WEIGHTED POLYNOMIAL APPROXIMATION OF
ANALYTIC FUNCTIONS

E. B. SAFF anp V. TOTIK

ABSTRACT

A necessary and sufficient condition is given for a weight such that the geometric order of weighted
polynomial approximation of a function f is equivalent to the analyticity of 1.

1. Background and statements of results for L, 0 < p < oo

Let du be a Borel measure (not necessarily finite) on [— 1, 1] with infinite support

and set
En(f)Lp(d,u): = lnf |lf~pn||Lp(d/t)’ n= 0’ 1: ey (11)

puell,

which is the error in best approximation of fin L (du) by algebraic polynomials of
degree at most n. We consider the sets

A,:= {f1fcoincides dy—a.e. with some g analytic on [—1, 1]} (1.2)
and, for 0 < p < o0,
B, =18y <1}, (1.3)
where
B(f)p:=lim sup[E, (f)r @ul"™ 14

The purpose of this paper is to address the following.

PrOBLEM. Determine necessary and sufficient conditions on dyu such that
A,=B, ,

For du(x) = dx, that is, for Lebesgue measure on [—1, 1], S. N. Bernstein’s
classical theorem (cf. [2; 7, §5.4.1, 6.5.1]) asserts that, for p = oo, the classes 4, and
B, , coincide and, moreover, the formula

By = af) (1.5)
holds, where
a(f):=inf{l/r|g can be analytically extended to the interior of the ellipse
[2x/(r+r D+ [2p/(r—r D] = 1, where g is the function in (1.2)}.
(1.6)
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In this section, we consider the above problem for 0 < p < co. In Section 2, we
provide the proofs of the results stated in Section 1 and, in Section 3, we investigate
the case when p = co.

Our main result for 0 < p < co is the following.

THEOREM 1.1. Let 0 < p < co be fixed. Then A, = B, , if and only if there exists
a polynomial Q(%£ 0) in L (du) such that the nth root of the leading coefficient of the
nth degree orthonormal polynomial for the weight |Q|” du tends to 2 as n — co. More-
over, if the latter condition holds for some Q(% 0) in L (du), then it holds for every
Q(£ 0) in L(d).

We shall also show that the equality of the sets 4, and B, , is ‘p-independent’ in
the following sense.

CoroLLARY 1.2. If0<p,q< oo, then A,=B, ,if andonly if A,= B, ,.

Moreover, Bernstein’s formula persists in this general setting. Namely, we have
the following.

CoroLLARY 1.3. IfA, =8B

#p?

then (1.5) holds for every fe A,

Theorem 1.1 can also be formulated in terms of the limiting distribution of the
zeros of orthonormal polynomials. For this purpose, let us assume that Q £0 is a
polynomial that belongs to L, (du) and let

R, (1017 du, 2) =y, (101" du) z* + ... #€ll, (1.7

be the nth orthonormal polynomial corresponding to the measure |Q|” du. We say that
|QI” du is an arcsine measure if the zeros {x, ,}i.; of R, have the arcsine distribution
as n — o0 that is,

(/
llm #{xi,nlxi,ne(a’ b)} =lf —Ll
n T a(l'_xz)E

n— o

for every interval (a, b) = [—1, 1]. Since arcsine measures play an important role in
the theory of orthogonal polynomials, we formulate the following.

COROLLARY 1.4. Suppose that du is not a singular measure with respect to Lebesgue
measure on [—1, 1]. Assume that 0 < p < o0 and Q % 0 is a polynomial in L (du). Then
A,= B, , if and only if |Q|” du is an arcsine measure.

As proved in [3, 4], if dy is finite and u’ > 0 almost everywhere on [~ 1, 1], then
du is an arcsine measure and, therefore, 4, = B, . Note, however, that a construction
given in [9] shows that there are sets E = [—1, 1] with arbitrarily small Lebesgue
measure such that if 4’ > 0 almost everywhere on E, then

im [y, [ = 2.
Since supp (du) = [~ 1, 1] implies that
lim inf [y, (du)}'* = 2

n—ao
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(cf. [3]) and y,(dw) is a decreasing function of the measure du (cf. [5, p. 50]), it follows
that for such a measure

lim [y, ()] = 2.
Thus, there are sets F of arbitrarily small measures such that if x4 > 0 almost

everywhere on E, then 4, = B, .
We also remark that there are many equivalent formulations of the condition
Iy (017 dw)}V* — 2 as n — oo’ of Theorem 1.1. One of them is

lim [R,(QI” du, 2)|"'™ = |z +(z*— 1)1 . (1.8)
uniformly on compact subsets of C\[—1, 1] (see, for example, [5, §III, Theorems 7.1

and 9.1] and Lemma 2.2 below).
Theorem 1.1 immediately follows from the following more complete result,

THEOREM 1.5. Let 0 < p < oo be fixed. Then
(i) 4,< B, , if and only if there is a polynomial Q(= 0) in L (du).
(i) B, , < A, if and only if either
(@) the only polynomial in L (dy) is the zero polynomial, or
(b) there exists a polynomial Q(% 0) in L (du) such that
lim [y,(1Q” dw]"'" = 2, (1.9)

which, in turn, is equivalent to (1.9) holding for every,'Q($ 0) in L (dp).

2. Proofs of results for 0 < p < o

We begin with the following.

Proof of Theorem 1.5. To establish (i), suppose first that 4, = B, ,. Then by
considering polynomial approximants to a non-polynomial analytic function (say,
J(x) = ¢€%), it is easy to construct a polynomial Q(= 0)e L (dy).

In the converse direction, we shall show that for every polynomial Q= 0 and

function fe 4, there are polynomials P,eIl,, n =0, 1, ..., such that
lim sup |(f—P,) Q' |Y* < a(f) < 1, (2.1)

where | - |, denotes the supremum norm on [—1, 1] and a(f) is defined in (1.6). That
feB, , then follows from

1 1/pn
lim sup || f— P, 1q,y < o(f) lim sup (f . 1Q1” dﬂ) = (/). 22

Consequently our proof also shows that f(f), , < a(f) whenever 4, = B, .
To establish (2.1) we note that by Bernstein’s formula (1.5), which holds for
p = oo and du(x) = dx, there exist polynomials ¢, (x)ell,, n =0, 1, ..., such that
lim sup || /=g, 15" < a(f). 23)
It follows easily from (2.3) that the sequences of derivatives also satisfy
lim sup | f© —¢P| 1" < ol f), j=12, ... 24

7m0
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Consequently, by subtracting a suitable Hermite interpolant of f—g, we can
construct polynomials P,€Il,, n 2 n,, such that
lim sup || /=P, 12" < a(f) 2.5)

and f— P, vanishes at those zeros of Q (counting multiplicity) that lie on [—1, 1]. A
standard application of Bernstein’s inequality (cf. [1; 7, 2.13.27]) then implies that for
the supremum norm on the ellipse

Le2x/(p+p P +12p/(p—p D =1 (2.6)
(cf. (1.6)) we have, for every 1 < p < l/a(f),

lim sup ||/~ P,|¥" < a(/) p.
Hence, for p close to 1, e
lim sup [|(f=P,) @7 lIF" < a(f) p- (2.7

But, as (f— P,) Q7' is analytic inside I', for p close to 1, the maximum principle implies
that (2.7) holds on [—1, 1]. Thus, on letting p — 1, we get (2.1). This completes the
proof of statement (i).

The basis of the proof of statement (i1) of Theorem 1.5 is the following.

LemMma 2.1. B, , = A, if and only if the following condition holds :

“,
D(dy, p): lim sup [ sup 1P,/ 11 Pl 1 @)™ < 1.

- P,ell

Proof. Suppose that D(du, p) holds and fe B, . Let p, eIl , n= 1,2, ..., satisfy
im sup || f=p, 130y = By p < 1. (2.8)

7 — 0

Then )
lim sup ”pn _pnfll }/:(d,u) < ﬂ(f)u,pa

n—

and so, by D(du, p),
lim sup {|p, ~p,_ 1" < BNy »-

n -

Hence the p, converge geometrically in the uniform norm to some function g
which, by Bernstein’s theorem, must be analytic on [—1, 1]. Since (2.8) implies that
S=p.,— 0 du-a.e. for some subsequence {n}, then f'= g du-a.e., and so fe 4,.
Now suppose that B, , = 4, and assume to the contrary that for some Q, eIl,
and > 1,
100 1o/ 1@ Iz > B, 1= 0.

On squaring the 0, and dividing by f7+*|Q, ||’ we get a sequence of non-negative
polynomials £, ell,, satisfying

1B, I = 7" but [P, {l;, @ <7, (2.9)
where y:= v/f > 1. Setting f:= }_ P, , we have
E(Nuyan =007, n=1,2,..,
that is, fe B, ,. But observe that for every constant K the set
{xe[-1, 1]|fix) > K}
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contains an interval I.. If we had fe 4,, then f would be bounded by some K* du-a.e.;
hence we would have u(7,..) = 0. But this is impossible since if ¢ is the centre of I,
and Q(F 0)e L,(du), then one would get Q(x)|x—c|eB, , (cf. [11, p. 75]) while
Q(x)|x—c|™' ¢ A, (recall that du has infinite support) contradicting B, , = 4,. Lemma
2.1 is now proved.

Notice that the first part of the proof of Lemma 2.1 yields via Bernstein’s theorem
that if 4, = B, ,, then a(f) < f(f), ,- This and the remark following (2.2) justify

Corollary 1.3.

We now return to the proof of statement (ii) of Theorem 1.5. First suppose that
du is finite. It is easy to see that condition D(du, p) for p = 2 is the same as

lim R, (dWl" =1, (2.10)

where R, (du) are the orthonormal polynomials with respect to du (simply expand any
P, in terms of the R,). Moreover, as we shall show in Lemma 2.2 below, relation
(2.10) is equivalent to [y, (du)]** — 2 as n — co. Hence for finite du all we have to show
(cf. also the completion of the proof in the general case below) is that D{(du, p) is the
same condition for every p. Let 0 < p < g < co. By Hoélder’s inequality, D(du, p)
implies D(du, q). Now assume D(dy, g). Then for every P, eIl

1P aan < IR P P2,

which implies that
1B lloo/ WPl 2ty S TPl o/ 1P o)

Together with D(du, ¢) this last inequality yields D(du, p).

Finally, let du be arbitrary. By Lemma 2.1, we need to show that D(dy, p) is
equivalent to the statement (a) or (b) of part (ii) of Theorem 1.5. Clearly (a) implies
D(dyu, p) and so, from the discussion for finite measures, it suffices to prove that
the conditions D(du, p) and D(|Q|”du, p) are equivalent for every polynomial
O(=F 0)e L (dy). That D(Q|? du, p) implies D(dy, p) is obvious. Now suppose that
Qell.. One can easily see that, for P, eIl

1Pl < Cn*| B, Qll

for some constant C independent of n. Hence, if we assume D(du, p), we get for

e>0
1Pl < Cr*|| P, Qll, < CCn*(1+6)"" | P, Q1

= CC,n*(l + e)"*s!IPnlle(lquﬂ),
and this implies D(|Q|” du, p). The proof of Theorem 1.5 is now complete.

In the above proof we used the equivalence given in the following.

LemMa 2.2, For a finite Borel measure dv on [—1, 1], the two statements

lim |R,(dv}|¥" =1 .11
and e :
lim [y, (@)™ =2 2.12)

are equivalent.

This is more or less a known result, but for completeness we present a proof.
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Proof. First suppose that for every ¢ > 0,
IRVl < (1+8)"
for all large n. Then, by Bernstein’s inequality [1], we have
|R,(dv, )| < |T,(x)|(1+¢&)" for|x|=z1l,n=n, (2.13)

where T, (x):=cos(n arccos x) is the nth Chebyshev polynomial. Hence, by letting
x — oo and making use of the fact that 7 (x) has 2" as its leading coefficient,
we get
yuld) <2714, nzn,
and so
lim sup [y, (dv)]"" < 2.

7 — 00

On the other hand,
lim inf [y, (dv)]'" = 2

is always true if supp(dv) = [—1, 1] (see [3, Lemma 2.1]). These facts prove that
(2.11) implies (2.12).
Conversely, (2.12) implies that dv is arcsine [3, Theorem 1.1] and hence (cf. [4,
Lemma 3.1))
lim | R (dv)/7, (V)" = 3,

n -

which, together with (2.12), gives (2.11).

Proof of Corollary 1.2. Obviously, for 0 < p, g < oo there is a non-trivial
polynomial Q* in L,(dy) if and only if there is one, say @**, in L (du). We then have
0*Q**e L, (dw) N L,(du) and since the Q(= 0) in Theorem 1.1 is arbitrary in L (du),
we get that the condition of Theorem 1.1 is simultaneously satisfied or not for p and
g, which proves the corollary.

Proof of Corollary 1.4. 1f du has no carrier (that is, a set Ec[—1, 1] with
WE) = u([—1, 1]) of capacity zero, then the conditions in Corollary 1.4 and Theorem
1.1 are equivalent by [10, Theorem 1]. Now if du is not singular with respect to
Lebesgue measure, then every carrier has positive Lebesgue measure and hence
positive capacity (cf. [8, Theorem II1.10]). Thus the corollary follows.

3. Supremum norm results

Having settled the cases when p < 0o, we now turn to p = co. Since for L_(du) the
norm involves only the support of du and not du itself, it is appropriate to
reformulate the Problem of Section 1 in the following way.

Let w > 0 be a Lebesgue measurable function on [—1, 1] that is positive on a set
of positive measure, and let

E(f):= inrfl W =pll.,, 3.1
BU%: = lim sup [E,(/)s]"", (3-2)

n— w0

B = {f1B(/) < 1}. (3.3)
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The reformulated problem is the characterization of those w for which 4* = BY,
where A* stands for the set of functions that coincide w(x)dx—a.e. with a function
analytic on [—1, 1].

Just as in Section 2, one can show that A} = B if and only if there is a non-trivial
polynomial Q such that Qwe L_; and BY < A% if and only if

lim sup [ sup [P, ]../IwP,l, " < 1. (3.4)
72— ’;zﬁ?g

However, as we show in the following example, the case when p = oo differs from
p < o in that (3.4) is no longer equivalent to the condition appearing in Theorem
1.1.

ExaMmPLE. There exists a set E < [— 1, 1] such that for the characteristic function
1z for E we have 47 = B} but
[PV 2 as n— o0, (3.5)
where y,(x5) is the leading coefficient of the nth orthonormal polynomial belonging
to the measure y,(x) dx.

ConsTRUCTION. For a natural number n and J < 1/n® set

E= U [52624s (3.6)
mo s=—ns+1 n3 ’ n3 ) '
It is obvious from Markoff’s inequality
1Pl < PPl Poell,
that for any choice of numbers 0 < §, < 1/r®, the set
E=E,, 37
n=1
has the property
lim sup[ sup I12,]l.o/l12,01] < 1, (3.8)
n -0 P,ell
B+6
where |[ |z denotes the L_-norm on E. Hence by the remarks made above,

Ay =

" Next Ewe show that for an appropriate sequence {d,.}, the assertion of (3.5) is also
true. We require that

Opir <20, n= 1, 2, ..., 3.9)

and inductively define the J, and two sequences {n,} and P, €Il as follows.

Let C(F) denote the (inner) logarithmic capacity of the Borel set F (see, for
example [8, p. 55]). We need the following elementary properties (cf. [8, Chapter 111,
Sections 2, 3]).

(@) If T:x' =ax+b is a linear transformation and E, = T(F), then C(E,) =
lalC(E).

(b) C(F) < C(F,) whenever F, c F,.

() C(a, b)) = 3(b—a).

d) IfE, c[~%3,n=12,.., and F=|J2, F, then

log C(F) < [ Y 1/log C(Fn)r.

n=1
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One can easily justify from these properties that the following construction can be
carried out.
Let 6, be so small that
CE, 5) < i (3.10)

By a well-known result of Szegd {6] (cf. [8, Theorem II1.26)), if F = [—1, 1] is closed,

then
lim [ nf %" —p,,ll 0" = C(F).

n—w p,_ell,
Hence there is n, > 1 and a monic polynomial P, €I1, such that

-n
1B, <47

which implies that
1P, o,y < 47

If §, is sufficiently small, then (3.9) implies that for the set £ in (3.7) we have

I M iy < 47" @3.11)
In fact we can choose d,, ..., 8, so small that with E, :={J7, E, ; both (3.11)
and
C(E,)<j

hold (cf. (3.10)). Then there is n, > n, and a monic P, eII, such that
||Pn2||En‘ < 47",
If we choose ¢ 0

n

, sufficiently small, then
1B ey < 472

Ryl e

and
CE,) <i

hold. By continuing in this manner we obtain a sequence of monic polynomials
P, €lIl, such that

“Pnk||1,2(z«:) < 47", n; — 0.
But this means (cf. [5, p. 50]) that

[ G > 45
that is, (3.5) holds.

In order to formulate a positive theorem, we call a Borel set £ < [—1, 1] of stable
capacity } (cf. [9, 3]) if for every & > 0 there is 6 > 0 such that

C(E\F) > .—¢

whenever m(F) < (m denotes the Lebesgue measure on R). Noting that
C([—1, 1]) = &, we now prove the following (compare [3, Theorem 1.3a]).

THEOREM 3.1. A} = B for every bounded w that is positive almost everywhere on
E c[—1,1]if and only if E has stable capacity %.

Proof. Since w is bounded, 4% < B¥ is immediate from Bernstein’s theorem (cf.
(1.5) for p = o), so we have only to consider B < A*.

If E has stable capacity § and w(x) > 0 almost everywhere on E, then du(x):=
w(x) dx is an arcsine measure (see [3, Theorem 1.3a]) and so, by Corollary 1.4 we
have B, | © A} and thus B} = 4%,
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Now suppose that E does not have stable capacity 3. Then there is ¢ > 0 such that
for every d > 0 there is F; < E with m(F) < ¢ and C(E\F) < 3—e. Since C(E\F)
denotes inner capacity, there is a set F; with m(F;) < § such that E\Fj is compact
and

CE\F;) <i—e.

By applying the previously mentioned theorem of Szegd to the sets E\F; and
[—1, 1], we get that there is a monic polynomial Pell,,; of degree n(d) > 1/6

such that
‘ Bl oo/ I Bsll gy )@ > 1/(1—2). (3.12)
Therefore, if :
<Swx) <1, xel[—-1,1],
and
w(x) < (1—2e)® for xe Fj, (3.13)
then we have from (3.12) that
(1Bl o/ | wBs Il )™ > 1/(1 —28). (3.14)
Since m(F;) < J, almost every x belongs to at most finitely many of the sets F,-»,
n=1,2,.... Hence we can define a weight w (0 < w < 1) that is positive almost

everywhere on E, zero outside E and for which (3.13) holds for every 6 =27,
n=1,2,.... But then (3.14) shows that (3.4) is not true and hence B ¢ 4},

Let us finally mention that Theorem 3.1 extends to any oo >p>0. Let
Ec[-1,1] be a Borel set. Then 4, = B, , for every finite measure u for which
1 (x) > 0 almost everywhere on E if and only if E has stable capacity . This follows
from [3, Theorem 1.3a] and Corollary 1.4.
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