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ABSTRACT. We investigate the behavior of zeros of best

uniform polynomial approximants to a function f, which
o

is continuous in a compact set E C € and analytic on E,

but not on E. Our results are related to a recent theo-

~’rem of Blatt, Saff, and Simkani which roughly states that

the zeros of a subsequence of best polynomial approximants
*distribute like the equilibrium measure for E. In con-
trast, we show that there might be another subsequence
with zeros essentially all tending to ®. Also, we inves-
tigate near best approximants. For rational best approxi-
mants we prove that its zeros and poles cannot all stay
outside a neighborhood of E, wunless f is analytic on

E.
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1. STATEMENT OF RESULTS

We investigate the behavior of zeros and poles of
best uniform approximants in the complex plane. Through-
out this paper we will assume that ECC 1is a compact

set and that C\E is connected. Using the Chebyshev norm

on E,
(1.1) ligllg:= sup lg(z)].

z€E

o

we will approximate a function f, analytic on E (the
interior of E) and continuous in E, with respect to
Hn' the set of algebraic polynomials of degree at most
n, or with respect to %m n’ the rational functions with

numerator in Hm and denominator in Hn.

We denote by p:(f) the best uniform approximant to

f on E with respect to Hn, i.e.
»*
(1.2) en(f).= nf - pn(f)llE < If - anE
for all P, € Hn. By a theorem of Mergelyan, we know
en(f) - 0. With p:(f) we associate a unit measure v:.

called the zero distribution of pZ(f). by

number of zeros of p:(f) in A

*
(1.3) b (A):= o )

for Borel sets A C C, where we count the zeros according
to their multiplicity.

»
The location of zeros of pn(f) or other converging
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sequences of polynomials has been investigated by several
authors. Jentzsch [J] proved in 1914 that the partial

sums s of a power series with finite radius of conver-—

gence r > 0 have the property that every point on the

circle lzl =r 1is a limit point of zeros of the S

The related question in our setting is whether every point
on the boundary of E is a limit point of zeros of the

p:(f), if f is not analytic on E. The most complete

and general answer to this question was obtained by Blatt,
Saff, and Simkani [BSS] in 1986. Earlier investigations
are due to Borwein [Bo] and Blatt and Saff [BS]. We
should also mention similar results concerning sequences
of so—called maximally convergent polynomials by Walsh
[W2]. who studied the case when f 1is analytic on E
but not entire.

The results in [BSS] deal primarily with the limiting

distribution of the zeros of the p:(f). The classical

.result concerning the distribution of zeros of partial
sums of a power series is due to Szego [Sz] and improves
the above mentioned theorem of Jentzsch.

Before stating the known and new results we recall

the definition of the equilibrium measure Mg of E.

Throughout the paper we will assume that C\E 1is regular;
that is, C\E has a classical Green’s function G with
E) and has the value zero on JE (cf. [T]). The function
G is harmonic in C\E and G(z) - log|z| is harmonic at
®» and assumes the value - laog[cap(E}] at ®, vwhere

cap(E) > 0 is the logarithmic capactity of E (cf.[T]).

pole at @« which is continuous on J8E (the boundary of

The measure By is the unique unit measure that is sup-

ported on JE and satisfies
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(1.4) G(z) = Jiloglz - t|duE(t) - log[cap(E)].

It is also the unique unit measure that is supported on E

and minimizes the energy integral
-1
(1.5) 1= [[ toglz - ) lan(e)duca).

We can now state the main result of Blatt, Saff, and

Simkani.

THEOREM 1.1 ([BSS]). Let E C C be compact, C\E be

connected and regular. Let f be continuous on E,
o
analytic on E but not on E. Furthermore, assume that
o
f does not vanish identically on any component of E.

*

Then the sequence {vn} in (1.3) possesses a subsequence
%

{vg(n)} that converges weakly to the equilibrium measure

g of E.

By the weak (vague) convergence of vy

2(n
. 2
lim j [} dve(n) = I ¢ duE

n-»

) we mean

for all continuous ¢ on € having compact support.
Our first result shows that there may be another sub-

sequence of {v:} that has a completely different behav-

ior.

THEOREM 1.2. Let E C C be compact with a connected and

regular complement. Then there is a function f on E
such that

o
(a) f is continuous on E, analytic on E, but not

analytic on E,
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(b) f has no zeros in E, and

(c) for a subsequence {D:(n)} of the measures (1.3)

(1.6) lim v, _(S) = 0, for all bounded S C C.
1m vy (n)

The proof of Theorem 1.2 will be given in Section 2.
We now discuss ''near best approximants,” i.e. we as-

sume that we have a sequence € Hn such that
*
(1.7) f - anE < Chf - pn(f)llE . all n € N,

for some constant C. (We caution the reader that our
definition of "near best" is different from that in [BS].)
As shown in the next example, we can mno longer expect that
every point on the boundary of E 1is a limit point of

zeros of the q,- let alone that the zero distributions

v associated with the qa, have a subsequence converging

weakly to uE.
Example 1.1. Let £(z):= vz for Re z 2 0 and set
(1.8) K, = {(z € C: |z - al ¢ a}.

Then, for 1 € Hn and « > O,

1 1
(1.9) — p (az) - f(z) = — llp_(w) - £(w)l ,
“ - n "Kl /o n Ka
where H-HM denotes the Chebyshev norm on M. Thus, if

0
q is the sequence of best uniform approximants to f
n’l

61
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on K2, it satisfies (1.7) with E:= Kl' But no point of
EN{0} is a limit point of zeros of the q, since
qn(z) > vz uniformly on K2. An example similar to the

above appears in [BIS].

Notice that in Example 1.1, the set E has a non-
empty interior. The authors do not know of an analogous
example for E = [-1,1]; - however, the validity of the

following conjecture would lead to such a result.

Conjecture. Set E1== [-1,1]7,
(1.10)  Egi= {z € C: [Re z| < 2, |Im z| < |Re 2|2},

and define

z for Re z > O,
(1.11) f(z):= {
-Z for Re z < O,

so that f(x) = |[x| for x € R. If we denote by e 5
the error of best uniform approximation of f on Ei
with respect to Hn’ then we conjecture that there is a

constant ¢ such that

(1.12) e ce

2,n -

This conjecture would vield another example of a

sequence {qn} satisfying (1.7), where E = [-1,1] and

q, is the best approximant to f on E2 in Hn. Notice

that no point x € [-1.11\{0} can be a limit point of

Zzeros of such a4, -

The above discussion naturally raises the question as

to whether near best approximants (in sense of (1.7)) nec-



ZEROS AND POLES OF BEST UNIFORM APPROXIMANTS

essarily have at least one limit point of zeros on &F
when f 1is not analytic on E. Our next theorem lends

evidence in the affirmative direction.

THEOREM 1.3. Let E and f be as in Theorem 1.1 and

assume that f does not vanish identically on any (open)
o
component of E or on any (closed) component of E.

Suppose there exist constants c¢ < 1 and K > 1 such

that the errors (1.2) satisfy

1.13 lim inf £f)/ f) > K.
( ) 1:_;01'1 e[cn]( ) en( )

If a, € Hn satisfies

(1.14) If - q g < Ke (f), all n €N,

then at least one point of OJ0E must be a limit point of

.zeros of the sequence (qn}neN

In (1.13) the symbol [cn] denotes the integral part

of c¢n. The proof of Theorem 1.3 will be given in Section

Example 1.2. Theorem 1.3 in particular applies if

E =[-1,1] and

o

D
Le(£) ¢ -2

-~ X £ — all n € N,
a n o

(1.15)

=3
=]

for positive constants Dl’ D2, a. Indeed, (1.15) yields
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e (£) D
(1.16) lim inf [:ngf) > = > K,
n-® n c D
for ¢ small enough. By a famous result of Bernstein

[Be], (1.15) is true with a =1 for the case E = [-1,1]
and f(x) = |x|. Thus for any K > 1, every sequence

{qn} satisfying

(1.17) ”|x| - qn(x)”[_1 ] { K en(lxl), all n € N,

must have at least one limit point of zeros in [-1,1].
In fact, the origin must be a limit point of zeros of such

qa,- since (1.17) remains true if [-1,1] 1is replaced by
[-e.e]. € > 0, for the same sequence {qn}.

The behavior of the zZeros and poles of best rational
approximants is far more delicate. An elementary result

in this direction is the following.

THEOREM 1.4. Let E € € be compact, C\E be connected

and regular. Assume that f is continuous on E, oanaly-
o
tic in E, and that r_ € & satisfies
n n,n
(1.18) e - rn“E < en(f), all n large.

Suppose further that f does not vanish identically on
any {closed) component of E. If, for n large, all

poles and zeros of r ~are outside a neighborhood U of

E, then f is analytic on E.

The proof of Theorem 1.4 will be given in Section 4.
This theorem should be compared with results of A. Levin

fL7.
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Remark 1. Theorem 1.4 applies, if r is a best approxi-

mant in & for m{n) {n to f.

n,m(n)
Remark 2. In the proof of Theorem 1.4 we establish the

stronger conclusion that if all zeros and poles of r

lie outside the level curve F7 : G(z) = log vy then f
o

can be analytically continued throughout the interior of

r
v
(o]

Remark 3. It seems likely (although the authors cannot
now prove it) that Theorem 1.4 should remain true under
the weaker assumption that only the poles of r. lie

outside U.

2. PROOF OF THEOREM 1.2

Denote by Tn = 2z + +++ the generalized Chebyshev poly~-
nomial of degree mn on E, i.e.
. n

(2.1) IITnIIE = egln hz™ - p(z)HE ,

P=lh-1
and for n 2> 1 set
(2.2) q iz ——t T

) . n 2 n’
n T Il
n E

We construct an increasing sequence {k(n)} of natural
numbers, a sequence {m{(n)} of natural numbers and a

sequence {an} of real numbers by induction. In each

step we set
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N
(2.3)  Syi= 1+ 3 (anyim(n) * %tk (ne1))-

The desired function f will be the limit of SN. that is

o«
(2.4) fi= 1+ nfo[qk(n)+m(n) * @19 (ne1) )
We will require that k(n)+m(n) < k{(n+l) and 0 < a1 < 1.
This ensures that (2.4) converges uniformly on E. The

truncations of the series (2.4) will reflect the behavior

of p:(f) of respective degree.

We start with k{(0) = 0 and set S_1 = 1. We choose

m(0) such that

2 1
(2.5) s — < 1.
j=m(0} j

Thus f will have no zeros in E.

Assume now, that k(n)., m(n), and a, have been

constructed for O ¢ n < N. Since the zero polynomial is

the best approximant to qk(N)+m(N) in Hk(N)’ SN_1 is

the best approximant to SN—l + qk(N)+m(N) in Hk(N)' By

the continuity of the best approximation operator and

Rouche's theorem, there is an €N > 0 such that for all

f € C(E) with

(2.6) < &y &

£ - [SN—I * qk(N)+m(N)]”E N

we have
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* .
(2.7) pk(N)(f) has not more zeros in BN than SN_1

has in B2N’

where Bp:= {z € C: |z| < R}. Notice that Sy , 1is a

polynomial of exact degree k(N). Thus, by the continuity

of the best approximation operator, we can assume that Ex

> 0 is so small that for all f satisfying (2.6) we also

have
(2.8) p:(N)(f) is a polynomial of exact degree k(N}.
Choose k(N+1) so that
(2.9) K(N+1) > (k(N) + m(N))Z.
and
: 1
(2.10) s — < ey

j=k(N+1) j

By Rouché’s theorem, we can also choose 0 < ANs1 <1

such that

(2.11) Sy = (Sn-1 * Qe (N)em(N)) * ON+19k(N+1) PES @t

most k(N) + m(N) =zeros in B2N+2'

Next we define m(N+1). Again, SN_1 + qk(N)+m(N)
is the best approximation to SN in Hk(N)+m(N)' Its

leading coefficient is
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_ 1

- 2
(k(N)+m(N)) T

(2.12) By :
k(N)+m(N)”E

By the continuity of the best approximation operator we

can choose 6N > 0 small enough such that for all

f € C(E) with

(2.13) IE - Syllp < 8y
we have
. . : *
(2.14) the leading coefficient N of pk(N)+m(N)(f)

satisfies |7N| > IBN|/2.
We now choose m(N+1) so that
[ee]

1
(2.15) s — <8

J=k(N+1)+m(N+1) j N

For f in (2.4) we have (2.7)., (2.8), (2.11) and
(2.14), by (2.10) and (2.15) for N » 2. Thus p:(N)(f)

is a polynomial of exact degree k(N). By (2.11) and
(2.7), it has at most k(N-1) + m(N-1) zeros in B

N
Thus for the measure u: we have

kA k(N-1) + m{(N-1) 1
(2.16) i) (By) < (M) CRFD) + w(EeD)

For bounded S € € this implies

2.17 lim v S) = 0.
(217) Lim oy ()

Write p:(f) = anzrl + ¢++ . Then by (2.14),
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1/n 1 1
(2.18) lim sup la_| > lim sup =
oo n n-wo llTnIll/n cap(E)

(cf.[T]). Thus, by a result of Blatt and Saff [BS]. f

is not analytic on E. n|
3. PROOF OF THEOREM 1.3.

Assume to the contrary that no point of JdE 1is a

limit point of zeros of {qn}T. Since {1.14) implies that

a, ~ f uniformly on E and f does not vanish identic-

o
ally on any component of E, then the set of zeros of f
o] o
in E is identical to the set of limit points in E of

the zeros of (qn}T {recall Hurwitz's theorem). Thus f

[¢]

can have at most finitely many zeros in E since, other-
]

*wise, either f vanishes identically on a component of E

[e¢]
or a point of 8E 1is a limit point of zeros of {qn}l.

. o
Let =z ’Zm denote the zeros of f in E.

10
With G defined as in (1.4), set

(3.1) E7== E U {z € C\E: G(z) < log ~}, =~ > 1.
The assumption on the zeros of a4, implies that there

exists 7 > 1 such that for all n large, say n 2 n_,

o
the set E contains precisely m zeros =z P4
Y 1,n m,n
0
of q_. where Zj n - Zj as n -» ©. We claim that for
each ~,, with 1 <~ < v,
1 1 o
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1/n

(3.2) lim sup anHE = 1.
-0 74

To establish (3.2) we first define

~ m
(3.3) q (z):= qn(z)/jgl(z - Zj,n)' n 2 mn .
Then q_ € 1T and q is zero~free in E_ . Further-
n n-m n T
more, since the q, are uniformly bounded on E, the

Bernstein-Walsh lemma (cf.[W1,p.77]) implies that

~ 1/n
(3.4) lim sup lig_| < v
-0 n Eq o
o
o
Next we note that E7 (the interior of E7 ) consists of
o o

finitely many simply connected components which are bound-

ed by Jordan curves (cf.[W1,p.66]). On any such component

o
Q of Eq we can define a single-valued analytic branch
o
~ -1/n
of [q/] . for n 2 mn_. Moreover, from (3.4), the
[qn]l/n, n 2 no. form a normal family in . Since @

must contain a component C of E and f does not

vanish identically on C, then

~ m
lim qn(z) = f(z)/ 0T (z -z.) # 0
n-xo Jj=1 J

for infinitely many points of C (recall that C\E is

regular., so E can contain no isolated points). Of
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course, for such points of C we have

. ~ 1/
(3.5) im |qn(z)| no_g,

1
n-yw

and so, from the normality property, we deduce that (3.5)
holds uniformly on each closed subset of . This fact

yields the assertion of (3.2).
Next, let p[cn] € H[cn] be the Lagrange interpolant

to q in the [cn] + 1 Fekete points for the set E.

Then it follows from (3.2), the properties of the Fekete
points (cf.[W1,p.174]). and the Hermite remainder formula,

that

1/n c
(3.6) lim sup Jlq. - P < 1/+7 < 1.
n " n [cn]”E 1

Furthermore, by (1.14) and the definition of en(f) we

.have

e[cn](f) < IIf - p[cn]"E < If - anE + an - p[cn]”E

¢ K en(f) + an - p[cn]“E ,
and so
£)
(3.7) e (1) <K+ o €D a p[cn]”E
n n

But as f is not analytic on E, a theorem of Walsh

[W1,p.78] asserts that
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lim sup [e (f)]l/n = 1.
n-»o n

Letting A denote a subsequence of N for which
[en(f)]l/n -+ 1 as n > ®, n € A, we deduce from (3.6)

that
1

lim —F—== Hq_ - p l. = 0.

0o en(f) n [en] E

n€A
Hence, in view of (3.7), we have

lim inf e (f)/e_(f) < K,

- [en] n

which contradicts assumption (1.13). o

4. PROOF OF THEOREM 1.4

As in Section 3, let G be the classical Green's

function on C\E with pole in ®. Define Ew’ v > 1, as
in (3.1). For z, € C\E let G(z,zo) be the classical

Green’s function on C\E with pole at z, (cf.[T]).

Write r_ = p /q_, where p_ €1 has the zeros
n n” “*n n n
(n) (n) (n) (n)
zq ""’Zk(n) and a, € Hn has the zeros Wy ,...,we(n),

where each zero is listed according to its multiplicity.
Then

2(n)
zn G(z,wgn))

k(n)
(4.1) b (2)i= log Ir_(2)] + 3 G(z.2(™) -
1

v=1 3]

- (k(n) - 2(n))G(z)

is harmonic in C\E and, by the maximum principle, satis-
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fies

(4.2) hn(z) € log "rn”E , for z € C\E.

Choose ~_ > 1 such that E C U and set I' := JE
o Y y ¥

o) 0 0
Then there are constants 1 < d < D such that for all

z €C\U and z €T
o Ty

(4.3) log d £ G(z,zo) < log D.

Using (4.1), {(4.2), and (4.3) we get, for =z € F7 ,
o

n
HrnHE(DWO) .

2(n) _
(4.4) Ir_(z)] < ur_ig zk(n) 1l;(n) e(n)

By the maximum principle, (4.4) holds for all =z € Eq
o

From (1.18) we know that r - f wuniformly on E.

Using arguments similar to those of Section 3 we deduce

that
1/n
(4.5) lim sup Iir_ |l =1
n-—>w n EW
1
for every 1 < 7y < T Next, let P < Hn—l be the

Lagrange interpolant to ro in the n Fekete points for

E. As before (cf.(3.6))., equation (4.5) implies that
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1/n
(4.6) lim sup Hrn - pn—l“E < 1/71 < 1.
n-w
From (1.18) we deduce that
en—l(f) < If - pn—l“E < f - r IIE + lir_ - pn—l"E
< en(f) + lr pn—l"E R
so that
1/n 1/n
lim sup [e__.(f)-e (f)] < lim sup lir_-p__ .| < 1/, .
- n-1 n s n "n-1E 1
Hence
. 1/n
(4.7) lim sup [e_(f)] < 1/'11 <1,
n-30 n
which implies f 1is analytic on E. 8}

Finally we note that (4.7) yields the stronger con-

clusion that f 1is analytic in the interior of Eq and,
1

since " < T is arbitrary, f 1is analytic in the in-

terior of EW as claimed in Remark 2.
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