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POLYNOMIAL AND RATIONAL APPROXIMATION IN THE COMPLEX DOMAIN

E. B. SAFFL

ABSTRACT. Approximation theory in the complex variable setting has
its roots in classical function theory, but is rich in modern
applications. Moreover, it is a subject that lends much insight
into real approximation problems. Starting with the example of
Taylor series, we describe methods (such as Faber series and inter-
polation) for generating good polynomial approximants to a function
analytic on a compact set in the plane. We also discuss character-
jzations for polynomials of best uniform approximation and the "near
circularity property." An introduction is given to the theory of
Padé approximants, which are rational function analogues of the
Taylor sections. We conclude by discussing some contrasts between
the theories of polynomial and rational approximation.

1. TAYLOR SECTIONS.

The properties of the Taylor sections for an analytic function are a
convenient starting point for approximation and interpolation in the complex
z-plane (denoted by €). This is because Taylor sections are least squares
polynomial approximants as well as interpolating polynomials. Indeed, if
f is analytic at z = 0, then the Taylor sections

n (k)
(1.1) s, (2) = s, (f32) = ég% f k!(O) K

, satisfy the interpolation conditions
1.2y s =,  5-01,..0m

Moreover, the polynomials 1, z, 22,... are orthogonal with respect to the inner
product

13 o) = g [oREe, ozl =
r

and, if f is analyticon |z| <,
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What can be said about the rate of convergence of the Taylor
sections? The answer is intimately related to the familiar Cauchy-Hadamard
formula for the radius of convergence p of a power series . ckzk.
That is, k=0

1. 4. 1/k
(1.10) i 1im sup |ck| .

k—)-co

The basic convergence result is the following.

Theorem 1.3. Let f be analytic in an open set that contains the closed unit

disk A. Then for the sup norm (1.6), the Taylor sections Sy sgtisfy

n 2y <1,

(1.11) Tim sup || f - an
N-reo

where p is the radius of the largest open disk centered at the origin

throughout which f has a single-valued analytic continuation. Moreover, the

sequence s~ converges to f for lz] < p.

The above theorem, which provides a model for more general results to
be mentioned later, nicely illustrates the relationship between the degree of
convergence and the maximal circular region of analyticity for f; that is, the
larger this circular region, the faster the convergence. In particular, for

entire functions f

1/n

(1.12)  Tim[[f - s [I’" = 0.

N->oo

While the proof of Theorem 1.3 can be deduced via (1.10), it is more
instructive to give an argument based on the interpolation property (1.2) of
Taylor sections. For this purpose we appeal to the Hermite representation
(cf. Walsh [62, §3.1]) for interpolating polynomials.

Lemma 1.4. Suppose f 1is analytic inside and on the simple closed contour T

that surrounds the n + 1 points 2z ,z;,...,z,. If p is the unique
polynomial in Hn that interpolates f in these points, then

(1.13) ’ f(z) - p(z) = 2ﬂ1 M/~VRT7%%E%7 dt, z inside T,

{z - zk).

-l

where w(z) :=

k=0

Proof. Replacing f(z) by its Cauchy integral representation

-%f—ﬂﬂ dt, z inside T,
T
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2. POLYNOMIAL APPROXIMATIONS FOR FUNCTIONS ANALYTIC ON E.

Given a compact set E in the z-plane and a function f analytic on
E (i.e., f 1is analytic on an open set G DE), how do we generate good
polynomial approximations to f on E? When E is a closed disk, we can use
Taylor sections which are "good" in the sense of Theorem 1.3. For general sets
E we need a procedure that likewise reflects the geometry of E.

First, we insist that E  does not separate the plane; that is, C\E
is connected. This assumption is necessary if we expect to get uniform ’
convergence (of polynomials) to an arbitrary function analytic on E. For
example, the function f(z) = 1/z is analytic on the circle E : lz] =1, but
is not the uniform 1imit on E of any sequence of polynomials because (by the
maximum principle) uniform convergence on |z{ =1 implies convergence to an

analytic function throughout |z| < 1.

The connectedness of C\E 1is also a sufficient condition for
polynomial approximation to functions analytic on E as is stated in the
following version of the classical Runge's theorem (cf.[62, §1.10]).

Theorem 2.1. If f 1is analytic on a compact set E that does not separate the

plane, then there exists a sequence'of polynomials that converges uniformly to

f on E.

(The question of polynomial approximation to functions not analytic
on E s much more delicate and will be addressed in the next section.)

To prove Theorem 2.1, Runge's approach was to first form Riemann sum
approximations to the Cauchy integral representation for f. These Riemann sums
are rational functions whose poles lie outside E. Through a process of "pole
moving," the rational approximants are converted to polynomial approximants.

For reasonable sets E, we can generate polynomial approximants
more directly by constructing an analogue of Taylor series. This was the
fruitful approach taken by Faber [15]. To simplify the description of Faber's
method we assume that E is a compact set (not a single point) whose complement
C*\E with respect to the extended plane is simply connected. The Riemann
mapping theorem asserts that there exists a conformal mapping w = ¢(z) of
C*\E onto the exterior of the unit circle in the w-plane (see Figure 2.1). We
can insist that ¢{=) =« and ¢'{«) > 0 so that, in a neighborhood of
infinity, i

b

+b o+ 2

(2.1)  olz) =2+ b +F

oN



POLYNOMIAL AND RATIONAL APPROXIMATION IN THE COMPLEX DOMAIN 27

(2.6)  fl2) =gy [ ar- gk _/g TEed) g s)as.

rr r

Since f(y(s)) ds analytic in an annulus of the form 1 < |s] <R, we can
expand this function in a Laurent series:

©

Flu(s)) = 3 aps'

Substituting this series into (2.6) and recalling (2.5) we get

had a n ] oo o
: . n s .
(2.7) f(z) = ng: = ./; e 2; _/; = 2 af(2)
e - ( 5 =0 n=0
(the integrals with negative n vanish because the integrand is (1/52)
near o).

To summarize, we obtain the Faber expansion for f by forming the
Taylor series for the Cauchy integral of the composition foy and substituting
F, for w'. The process is diagrammed below.

S - W
r

Exploiting the relationship between Taylor and Faber series leads to

flal—tron) by [ L) as - 5 e —3 af, ()

the following analogue of Theorem 1.3.

Theorem 2.2. Let f be analytic on E and Tet p(>1) be the Jargest index
such that f has a single-valued analytic continuation throughout the interior
of the level curve Tp. Then the partial sums of the Faber series for f

satisfy

n
(2.8)  Timsup [ - 3 aF B =170 < 1,

n->e k=0
where | ‘|| denotes the sup norm on E. Moreover, the Faber series converges

to f throughout the interior of Ty

What does Theorem 2.2 say to realists who do approximation on an
interval? If E = [-1,1], then ¢{z) = z+ 22 -1 s just the Joukowski
transformation with inverse
(2.9) plw) = %(w + w”l).

For n > 1, the polynomial part of #(z)" is the same as the polynomial part of

o ()™ + a(z) M =W W
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When E s bounded by a smooth Jordan arc or curve, we obtain good points by
taking the images under z = y{(w) of such equally spaced points on |w| = 1.
For example, if E = [-1,1], the images of the roots of w' + i =0 under
the transformation (2.9) yield the zeros of the Chebyshev polynomial Ty

There are good points of interpolation that can be determined without
knowledge of the mapping function. These are the Fekete points (cf. [62,57.8]).

Definition 2.4. Let Vn(zo,zl,...,zn) = 1 (Zi - zj) denote the Vandermonde
i<
determinant of order n + 1. The points sé") =z € E for which the maximum

max {|V, (252750005205 7 € E, k=0,1..,n}
is attained are called Fekete points for E.

The positive constant ¢ that appears in the expansion (2.1) for the
mapping function has great importance; it is called the transfinite diameter
or logarithmic capacity of E and is denoted by cap(E). Such fermino]ogy
arises from an electrostatics problem that we now describe.

For a compact set E (with C*\E simply connected) we distribute a
unit charge over its boundary 3E so that equilibrium is reached in the sense
that the energy with respect to the logarithmic potential is minimized. This
corresponds to the problem of finding the minimum of the energy integral

(2.12)  I0y] := faE faE Togle, - &,1 (s, dau(s,)

over all positive unit measures u supported on 3E. The unique measure Mg
that minimizes I[n] gives the equilibrium charge distribution with potential

(2.13) UE(Z) = 'j;E Toglz - tl'lduE(t).

Apart from a small exceptional set, this potential has the constant value
I[uE] on the boundary of E. The capacity of E 1is defined as

(2.14) cap(E) := exp(—I[uE]).

In this context, the essential criterion for (2.11) to be "good
points" of interpolation is that the discrete measures

n
(2.15)  wy iy 2 s(8{™),

where s(sén)) denotes the unit measure supported at sé"), converge to the

equilibrium measure HE (in the weak-star topology). Such convergence implies
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set. This is the essential fact that is used to prove the Chebyshev Equioscil-
lation theorem. For complex functions, an analogue of the alternating-sign
patterns was developed by Riviin and Shapiro (cf. [48, §2.6]) and is called the
extremal signature.

Let's turn to the geometric aspects of best approximation. We Tet
A(E) denote the collection of functions f that are analytic in the interjor
of E and continuous on E. If f € A(E) and E 1is bounded by a Jordan
curve ‘T, then best polynomial-approximation to f on E reduces to best
approximation on r; that is, by the maximum principle,

If-pll.=Uf-plg, a1 pem.

The image of T wunder f - p 1is a curve in the w-plane which we denote by
(f - p)(r) and call an error curve. In this context, the problem of best
uniform approximation to f s equivalent to finding an error curve that is
contained in a disk of minimal radius about w = 0.

It had been observed by some authors and crystallized by Trefethen
[53] that the minimal error curve (f - pg)(r) often has a near circularity
property in the sense that it winds around the origin n + 1 times and is close
to being a perfect circle. Before broceeding with a discussion of this phenome-

non we give a consequence of perfect circularity.

Lemma 3.2. Suppose E is bounded by a Jordan curve T, f € A(E), ggg: pem.
If the error curve (f - p)}(r) is a perfect circle with center at the origin
and winding number > n + 1, then p 1is the polynomial of best uniform approx-
imation to f on E out of . '

Proof. If, to the contrary, there exists q €I such that |f - qHE < |If - plles
then

[(F - p)(2) - (q - p)(2)| = [(f - a}(2)] < |If - pllg = |(f - p)(2)]

for all z on T. By Rouché's theorem, this means that g - p and f - p
have the same number of zeros interior to r. But since this number is at least
n+1l and q-pe I,> We arrive at a contradiction.o

As a simple application of Lemma 3.2, consider the problem of finding
the polynomial in I, that is of best uniform approximation to f(z) = zn+1 on
A : ]z| < 1. Since f itself has the perfect circularity property, then
p; = 0. In other words, the Chebyshev polynomials for the disk A are just the

powers of z. ]
Using finite Blaschke products we can produce other examples of per-
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Next we solve the CF problem for the inverse polynomial
.. _N-n-1
(3.6) p(z) :=z q(1/z) e my_, 1>

to obtain the minimal extension B]aschke product

B(z) = p(z) + > cﬁzk.
k=N-n
Since
N n+l n Kk, < N-k
(3.7) IBll- = ||z B(1/2) ||~ = 12" "q(z) + 2. cx 2%+ > c*z ,
c =l c &y Rt 2 e

then discarding the terms involving negative powers of z (which have small
coefficients), we see that the choice

c = Cﬁ—k’ k=0,1, . .. ,n,
in (3.5) gives an error curve with a near circularity property.

The polynomial approximants obtained via this CF method are often much
better in the sup norm sense than the Taylor sections. Moreover the technique
can be extended to find near best rational approximants (cf. [54], [56]). The
theoretical underpinnings of the CF method are contained in a paper of Adamjan,
Arov, and Krein [ 1] who generalized the results of Carathéodory, Fejér, Schur,
and Takagi.

Let's now turn to the question of convergence of approximating poly-
nomials. We naturally ask, what is the extension of the Wejerstrass theorem to
the complex setting? Runge's theorem (Theorem 2.1) is not a true generalization
because it assumes far more than continuity - it requires f to be analytic in
an open set containing E. Only in 1951 did the Russian mathematician Mergelyan
confirm the suspicions of many who had worked on the problem by proving that the
assumption on f 1in Runge's theorem could be weakened.

Theorem 3.4 (Mergelyan [35]). Let E be a compact set that does not separate
the plane. If f e A(E) (that is, f is analytic in the interior of E and
continuous on E), then there exists a sequence of polynomials that converges

uniformly to f on E.

The proof of Mergelyan's theorem (cf. [17], [41]) is a tour de fonrce
that utilizes the Tietze Extension theorem as well as Koebe's 1/4-theorem.
Observe that the Weierstrass theorem is a special case of Theorem 3.4 because an
interval has an empty interior and so A(E) reduces to the collection of

functions continuous on E.
As an application of Theorem 3.4 we mention the following
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of best uniform approximation to f on E.

where p; is the polynomial in m,
Then f 1is analytic on E if and only if

(3.11)  Timsup E (A" <1,
n-»w
Proof. In one direction the proof is trivial. Namely, if f 'is analytic on
E, thén Theorem 2.2 asserts that the Faber sections and, a fortioni, the
polynomials of best approximation converge geometrically.
On the other hand, if (3.11) holds, then

. i/n
(3.12) 11ﬂaiyp ”p;+1 - p:”E/ < 1.

Appealing to Lemma 3.5, we deduce that, for some r > 1,

Tim sup [[px,; - prl 3" < 1.
N-roo r
But this means that the sequence {p;}z converges in the interior of L
necessarily to an analytic extension of f. o
As with several of the theorems presented, Theorem 3.6 is not stated
in its full generality - the assumption on E can be considerably weakened.

4. PADE APPROXIMANTS.

Polynomials have the advantage of being easy to evaluate. But the
same is true of rational functions. Moreover, rational functions have poles
which can imitate the singularities of a function to be approximated. In this
section we introduce a class of interpolating rational functions called Padé

approximants. These rationals provide a natural extension of the Taylor
sections. (Standard references are [39], [4 ], [5,6]; for a historical treat-
ment, see Brezinski [11].)

Given a formal power series

(4.1)  f(2) = X a
k=0

we wish to construct a rational function of a certain type whose Taylor co-

efficients match those of f as far as possible. To be precise, Tet
(4.2) To,n = {R(z) = P(z)/Q(z) : P € T Q €n,, Q2 0.
Then the matching condition can be stated as follows: For a fixed pair (m;n),

find an R € Hm,n such that

£y,

(4.3) (f - R)(z) = Ofz
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The Padé numerators and denominators are rich in algebraic properties
such as the 3-term recurrence relations found by Frobenius (see [ 4, 24,39] for
a detailed discussion of these properties). Here we pause only to mention a
representation for an that illustrates the important role piayed by the

Toeplitz determinants

4 qur1 v 0 0 %men-l
a1 an e e e Qe
(4.9) D(m/n) := . . . (ak:= 0 if k < 0)
qn-n+l  m-n+2 ¢ v - am

formed from the coefficients of f.
Theorem 4.2. {Jacobi). If D(m/n) # 0, then
(4.10)  f(z) - [/nl(2) = O™

"and the Padé denominator an normalized by an(O) =1 is

am . am+1 . e e am+n

‘ an_1 an .
(4.11) qQ (z) = !
: mn D(m/n

An-n+l  Fm-n+2 m+1

n ML 1

Z

A fast numerical method (based on the Euclidean algorithm) for solving

Toeplitz systems and computing PAs is described in [10].
The PAs for (4.1) are typically displayed in a doubly infinite array

known as the Padé table:

fos0] [1/0] [2/0] -
[o/1] [1/1] ([2/1]
[0/2] [1/2] [2/2]
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D\{ poles of f}.  Furthermore, as m-w, the poles of [m/v](z) tend,
respectively, to the v poles of f in D.

For example, suppose that f is a meromorphic function in the plane
whose poles are simple and occur at the points Eys where

0 < [g] < gy < -+

Then Theorem 4.3 asserts that the poles of [m/11(z) tend to £13 the two
poles of [m/2](z) tend to E1s Epb etc.

The proof of Theorem 4.3 is based on the following simple observation
(cf. [46]). Since

(Qf - Pp,)(2) = O™,

then fpr any Q €n , the product Qva € Moy satisfies

m+v+l )

>

(Q,,af - QP )(2) = O(z

and so Qva is the {m+v)-th Taylor section of vaQf. Consequentiy, we can
use the Hermite formula {1.15) to write

+
Z™V*(q af) (t)

lt]=r ™Vt - 2)

(4.13)  (Q, Qf - QP )(2) = 25 dt, |z| <,
provided Q_ Qf is analytic on |t| <r. If Q is chosen to be the monic
polynomial whose zeros are the poles of f, then r can be taken arbitrarily
close to R. On suitably normalizing the Padé denominators va we find that
the right-hand side of (4.13) tends to zero in D. In particular, at a zero
g of Q, we have (vaQf)(g) -0 and so va(g) ~ 0 because (Qf)(g) # O.
This means that every limit polynomial of the va‘s has zeros at the poles of
f (the zeros of Q), which establishes the last assertion of Theorem 4.3.
(This same argument can be applied to rational functions that interpolate in the
"good points" discussed in §2; see [43].)

In proving convergence theorems for PAs, the essential question is:
Where (asymptotically) are the poles of the PAs? In Theorem 4.3, the v poles
of f serve as "attractors" for all the available poles of the [m/v] approx-
jmants. However, if f has fewer than v poles, then only a subset of the

poles of [m/v](z) “know where to go," and the remaining poles may wander aim-
lessly, destroying convergence. The following simple example illustrates this
point. :

Consider a sequence of nonzero coefficients ag for which there is a
Jarge discrepancy between the root test and the ratio test:
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@

expansion f(z) = > (—l)kckzk, where the ck's are the moments
0

bk
(4.16) ¢ = f du(t),  k=0,1.... .
0

As we now show, the Padé denominators Qn—l n for f are related to the poly-
nomials that are orthogonal with respect to du. Starting with the defining

property

(Qn—l,nf - Pn-l,n)(z) = ()(zzn),

we replace z by -1/z and multiply by z" to obtain

b
(aan  a,@ [ 2oz e = 00/,

where q (z) := ann_l,n(—l/z) e m, and pn_l(z) = zn'an_l’n(-1/z) €n, 1
Then for j=0,1,..., we have

b4 j 5,
(4.18) qn(z>f0 _2 v - e,y () = 0L/,

Next, we integrate with respect to 2z around a simple closed contour containing
[0,b] in its interior. Using the Cauchy formula, we find that

f a, £)tddu(t) = 0, for j=0,1,..., n-1;

that is,

(4.19)  a(2) = 2" ,(-1/2)

is the n-th degree orthogonal polynomial for dyu. One consequence of this
relation is that the zeros of Qn 1.n (z) must be simple and lie on the cut
(-», -1/b). On writing the approx1mant [(n-1)/n] in the form

P (z) n A .
) 1 _ _n-1,n = nj ,
(4.20)  [l-D)/n(2) = g =2 5y JZI I+ i,

where the tnj's are zeros of qn(t), we deduce in a similar manner from
(4.17) that

b
(4.21) f P(t)dut ﬁ tns)

0

for any polynomial P € Ton-1° Hence, the constants Anj are the Christoffel
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E:r < lz| < ry is the uniform 1imit of rational functions that have poles
at z=0 and z = « (think of its Laurent series!).

To describe the more delicate problem of approximating functions in
A(E), we let T(E) denote the uniform limits on E of polynomials, and R(E)
denote the uniform limits on E of rational functions whose poles lie outside

E. Then the theorem of Mergelyan (Theorem 3.4) states that A(E) = T(E) if
and only if C\E is connected. 1In contrast, the compact sets E for which

A(E) = R{ET cannot be characterized topologically; that is, this property is

not invariant under a homeomorphism of the plane (cf. [20]). The most popular
(and most tasteful) example of a compact set E for which A(E) # R(E) is the
Swiss cheese of A. Roth (cf. [17]), which she manufactured by removing a countable
number of disjoint open disks from the closed unit disk. For further discussion
of the possibility of rational approximation see Gamelin [18].

Existence of Best Approximants. For an arbitrary éompact set E, the existence
of best polynomial approximants from M is a simple compactness argument.
However, for best rational approximants from Hm,n {n > 0), this argument must
be modified to handle the possibility of poles tending to the boundary of E.
Using normal families, Walsh [62, §12.2] proved that best rational approximants

exist provided E contains no fsolated points.

Uniqueness of Best Approximants. If f € Cla,b] 1s real-valued, then Chebyshev
showed that the best uniform approximdfion to f on [a,b] out of

(5.1) H;,n :={Rem . :R has real coefficients}
is unique (cf. [34, §9.2]). Surprisingly, this is no longer true if approximation to
a real-valued f is done from Hm,n; that is,if we allow rational approximants
with complex coefficients. Indeed, as was shown by Saff and Varga [44], the
function f(x) = x% has no unique best uniform approximation on [-1,1] out

of nl,l (any such best rational 1 has complex coefficients, so that
F11(¢r11) js also best). Further examples of this type, as well as non-
unigueness results for approximation on a disk can be found in [25], (42].

Given f € A{(E) we can nonetheless construct a table of best uniform
rational approximants to f on E by making a specific choice for each pair
(m,n). This analogue of the Padé table is called the Walsh array,

The convergence theory for this array closely parallels the theory for the Padé
table (e.g. Walsh [64] proved an analogue of Theorem 4.3). Moreover, the Padé
table can be viewed as a limiting version of Walsh arrays where best
approximation is done on disks Es:|z|>5 e with e~ 0 (cf. [55),(63]).

Degnee of Convergence of Best Approximants. For f € A(E), we set
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*
R, to |x| out of T, n have all their zeros and poles on the imaginary axis

and satisfy (cf. [ 8 ])

Tim R;(z) =

N->co

z for Rez >0
-z for Re z < 0.
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