ON THE BEHAVIOR OF ZEROS AND POLES OF BEST UNIFORM POLYNOMIAL AND RATIONAL APPROXIMANTS

R. Grothmann*
Mathem. Geogr. Fakultat
Katholische Universität
Eichstätt
Ostenstrasse 18
D-8078 Eichstätt
WEST GERMANY

E.B. Saff**

Institute for Constructive
Mathematics
Department of Mathematics
University of South Florida
Tampa, Florida 33620
USA

ABSTRACT. We investigate the behavior of zeros of best uniform polynomial approximants to a function f, which is continuous in a compact set ECC and analytic on E, but not on E. Our results are related to a recent theorem of Blatt, Saff, and Simkani which roughly states that the zeros of a subsequence of best polynomial approximants distribute like the equilibrium measure for E. In contrast, we show that there might be another subsequence with zeros essentially all tending to ∞ . Also, we investigate near best approximants. For rational best approximants we prove that its zeros and poles cannot all stay outside a neighborhood of E, unless f is analytic on E.

^{*}The research of this author was done while visiting the Institute for Constructive Mathematics, University of South Florida, Tampa.

^{**}The research of this author was supported, in part, by the National Science Foundation under grant DMS-8620098.

AMS Classification: 41A20 Key words and phrases: Polynomial approximation, rational approximation, best approximants, zero distributions.

1. STATEMENT OF RESULTS

We investigate the behavior of zeros and poles of best uniform approximants in the complex plane. Throughout this paper we will assume that $E \subset C$ is a compact set and that $\overline{C} \setminus E$ is connected. Using the Chebyshev norm on E,

(1.1)
$$\|\mathbf{g}\|_{\mathbf{E}} := \sup_{\mathbf{z} \in \mathbf{E}} |\mathbf{g}(\mathbf{z})|,$$

we will approximate a function f, analytic on E (the interior of E) and continuous in E, with respect to Π_n , the set of algebraic polynomials of degree at most n, or with respect to $\mathfrak{A}_{m,n}$, the rational functions with numerator in Π_m and denominator in Π_n .

We denote by $p_n^*(f)$ the best uniform approximant to f on E with respect to Π_n , i.e.

(1.2)
$$e_n(f) := \|f - p_n^*(f)\|_E \le \|f - p_n\|_E$$

for all $p_n \in \Pi_n$. By a theorem of Mergelyan, we know $e_n(f) \to 0$. With $p_n^*(f)$ we associate a unit measure v_n^* , called the zero distribution of $p_n^*(f)$, by

(1.3)
$$v_n^*(A) := \frac{\text{number of zeros of } p_n^*(f) \text{ in } A}{\text{deg } p_n^*(f)}$$

for Borel sets $A\subset\mathbb{C}$, where we count the zeros according to their multiplicity.

The location of zeros of $p_n^*(f)$ or other converging

sequences of polynomials has been investigated by several authors. Jentzsch [J] proved in 1914 that the partial s of a power series with finite radius of convergence r > 0 have the property that every point on the circle |z| = r is a limit point of zeros of the s_n . The related question in our setting is whether every point on the boundary of E is a limit point of zeros of the f is not analytic on E. The most complete $p_n^*(f)$, i f and general answer to this question was obtained by Blatt, Saff, and Simkani [BSS] in 1986. Earlier investigations are due to Borwein [Bo] and Blatt and Saff [BS]. should also mention similar results concerning sequences of so-called maximally convergent polynomials by Walsh [W2], who studied the case when f is analytic on E but not entire.

The results in [BSS] deal primarily with the limiting distribution of the zeros of the $p_n^*(f)$. The classical result concerning the distribution of zeros of partial sums of a power series is due to Szegö [Sz] and improves the above mentioned theorem of Jentzsch.

Before stating the known and new results we recall the definition of the equilibrium measure μ_E of E. Throughout the paper we will assume that $\overline{\mathbb{C}}\backslash E$ is regular; that is, $\overline{\mathbb{C}}\backslash E$ has a classical Green's function G with pole at ∞ , which is continuous on ∂E (the boundary of E) and has the value zero on ∂E (cf. [T]). The function G is harmonic in $\mathbb{C}\backslash E$ and $\mathbb{G}(z) - \log |z|$ is harmonic at ∞ and assumes the value $-\log[\mathrm{cap}(E)]$ at ∞ , where $\mathrm{cap}(E)>0$ is the logarithmic capacity of E (cf.[T]). The measure μ_E is the unique unit measure that is supported on ∂E and satisfies

(1.4)
$$G(z) = \int \log |z - t| d\mu_E(t) - \log[cap(E)].$$

It is also the unique unit measure that is supported on E and minimizes the energy integral

(1.5)
$$I(\mu) := \iint \log |z - t|^{-1} d\mu(t) d\mu(z).$$

We can now state the main result of Blatt, Saff, and Simkani.

THEOREM 1.1 ([BSS]). Let ECC be compact, $\overline{\mathbb{C}}\setminus E$ be connected and regular. Let f be continuous on E, o analytic on E but not on E. Furthermore, assume that f does not vanish identically on any component of E. Then the sequence $\{v_{\ell(n)}^*\}$ in (1.3) possesses a subsequence $\{v_{\ell(n)}^*\}$ that converges weakly to the equilibrium measure μ_E of E.

By the weak (vague) convergence of
$$v_{\ell(n)}^*$$
 we mean
$$\lim_{n\to\infty}\int \phi\ dv_{\ell(n)}^*=\int \phi\ d\mu_E$$

for all continuous ϕ on \mathbb{C} having compact support.

Our first result shows that there may be another subsequence of $\{\nu_n^{\, \mbox{\scriptsize \#}}\}$ that has a completely different behavior.

THEOREM 1.2. Let E C $\mathbb C$ be compact with a connected and regular complement. Then there is a function f on E such that

(a) f is continuous on E, analytic on E, but not analytic on E,

- (b) f has no zeros in E, and
- (c) for a subsequence $\{v_{k(n)}^*\}$ of the measures (1.3)

(1.6)
$$\lim_{n\to\infty} v_{k(n)}^*(S) = 0, \quad \text{for all bounded } S \subset \mathbb{C}.$$

The proof of Theorem 1.2 will be given in Section 2. We now discuss "near best approximants," i.e. we assume that we have a sequence $\,q_n^{}\in\Pi_n^{}\,$ such that

(1.7)
$$\|\mathbf{f} - \mathbf{q}_{\mathbf{n}}\|_{\mathbf{E}} \leq \mathbf{C}\|\mathbf{f} - \mathbf{p}_{\mathbf{n}}^{*}(\mathbf{f})\|_{\mathbf{E}}, \quad \text{all } \mathbf{n} \in \mathbf{N},$$

for some constant C. (We caution the reader that our definition of "near best" is different from that in [BS].) As shown in the next example, we can no longer expect that every point on the boundary of E is a limit point of zeros of the \mathbf{q}_n , let alone that the zero distributions \mathbf{p}_n associated with the \mathbf{q}_n have a subsequence converging weakly to $\dot{\mu}_E$.

Example 1.1. Let $f(z) := \sqrt{z}$ for $\text{Re } z \ge 0$ and set

(1.8)
$$K_{\alpha} := \{z \in \mathbb{C} : |z - \alpha| \leq \alpha\}.$$

Then, for $p_n \in \Pi_n$ and $\alpha > 0$,

(1.9)
$$\left\| \frac{1}{\sqrt{\alpha}} \mathbf{p}_{\mathbf{n}}(\alpha \mathbf{z}) - \mathbf{f}(\mathbf{z}) \right\|_{\mathbf{K}_{1}} = \frac{1}{\sqrt{\alpha}} \|\mathbf{p}_{\mathbf{n}}(\mathbf{w}) - \mathbf{f}(\mathbf{w})\|_{\mathbf{K}_{\alpha}},$$

where $\|\cdot\|_{M}$ denotes the Chebyshev norm on M. Thus, if $\{q_n\}_{1}^{\infty}$ is the sequence of best uniform approximants to f

on K_2 , it satisfies (1.7) with $E:=K_1$. But no point of $E\setminus\{0\}$ is a limit point of zeros of the q_n since $q_n(z) \to \sqrt{z}$ uniformly on K_2 . An example similar to the above appears in [BIS].

Notice that in Example 1.1, the set E has a non-empty interior. The authors do not know of an analogous example for E = [-1,1]; however, the validity of the following conjecture would lead to such a result.

Conjecture. Set $E_1:=[-1,1]$, $(1.10) \qquad E_2:=\{z\in\mathbb{C}\colon |\text{Re }z|\leq 2, |\text{Im }z|\leq |\text{Re }z|^2\},$ and define

(1.11)
$$f(z) := \begin{cases} z & \text{for } \text{Re } z \geq 0, \\ -z & \text{for } \text{Re } z \leq 0, \end{cases}$$

so that f(x) = |x| for $x \in \mathbb{R}$. If we denote by $e_{i,n}$ the error of best uniform approximation of f on E_i with respect to Π_n , then we conjecture that there is a constant c such that

(1.12)
$$e_{2,n} \leq c e_{1,n}$$
, all $n \in \mathbb{N}$.

This conjecture would yield another example of a sequence $\{q_n\}$ satisfying (1.7), where E=[-1,1] and q_n is the best approximant to f on E_2 in II_n . Notice that no point $x\in[-1,1]\setminus\{0\}$ can be a limit point of zeros of such q_n .

The above discussion naturally raises the question as to whether near best approximants (in sense of (1.7)) nec-

essarily have at least one limit point of zeros on ∂E when f is not analytic on E. Our next theorem lends evidence in the affirmative direction.

THEOREM 1.3. Let E and f be as in Theorem 1.1 and assume that f does not vanish identically on any (open) o component of E or on any (closed) component of E. Suppose there exist constants c < 1 and K > 1 such that the errors (1.2) satisfy

(1.13)
$$\lim_{n\to\infty} \inf_{e[cn]} (f)/e_n(f) > K.$$

If $q_n \in \Pi_n$ satisfies

(1.14)
$$\|\mathbf{f} - \mathbf{q}_n\|_{\mathbf{E}} \le \mathbf{K} \mathbf{e}_n(\mathbf{f}), \quad \text{all } n \in \mathbb{N},$$

then at least one point of ∂E must be a limit point of zeros of the sequence $\left\{q_n\right\}_{n\in \mathbb{N}}$.

In (1.13) the symbol [cn] denotes the integral part of cn. The proof of Theorem 1.3 will be given in Section 3.

Example 1.2. Theorem 1.3 in particular applies if E = [-1,1] and

(1.15)
$$\frac{D_1}{n^{\alpha}} \le e_n(f) \le \frac{D_2}{n^{\alpha}}$$
, all $n \in \mathbb{N}$,

for positive constants D_1 , D_2 , α . Indeed, (1.15) yields

(1.16)
$$\liminf_{n\to\infty} \frac{e[cn](f)}{e_n(f)} \geq \frac{D_1}{c^{\alpha}D_2} > K,$$

for c small enough. By a famous result of Bernstein [Be], (1.15) is true with $\alpha=1$ for the case E=[-1,1] and f(x)=|x|. Thus for any $K\geq 1$, every sequence $\{q_n\}$ satisfying

(1.17)
$$\| |x| - q_n(x) \|_{[-1,1]} \le K e_n(|x|), \text{ all } n \in N,$$

must have at least one limit point of zeros in [-1,1]. In fact, the origin must be a limit point of zeros of such q_n , since (1.17) remains true if [-1,1] is replaced by $[-\epsilon,\epsilon]$, $\epsilon > 0$, for the same sequence $\{q_n\}$.

The behavior of the zeros and poles of best rational approximants is far more delicate. An elementary result in this direction is the following.

THEOREM 1.4. Let E C C be compact, $\overline{\mathbb{C}}\setminus \mathbb{E}$ be connected and regular. Assume that f is continuous on E, analyon tic in E, and that $\mathbf{r}_n \in \mathfrak{A}_{n,n}$ satisfies

(1.18) If
$$-r_n|_{E} \le e_n(f)$$
, all n large.

Suppose further that f does not vanish identically on any (closed) component of E. If, for n large, all poles and zeros of \mathbf{r}_n are outside a neighborhood U of E, then f is analytic on E.

The proof of Theorem 1.4 will be given in Section 4. This theorem should be compared with results of A. Levin $\lceil L \rceil$.

Remark 1. Theorem 1.4 applies, if r_n is a best approximant in $\mathcal{R}_{n,m(n)}$ for $m(n) \le n$ to f.

Remark 2. In the proof of Theorem 1.4 we establish the stronger conclusion that if all zeros and poles of r_n lie outside the level curve Γ_{γ} : $G(z) = \log \gamma_0$, then for can be analytically continued throughout the interior of Γ_{γ} .

Remark 3. It seems likely (although the authors cannot now prove it) that Theorem 1.4 should remain true under the weaker assumption that only the poles of r_n lie outside U.

2. PROOF OF THEOREM 1.2

Denote by $T_n = z^n + \cdots$ the generalized Chebyshev polynomial of degree n on E, i.e.

(2.1)
$$\|T_n\|_E = \min_{p \in II_{n-1}} \|z^n - p(z)\|_E$$
,

and for $n \ge 1$ set

$$(2.2)$$
 $q_n := \frac{1}{n^2 \|T_n\|_E} T_n.$

We construct an increasing sequence $\{k(n)\}$ of natural numbers, a sequence $\{m(n)\}$ of natural numbers and a sequence $\{\alpha_n\}$ of real numbers by induction. In each step we set

(2.3)
$$S_{N} := 1 + \sum_{n=0}^{N} [q_{k(n)+m(n)} + \alpha_{n+1} q_{k(n+1)}].$$

The desired function f will be the limit of $S_N^{}$, that is

(2.4)
$$f := 1 + \sum_{n=0}^{\infty} [q_{k(n)+m(n)} + \alpha_{n+1} q_{k(n+1)}].$$

We will require that k(n)+m(n) < k(n+1) and $0 < \alpha_{n+1} < 1$. This ensures that (2.4) converges uniformly on E. The truncations of the series (2.4) will reflect the behavior of $p_n^*(f)$ of respective degree.

We start with k(0) = 0 and set $S_{-1} = 1$. We choose m(0) such that

(2.5)
$$\sum_{j=m(0)}^{\infty} \frac{1}{j^2} < 1.$$

Thus f will have no zeros in E.

Assume now, that k(n), m(n), and α_n have been constructed for $0 \le n \le N$. Since the zero polynomial is the best approximant to $q_{k(N)+m(N)}$ in $\Pi_{k(N)}$, S_{N-1} is the best approximant to $S_{N-1} + q_{k(N)+m(N)}$ in $\Pi_{k(N)}$. By the continuity of the best approximation operator and Rouché's theorem, there is an $\epsilon_N > 0$ such that for all $f \in C(E)$ with

(2.6)
$$\|f - [s_{N-1} + q_{k(N)+m(N)}]\|_{E} < \epsilon_{N}$$
,

we have

(2.7) $p_{k(N)}^*(f)$ has not more zeros in B_N than S_{N-1} has in B_{2N} .

where $B_R := \{z \in \mathbb{C} : |z| < R\}$. Notice that S_{N-1} is a polynomial of exact degree k(N). Thus, by the continuity of the best approximation operator, we can assume that $\epsilon_N > 0$ is so small that for all f satisfying (2.6) we also have

(2.8) $p_{k(N)}^*(f)$ is a polynomial of exact degree k(N).

Choose k(N+1) so that

(2.9)
$$k(N+1) > (k(N) + m(N))^2$$
,

and

$$(2.10) \qquad \sum_{j=k(N+1)}^{\infty} \frac{1}{j^2} < \epsilon_N.$$

By Rouché's theorem, we can also choose $~0 < \alpha_{N+1} < 1$ such that

$$(2.11) S_{N} = \left[S_{N-1} + q_{k(N)+m(N)}\right] + \alpha_{N+1}q_{k(N+1)} has at$$

$$most k(N) + m(N) zeros in B_{2N+2}.$$

Next we define m(N+1). Again, $S_{N-1} + q_{k(N)+m(N)}$ is the best approximation to S_N in $\pi_{k(N)+m(N)}$. Its leading coefficient is

(2.12)
$$\beta_{N} := \frac{1}{(k(N)+m(N))^{2} \|T_{k(N)+m(N)}\|_{F}}$$

By the continuity of the best approximation operator we can choose $\delta_{N}>0$ small enough such that for all $f\in C(E)$ with

(2.13)
$$\|\mathbf{f} - \mathbf{S}_{\mathbf{N}}\|_{\mathbf{F}} \leq \delta_{\mathbf{N}},$$

we have

(2.14) the leading coefficient γ_N of $p_{k(N)+m(N)}^*(f)$ satisfies $|\gamma_N| > |\beta_N|/2$.

We now choose m(N+1) so that

(2.15)
$$\sum_{j=k(N+1)+m(N+1)}^{\infty} \frac{1}{j^2} < \delta_N.$$

For f in (2.4) we have (2.7), (2.8), (2.11) and (2.14), by (2.10) and (2.15) for N \geq 2. Thus $p_{k(N)}^{*}(f)$ is a polynomial of exact degree k(N). By (2.11) and (2.7), it has at most k(N-1)+m(N-1) zeros in B_{N} . Thus for the measure v_{n}^{*} we have

(2.16)
$$v_{k(N)}^*(B_N) \le \frac{k(N-1) + m(N-1)}{k(N)} < \frac{1}{k(N-1) + m(N-1)}$$
.

For bounded $S \subset \mathbb{C}$ this implies

(2.17)
$$\lim_{N\to\infty} v_{k(N)}^*(S) = 0.$$

Write
$$p_n^*(f) = a_n z^n + \cdots$$
. Then by (2.14),

(2.18)
$$\lim_{n\to\infty} \sup_{n\to\infty} |a_n|^{1/n} \ge \lim_{n\to\infty} \sup_{n\to\infty} \frac{1}{\|T_n\|^{1/n}} = \frac{1}{\operatorname{cap}(E)}$$

Thus, by a result of Blatt and Saff [BS], is not analytic on E.

PROOF OF THEOREM 1.3.

Assume to the contrary that no point of ∂E is a limit point of zeros of $\{q_n\}_1^{\infty}$. Since (1.14) implies that $q_n \rightarrow f$ uniformly on E and f does not vanish identically on any component of E, then the set of zeros of f in \check{E} is identical to the set of limit points in \check{E} of the zeros of $\{q_n\}_1^{\infty}$ (recall Hurwitz's theorem). Thus f can have at most finitely many zeros in E 'wise, either f vanishes identically on a component of or a point of ∂E is a limit point of zeros of $\{q_n\}_1^{\infty}$. Let z_1, \ldots, z_m denote the zeros of f With G defined as in (1.4), set

 $E_x := E \cup \{z \in \mathbb{C} \setminus E : G(z) \le \log \gamma\}, \quad \gamma > 1.$ The assumption on the zeros of q_n implies that there exists $\gamma_0 > 1$ such that for all n large, say $n \ge n_0$, the set E_{γ} contains precisely m zeros $z_{1,n}, \dots, z_{m,n}$ of $\, \boldsymbol{q}_{n}^{}, \,$ where $\, \boldsymbol{z}_{j\,,\,n}^{} \, \to \, \boldsymbol{z}_{j}^{} \,$ as $\, n \, \to \, \infty \,.$ We claim that for each γ_1 , with $1 < \gamma_1 < \gamma_0$,

(3.2)
$$\limsup_{n\to\infty} \|q_n\|_{E_{\gamma_1}}^{1/n} = 1.$$

To establish (3.2) we first define

(3.3)
$$\hat{q}_{n}(z) := q_{n}(z) / \prod_{j=1}^{m} (z - z_{j,n}), \quad n \geq n_{0}.$$

Then $\hat{q}_n \in \Pi_{n-m}$ and \hat{q}_n is zero-free in E_{γ_0} . Furthermore, since the q_n are uniformly bounded on E, the Bernstein-Walsh lemma (cf.[W1,p.77]) implies that

(3.4)
$$\limsup_{n\to\infty} \|\hat{q}_n\|_{E_{\gamma_0}}^{1/n} \le \gamma_0.$$

Next we note that $\stackrel{\textbf{0}}{E_{\gamma_0}}$ (the interior of E_{γ_0}) consists of finitely many simply connected components which are bounded by Jordan curves (cf.[W1,p.66]). On any such component Ω of $\stackrel{\textbf{0}}{E_{\gamma_0}}$ we can define a single-valued analytic branch of $[\hat{q}_n]^{1/n}$, for $n \geq n_0$. Moreover, from (3.4), the $[\hat{q}_n]^{1/n}$, $n \geq n_0$, form a normal family in Ω . Since Ω must contain a component C of E and f does not vanish identically on C, then

$$\lim_{n\to\infty} \hat{q}_n(z) = f(z) / \prod_{j=1}^m (z - z_j) \neq 0$$

for infinitely many points of C (recall that $\overline{\mathbb{C}}\setminus E$ is regular, so E can contain no isolated points). Of

course, for such points of C we have

(3.5)
$$\lim_{n\to\infty} |\hat{q}_n(z)|^{1/n} = 1,$$

and so, from the normality property, we deduce that (3.5) holds uniformly on each closed subset of Ω . This fact yields the assertion of (3.2).

Next, let $p_{[cn]} \in \Pi_{[cn]}$ be the Lagrange interpolant to q_n in the [cn]+1 Fekete points for the set E. Then it follows from (3.2), the properties of the Fekete points (cf.[W1,p.174]), and the Hermite remainder formula, that

(3.6)
$$\limsup_{n\to\infty} \|q_n - p_{[cn]}\|_{E}^{1/n} \le 1/\gamma_1^c < 1.$$

Furthermore, by (1.14) and the definition of $e_n(f)$ we have

$$e_{[cn]}(f) \le \|f - p_{[cn]}\|_{E} \le \|f - q_n\|_{E} + \|q_n - p_{[cn]}\|_{E}$$

$$\le K e_n(f) + \|q_n - p_{[cn]}\|_{E},$$

and so

$$(3.7) \qquad \frac{e_{[cn]}(f)}{e_{n}(f)} \leq K + \frac{1}{e_{n}(f)} \|q_{n} - p_{[cn]}\|_{E}.$$

But as f is not analytic on E, a theorem of Walsh [W1,p.78] asserts that

$$\lim_{n\to\infty} \sup_{n\to\infty} [e_n(f)]^{1/n} = 1.$$

Letting Λ denote a subsequence of N for which $\left[e_n(f)\right]^{1/n} \to 1$ as $n \to \infty$, $n \in \Lambda$, we deduce from (3.6) that

$$\lim_{n\to\infty} \frac{1}{e_n(f)} \|q_n - p_{[cn]}\|_E = 0.$$

Hence, in view of (3.7), we have

$$\lim_{n\to\infty}\inf_{e[cn]}(f)/e_n(f)\leq K,$$

which contradicts assumption (1.13).

4. PROOF OF THEOREM 1.4

As in Section 3, let G be the classical Green's function on $\overline{\mathbb{C}}\setminus\mathbb{E}$ with pole in ∞ . Define \mathbb{E}_{γ} , $\gamma>1$, as in (3.1). For $z_0\in\overline{\mathbb{C}}\setminus\mathbb{E}$ let $G(z,z_0)$ be the classical Green's function on $\overline{\mathbb{C}}\setminus\mathbb{E}$ with pole at z_0 (cf.[T]).

Write $r_n = p_n/q_n$, where $p_n \in \Pi_n$ has the zeros $z_1^{(n)}, \ldots, z_{k(n)}^{(n)}$ and $q_n \in \Pi_n$ has the zeros $w_1^{(n)}, \ldots, w_{\ell(n)}^{(n)}$, where each zero is listed according to its multiplicity. Then

(4.1)
$$h_n(z) := log |r_n(z)| + \sum_{v=1}^{k(n)} G(z, z_v^{(n)}) - \sum_{v=1}^{\ell(n)} G(z, w_v^{(n)})$$

-
$$(k(n) - \ell(n))G(z)$$

is harmonic in $\overline{\mathbb{C}}\backslash E$ and, by the maximum principle, satis-

fies

$$(4.2) h_n(z) \leq \log \|r_n\|_E, for z \in \overline{\mathbb{C}} \setminus E.$$

Choose $\gamma_0 > 1$ such that $E_{\gamma_0} \subset U$ and set $\Gamma_{\gamma_0} := \partial E_{\gamma_0}$. Then there are constants 1 < d < D such that for all $z_0 \in \overline{\mathbb{C}} \setminus U$ and $z \in \Gamma_{\gamma_0}$.

(4.3)
$$\log d \leq G(z, z_0) \leq \log D$$
.

Using (4.1), (4.2), and (4.3) we get, for $z \in \Gamma_{\gamma_0}$,

$$|\mathbf{r}_{\mathbf{n}}(\mathbf{z})| \leq \|\mathbf{r}_{\mathbf{n}}\|_{\mathbf{E}} \frac{\mathbf{D}^{\ell(\mathbf{n})}}{\mathbf{d}^{k(\mathbf{n})}} |\gamma_{\mathbf{0}}^{k(\mathbf{n})-\ell(\mathbf{n})}| \leq \|\mathbf{r}_{\mathbf{n}}\|_{\mathbf{E}} (\mathbf{D}\gamma_{\mathbf{0}})^{\mathbf{n}}.$$

By the maximum principle, (4.4) holds for all $z \in E_{\gamma}$.

From (1.18) we know that $r_n \to f$ uniformly on E. Using arguments similar to those of Section 3 we deduce that

(4.5)
$$\lim_{n \to \infty} \sup_{r_n} \|r_n\|_{E_{\gamma_1}}^{1/n} = 1$$

for every $1 < \gamma_1 < \gamma_0$. Next, let $p_{n-1} \in I_{n-1}$ be the Lagrange interpolant to r_n in the n Fekete points for E. As before (cf.(3.6)), equation (4.5) implies that

(4.6)
$$\lim_{n\to\infty} \sup_{r_n} \|r_n - p_{n-1}\|_{E}^{1/n} \le 1/\gamma_1 < 1.$$

From (1.18) we deduce that

$$\mathbf{e}_{n-1}(\mathbf{f}) \le \|\mathbf{f} - \mathbf{p}_{n-1}\|_{\mathbf{E}} \le \|\mathbf{f} - \mathbf{r}_{n}\|_{\mathbf{E}} + \|\mathbf{r}_{n} - \mathbf{p}_{n-1}\|_{\mathbf{E}}$$

$$\le \mathbf{e}_{n}(\mathbf{f}) + \|\mathbf{r}_{n} - \mathbf{p}_{n-1}\|_{\mathbf{E}},$$

so that

$$\limsup_{n\to\infty} \left[e_{n-1}(f) - e_n(f) \right]^{1/n} \le \limsup_{n\to\infty} \left\| r_n - p_{n-1} \right\|_E \le 1/\gamma_1.$$

Hence

(4.7)
$$\limsup_{n\to\infty} [e_n(f)]^{1/n} \leq 1/\gamma_1 < 1,$$

which implies f is analytic on E.

Finally we note that (4.7) yields the stronger conclusion that f is analytic in the interior of E_{γ} and, since $\gamma_1 < \gamma_0$ is arbitrary, f is analytic in the interior of E_{γ} as claimed in Remark 2.

REFERENCES

- [Be] S.N. Bernstein, 'Sur la valeur asymptotique de la meilleure approximation de |x|', Acta Mathe-matica 37 (1913), 1-57.
- [Bo] P.B. Borwein, 'The relationship between the zeros of best approximants and differentiability', Proc. Amer. Math. Soc. 92 (1984), 528-532.

- [BIS] H.-P. Blatt, A. Iserles, E.B. Saff, 'Remarks on the behavior of best approximating polynomials and rational functions', In: Algorithms for Approximation (IMA conference series: new ser. 10) (J.C. Mason and M.G. Cox, ed), Oxford University Press (1987), pp. 437-445.
- [BS] H.-P. Blatt and E.B. Saff, 'Behavior of zeros of polynomials of near best approximation', J. Approx. Theory 46, No. 4 (1986), 323-344.
- [BSS] H.-P. Blatt, E.B. Saff, M. Simkani, 'Jentzsch-Szego type theorems for the zeros of best approximants', (to appear).
 - [J] R. Jentzsch, 'Untersuchungen zur Theorie
 Analytischer Funktionen' Inaugural-Dissertation,
 Berlin (1914).
 - [L] A. Levin, 'The distribution of the poles of best approximating rational functions and the analytical properties of the approximated function', Israel Journal of Mathematics, 24, No. 2 (1976), 139-144.
- [Sz] G. Szegő, 'Uber die Nullstellen von Polynomen, die in einem Kreis gleichmaßig konvergieren', Sitzungsbericht Ber. Math. Ges. 21 (1922), 59-64.
 - [T] M. Tsuji, Potential Theory in Modern Function Theory, Chelsea Publishing Company, New York (1958).
 - [W1] J.L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, American Math. Soc. Coll. Publ., Vol. 20 (1935), 5th ed. (1969).
 - [W2] J.L. Walsh, 'The analogue for maximally convergent polynomials of Jentzsch's theorem', Duke Math. J. 26 (1959), 605-616.