LP[—1.1] + Enp(w)

and so using (3.1) and (3.12), we obtain

(3.14) (P Tnp(w))w"Lp[—l.I] < 2Enp(w)w[NPwHLp[_l'1]A ].
Next, let 7j denote the leading coefficient of pj(x), and

K (x.€)i= {v _ /7 Hp (x)p,_ (£)-p_(£)p__ (x)}/(x-t).

As in Lemma 3.1, wn—llqn {1, and so for t € [-1,1] and

x € C\[-1,1]7.

(3.15) K _(x.t)| < a() " e (x)p_ ()] + Ip (t)p__ ()|}

Further as P(x) - Tnp(w.x) has degree ¢ n-1, we have [4,Ch.1],

- 1 .
P(x) - Tnp(w,x) = I (P(t) - Tnp(w,t))Kn(x.t)u(t)dt.

Then (3.15) and Holder's inequality yield for x € C\[-1,1],

(3.16) [P(x) - Top(¥-x) | e - T (O [
P

x d(x)—1{|pn(x)|Hpn_1uw—1HLq[_1,1] + Ipn_l(x)|Hpnuw—1HLq[_1'1]} .

Here., much as in the proof of Lemma 3.1,
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n-1
pn—l(x) R

n
2
- jzlkjnpn_l(xjn)pn(X)/(x-xJ.n)-

n n
where (xjn}l are the zeros of 1 and (xjn}l are the Gauss quad-

rature weights of order n for wu. Then for x € €\[-1,1],

1 = d(x)" L.

n
lp__, ()7p_ ()| < d(x)” ilxjnpﬁ_l(xjn)

Together with (3.14) and (3.16), this yields for x € C\[-1,1],

1

(3.17) |P(x) - Tpp(¥-3) | < 2d(x)7 Enp(w)w{npwuL [_l’l]A_l}
P

-1 -1 -1
x lpn(x)l{upn_luw "Lq[-l,l] + d(x) “lp uw "Lq[-l.l]} .
Finally,
IPG) /o, (wox) = 1] = [AP(x) = T, (wox) /1T, (w.x) |
< IALIRG) = T (wox) 17T (wox) |+ [a = 1.

Substituting the estimate (3.17) into this last inequality yields
(3.13). ‘ a

The difficulty above is choosing u so that Hpkuw—IHL [-1.1]
q .

is bounded independent of k. Note that if

(3.18) u(x):= (1-x2)2,  x e [-1.17.
then [4, p.35],
(3.19) Ipgully oy g7 ¢ (2772, n=1,2.3....

Proof of (1.16) and (1.17) when 1 < p < 2. Choose u by (3.18), and
let Vp be a function given by (2.2), fulfilling the hypotheses of

Lemma 2.1. Substituting P(x):= pnp(Vp,x) in (3.13) and using
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(3.19). we obtain

lpp(Vp 2) /Py (w.2) - 1]

S |A-1] + 2d(z)“1|pn(z)/pnp(w.z)|lAlw[upnp(vp)wuL [_I_I]A'l}
P

x 277y 20w 1 {1 + d(z)"}

L L-1.1] }.

where A = E__(w)/E__(V_). Much as in the previous proof, we can
np np- p

choose a sequence of functions Vp such that A - 1, n = «, and

- ©,

"pnp(vp)w"Lp[—l,l] -1, n

Since V¥(1) = O, the Szego type asymptotics for pn(z) and the above

estimates easily yield (1.17) and hence (1.16). o]
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