ON POLYNOMIALS OF MINIMAL L -DEVIATION, 0 < ¢4 < |

ANDRAS KROO axp E. B. SAFF

ABSTRACT

It is shown that the monic polynomial of minimal weighted L -deviation is unique when 0 < ¢ < 1 and
the weight satisfies certain properties.

A classical problem in approximation theory consists of finding a monic
polynomial p}(x) = x" +a}_, x*' +... +ayx+a} which satisfies

1
f w(X)|pr()fdx = min J w(x) |x" +p,_(x)|"dx, (1
-1 Py1€Pqy /-1
where F,_, denotes the collection of polynomials of degree at most n—1, w is a given
non-negative weight and 1 < g <. (The case in which ¢ =00 corresponds to
minimizing the supremum norm.) Under mild conditions on w, this problem has a
unique solution for | < ¢ <o, because of the strict convexity of the L -norm.
Uniqueness for g = 1, o follows from somewhat more delicate considerations.
For the Chebyshev weight w(x) = (1—x%)* the explicit solution of (1) for all
1 £ g < o0 is given by the Chebyshev polynomial of first kind,

T.(x):= 2""" cos (n arccos x)

(see [6, p. 81]). However, even for the weight w(x) = 1, the solution of (1) is known
explicitly only for ¢ = 1, 2, co.

The purpose of this paper is to investigate the extremal problem (1) in the ‘non-
classical case’ when 0 < ¢ < 1. Our interest in this problem was inspired by a recent
extension of Bernstein’s inequality to the case where 0 < g < 1. The extension was
first given by Arestov [1] with a simple proof presented by von Golitschek and
Lorentz [2]. (The first proof with an extra constant factor appeared in [4].) According
to the extended version of Bernstein’s inequality, for every ¢>0 and every
trigonometric polynomial S, T,

J‘:z L(G)'

n
Moreover, equality in (2) holds only for S,(8) = a cos nf + b sin n8. (Here and in what
follows T, and P, denote the real trigonometric and algebraic polynomials of degree
at most n, respectively.)
Let us show that Arestov’s result easily implies that for w(x) = (1 —x2) the

"< f 1S, (001 do. @
[1]
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Chebyshev polynomial T(x) is the unique solution of (1) for every g > 0. For every
x"+p, (x)e P\{T,} we have

1 2
f 1+ "‘U = 20-wers f (cos nf+ 5, _,(B)f°db,
-1 —X°) 0

where S,_,(6)e T,_,\{0}. From the above version of Bernstein’s inequality it follows
that the sequence of numbers

@, = 20-met .F |cos nf+n~** SU* (6)|9d8, k=0,1,..
0

satisfies a, > a, and q, > a,,, if k > 1. Furthermore, it is easily seen that n~**54%(9)
tends to zero uniformly on [0, 27] as k —co0. Hence, the g, monotonically decrease
to

- 1
2(1-me-1 Jcos nfl|? df = 1T, (x)|? o .
a\1
0 -1 (I-x%:

f T

The main goal of the present paper is to address the following question. Is there
a unique solution to (1) if 0 < ¢ < 1 for weights different from (1 — x%)~*? We shall
develop a method of investigating the extremal problem (1) based on the implicit
function theorem which implies uniqueness of the solution of (1) for a certain class
of weights including Jacobi weights w(x) = (1—-x)*(1+x) with >0 and §> 0.
Thus, in particular, we obtain the uniqueness for w(x) = 1. In order to achieve this
goal we extend some well-known properties of the solutions of (1) for | € g < o0, such
as non-coalescence of zeros and orthogonality relations, to the case when 0 < ¢ < 1.
Even these questions, which can be easily answered if ¢ > 1, pose difficulties for
0 < g < | in view of the singularity of the integrals arising in the process of solution.

Let us now formulate our main results. We denote by W, the set of all weights w
with the following properties.

(i) For some oy =—1<a, <..<a<l=a, we have weClq,q,,) and
w>0o0n (x,a,,) 0l

(i) For every 0<j< /41 there exists f§, with f,>—¢q if 1 <</ and
B, > —ig+1)if j=0,/+1, such that

This verifies that

J-l fx" +p,._l(X)I°

lim |x — ot Preo(x)

Z—ay

exists and is positive. The same property (with possibly different ) is assumed to hold
with respect to left-hand limits.

THEOREM 1. Let we W, and 0 < q < 1. Then any solution of (1) has the Jorm

n

a0 =[] (x—x¥),

i=1

where — 1 <x} <. <x*<]l.
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Moreover, if we W, n C(—1, 1), then

jl ()"’"()[qd =0, I1<j<n (3)

or, equivalently,
'r w(x) x*pXol ™t sgn pi(x) dx =0, 0<kgsn-1. 4)
-1

To prove uniqueness of the extremal polynomial, our method requires some
further assumptions on w including either

(@) w(l) = w(—1) = 0 and &’/w is monotone, or

(b) *(1)+w* —1) > 0 and w’/w is decreasing.

THEOREM 2. Let we ([~ 1,11 n C* (—=1,1) n W, be positive on (—1, 1) and satisfy
either (a) or (b). Then, for every 0 < g < 1, problem (1) has a unique solution.

Note that if weC(—1,1) is positive on (—1,1), then the requirement that
we W, restricts only the behaviour of w at the end points of (-1, 1).

The proof of Theorem | uses some standard variational arguments which,
however, lead to singular integrals that cause technical difficulties. The proof of
Theorem 2 is based on the simple observation that it is sufficient to verify that for
every given 0 < ¢4 < 1 the nonlinear system of equations (3) has a unique solution
—1 <xf <... <x} < | Furthermore, it turns out that under the assumptions of
Theorem 2, the Jacobian of the system (3) does not vanish. Some additional
observations and the implicit function theorem then imply that any solution of (3) for
a given 0 < g* < | can be extended to a C'-function of ¢ providing a solution of (3)
for each 0 < ¢ < 1. Finally, taking into account the classical result that the solution
of (3) for ¢ = | (the L,-extremal problem) is unique, we can conclude that its solution
for ¢* must also be unique.

Before embarking on the proof of Theorem 1, we establish three lemmas which are
of independent interest.

LeEMMA 1. Let ¢ > 0 and p,(x) = [P, (x—x,), where |x| < | fori= 1, ..., m. (The
x, may be real or complex.) Then, for every a > max {—1, —i(m+2)q}, we have

J e 1= e t'f"l"“"" dx > 0. )

Furthermore, for any > max {—1, —¥q+ 1)},

* glx—=1p
L ¥ dx > 0. (6

Proof. First we observe that the only possible singularities of the integrals in (5)
and (6) are 0, +1, +co. The assumptions on «, # imply that these integrals are
convergent if taken over any finite interval. Thus, if the integral in (5) or (6) is
divergent, then it diverges to +co since the integrands are positive for |x| > 1.
Therefore the statement of the lemma is trivial in this situation, that is, we may
assume that the integrals in (5) and (6) are convergent.
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Since {1 —ac| = la—c| for any real a with |¢| < 1 and any complex number ¢ with
lel £ 1, it follows that {p,,(1/x)| 2 |x]""|p,.(x)| for |x] < 1. Thus

I RGN

xi—1
_ 2= 1)p (0 _ M =Dp, (/01
_J— x| -1 dx +f_l| x| PR dx

= J I_,d-z-':q (l ___‘.2)0—1 {I.D,..(l/x)l"-lxle“’z"""" lﬂ;}:gl }dx

-1
> 0.

Inequality (6) can be similarly verified.

As usual, we say that a function f'is piecewise C' on [a,b) (— 0 < a < b <) if
there is a finite decomposition of [a, 8] to subintervals such that fis C' on each open
component. (We shall refer to the end points of these subintervals as the singularities
of f.) The next technical lemma provides a sufficient condition for the differentiability
of the convolution of two functions. It will be a frequently used tool to justify the
differentiations that occur throughout the paper.

LEMMA 2. Let

B(x): = j A gle—x) d,

where feL,[a,b) is piecewise C' on [a,b] and g is piecewise C' on (— o0, ) and
absolutely continuous on any finite interval. Assume that for a given x,eR we have
Xo+n #&,a,b(1 iy, 1 <j<r), where (S}, and {n};_, are the singularities of f
and g, respectively. Then ¢'(x,) exists and

@'(xo) = —r ADg'(t—x,) dt.

Proof. We may assume without loss of generality that there is a partition
a=:f<a, << <P, < ..<aq,<f,<a,, :=b
such that x,+7,e6(a,B,), | £i<s, and ¢ Ul (@,8,), 1| <j<r. Then we have

s+l

¢(.v)=fﬂe)g(z—x) di=Y a9+ b,

i=-1 f=]
where

a,(x):=f”‘f(og(r—x) &, bx):= f“ Agli—x) db.
2 Bi-

Consider first the function b,(x). For any x, sufficiently close to x,, the function
g(t—x,)is C'in a neighbourhood of [§,_,, «,). Therefore, by the Lebesgue dominated
convergence theorem,

Bi(xy) = — r Ag(t=x,) dr.
By

Similarly, using the fact that fis C' in a neighbourhood of (&, S,], we obtain
that By B~z

a(x) = f ANg(t—x) dt = f S+ x)g(e) dt
a -z
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is differentiable at x, and , i
=%y
aj(x,) = flo,) gloy—x) —f1B:) 8(Bi—xo) + S(t+x,) g(2) dr.

—Zy

Finally, integrating by parts (see [5, p. 266]) we arrive at
Bi=zo B

tr == [ e g0 de== " 0 ge=x) ds.

4

X=Zg
LeEMMA 3. Suppose that the points x.€la,b] converge to x, and the real numbers
P, converge o p,, where p, > 0. Further, assume that continuous functions w,(x)
converge uniformly to wy(x) on [a,b]. Then

j" w,(x) dx _J’ Wo(x) dx

a o= x|} P a |x—xo|l-p“.

lim
ko

Proof. First we observe that

lim
k—o0

wylx) dx J ® wy(x) dx
=i

a |x_xo|l_p" x—xoll_p°

by the Lebesgue dominated convergence theorem. Furthermore, it can be easily seen
from the uniform convergence assumption that

{ ® w,(x) dx ® wy(x) dx }

a = 1P f x|t R

lim
k-

= lim { (@, + x,) — wylx + X)) dx J‘ W (x+x,)dx wo(x+xo)dx}
Ag x| =2 B |ox{ =2

koo c, X

=0,

where A,:=[a—x,, b—x] N [a—x, b—x,], B,:=[a—x,, b—x \a—x, b—x,],
C.:=la—xy b—x,\a—x,, b—x.].

We can now give the following.

Proof of Theorem 1. Since |x—z| > |x—Re z| for every xeR and zeC\R, a
solution of (1) must have only real zeros which obviously belong to [—1, 1]. Let us
show that if p¥ is a solution of (1), then p¥(1) # 0 and p¥(—1) £ 0.

Assume, for example, that p*(1) = 0 and consider

yle):= J'l @(x)| pa(x) +54,,(x) | dx = J‘ @(X) | gy (X) 19x — 1 + €[ dx,

where g,_,(x):= p}(x)/(x—1). Then, by Lemma 2, the function y(g) is differentiable
for sufficiently small ¢ and

, jx—1+¢*
= g - -
y'(e) qfl WO G 775

We shall show that y’(g) < 0 for small ¢ > 0. Clearly, for | <y < 2/e,

! [x—1+¢g*
/ e
y'e) < qf A CRL C) ) oy prpe

1-yc

-— q
= —gg? r w(l—ew)| g, (1 —euw)|? M du.
a

U—
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Furthermore, from the definition of W,, we have
o(l —eu)|q,_,(1 —ew)|* = Ceh¥ + o(e#) o
for some C > 0 and # > —j(g+ 1), uniformly with respect to ue[0, y]. Hence

— )9
w'(e) < — Cqet*t f W ";—-ll'— du+o(e2**).
s

Now using (6) it can be seen that with a proper choice of y we have ¥'(g) <0
(0 < & < ¢g,). But, on the other hand, ¥(g) = w(0) must hold for every ¢, which gives
the desired contradiction.

The next step in the proof is to show that p}(x) has no multiple (repeated)
zeros. Assume to the contrary that p}(x) = (x—x,)* g,_,(x) for some —1 < x, < 1,
Gn-2€ Py Set

8(e): = f 000)| s (x—x0)t — el dx

(1+z9?
_1
= %J u 'w(xo_\/u)lqu-z(xo_\/u) [l —e]? du
0

(1~zg)®
+%J ut w(xo"'\/“)lqn-z(xo"' Vu) [u—el°* du

[}

(1+24)* (1-z,%
=%f @, (W) | u—el? du+§f D) | u—el* du,

0 ]

where @,(u): = 1™ @(Xo+(— 1YV )| q,_o0%+(— 1Y vu)I%, j = 1, 2. Then ¢'(e) exists
for small ¢ > 0 and

(1+zg)? _ole (1-2,)* —rle
¢’(a)=—g{f @, (u) I Bgl du+f @y(u) lu—el du}.

0 u— [ u—e

We now verify that
: | — el

u—e

J(&):= J @,(u) du >0, j=1,2,

0
for any a > 0, if ¢ is chosen to be sufficiently small. Indeed, using the fact that
@) = cpli+o(ur) for some ¢;>0 and f,>—4g+1) (j=1,2), we have, for
every | <y < a/e,

J(e) > f " 5,w)

[u—el lu—1j°
u—

11 du

u—¢&

du = ¢ ﬁ @(eu)
0 1]
12
= ¢, e f WP Iiu-—ll—l du+o@e*h), j=1,2
. —

It now follows from (6) that, for a suitable y > 0, we have J{e) > 0 for ¢ > 0 small
enough. This yields ¢'() <0 (0 < ¢ < &*) which again contradicts the fact that
$(0) < é(e), ceR.

Thus we have shown that a solution p*(x) of (1) has the form

P20 = [T (x-x)

i=-1

where —1 <xf < ... <x} < 1. Assume now that we W, n C(—1,1) and set

n ]
[Tex=x¥)| dx.
iny

I'(e):= J1 w(x)|x—x;} +¢*
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Clearly, I',(e) = I(0), 1 </ < n,eeR. Moreover, by Lemma 2 we have for sufficiently
small ¢ # 0
, ! x—xt+ef | &
Tie) =g f w() BN [T ey o .

-1 x=x;+¢& |
twi

Since we C(—1, 1) it follows from Lemma 3 that I";(0) also exists, and
1 q
F;(0)=qj (x)"’"( Woe—0, 1<j<n
This verifies relations (3) which are equwa]ent to (4).

Now in view of Theorem 1 we can verify Theorem 2 by showing that the system
of nonlinear equations (3) has a unique solution of the form —1 < x¥ < ... <x; <1
for every ¢ > 0. For this purpose we are going to use the implicit function theorem
and the strategy outlined in the introduction. This requires that when 1 2 ¢ = ¢* > 0
(that is, ¢ is bounded away from zero), the solutions —1 < x§ < ... <x; <1 of (3)
are uniformly separated from each other and from the end points of the interval. Our
next lemma establishes this fact.

LeMMA 4. Let 0 < g* < | be given and assume that weC[—1,1] and w >0 on
(—1,1). Then there exists a positive constant C, depending only on g*, n, and w, such
thar for every q"‘ < q < | and every solution x}:= —1 < x¥ <..<xp<l=:x3,0f
(3) we have x%,—x¥*2Cfor0<i<n

Proof. Assume the contrary. Then there exist g, — g, (¢* < ¢, < 1) and x{* — x{®
koo, 0<igsn+l; =1 =x =xP, 1=x¥), =x{)) such that
J" w(x) "’" ox (),', =0, Isismk=12.., Q)
where p, (x) = [T%, (x—x{"), k =0, 1,..., and not all the x{” are distinct.
Assume at first that x{¥ = —1. Then using (7) for i =1 and taking the limit as
k —» oo (Lemma 3) we obtain

f_ w(x) Ip"x"j_ l)l dx=0

a contradiction. Analogously, we can show that x!® < |; that is, —1 < x{® < 1 for
Igign

Now assume that x, < x! = ... = x{* < x!?, for some 1 < r < 5 < n. Using (7)
with i = r and i = s and subtracting one from another we get

[P, (X%
- olx : dx=90 k=1,2,.... 8
ﬁl ) =) Ge—xy X = 2 ®
Setting
*) _ A0 k) 4 ik
P . SO . 4
’ 2 ’ 2
x—f"" x"" _x~(k)
ui= , U=

€ &
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k=12,. < n) we have s,‘—»O P o ™ (k- o0) and, without loss of
gcnerallly, u:"’—’u"” as k—x (r<i<s). Note that ® <1, r<i<s, and
—l=u®=u® 1 =u® =u" Set .
.-
Nu):= [] —u®).
fmrei

By (5) we can choose y > | such that

4 2 __ e,
f 6= DT 5 0. )
. u—1
Furthermore, with the above substitutions, (8) transforms to
(1-2%)e (x) \|q
J ) wle, u+t"")|p""(€"u+t )Ikdu=0.
-1-2%ye, ut—1
Thus, if ¢, is small enough,
<k y|e
J7 (e, ut 20 Pn "(8;;‘ +]" W 4 <. (10)
ot 4

Now note that

n
Po ey u+3®) =[] (e, u+ & —x*)

=1

=TT ey u—ey ) = e 2= 1) ) [T (),

f=1 {=r+1

where T.(u):= [T (e, u—e, ui®).
b

Since 3=1 =1

[T (=) > [T (u—u) = T(w)

famr+] f=r+1
and -

7,60~ [T (4 —x®) =2 %0
>

i<r

as k — oo uniformly on [—y,y], it follows that
Poler u+3P) =& (' = 1) {n T(u)+ ()}, au

with 7,(#) = 0 (k —0) uniformly on [—y,y]. Using the fact that |x!”| < |, we have
@(x®) #£0 and hence w(e, u+%*) = w(x)+7.(u), with 7,(u) tending to zero
uniformly on [—y, y]. Substituting this and (11) into (10) we get

[ — 1) T(u) + 7, ()%
w—1

(w(x}”) + (1)) du < 0
Taking the limit as & — o0 we arrive at a contradiction with (9).

ForO0<g<land —1<x,<...<x, <1, weset

Expy s X, )i = J" 'n"‘(' "‘)' w(x) dx, 1<kgn
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Then the system (3) reduces to

E(xt, ..., x, q) =0, 1<k<€n (12)
Let J(x,,...,x,):= 8(F,, ..., F,)/d(x,, ..., x,) be the Jacobian of this system.

LemMA 5. Let w be as in Theorem 2. Then for any 0 < q £ 1 and any solution |
-1 <x¥<...<x¥<1of (12) we have J(x},...,x*) # 0.

Proof. For j # k we have (Lemma 2)

9% q,r o) - P9I sgn () %x % () dx, (13)

x, x—

where n
pn(x) = pn(x’ X1s ""xn): = H (x_xi)'
=1

Since (0p,./0x,)/(x—x,)eP,_, if j # k and p, satisfies the orthogonality relations (4)
when x, = x?, 1 < i< n, it follows that

oF,
o (¥, ..,x*)=0, k#£j (14)

Furthermore, again using Lemma 2,

Ok _ 9 (J.l-z“ xHp(x+ x I olx+x,) dx)

Ox, 0x, 1-z,

gy Oy [
X -1 XX
+qJ1—zk x"ép"(g%‘llp”(x+xk)l"" sgnp, (x+x,) w(x+x,) dx. (15)

1-z,

Observing that x™'dp,(x+x,)/0x,€ P,_, and using once more (4) (which holds if
x,= x;') we obtain that the last integral in (15) vanishes if x,=x* 1<i<n
Hence

aF * q * L4 *
2 (D) - lp(l)l w- DL, "*f lp"(x)lw()dx

I:

=_1p:(1)|"w(l) 2= 1)|°w(_1) L[ ez {w(x)_w(x:)

I—x¥ 14 xf a4 Xx=xp lox) w(x})

} w(x) dx,

with p¥(x) = p(x, x}, ..., x}). Finally, our assumptions (a) or (b) on w easily imply
that

OF,
ax’;(xl,...,x,",‘);éo, I<k<n

This together with (14) completes the proof of lemma.
REMARK. Let —1 < xf < ... <x} <1 and ¢* > 0. Then the partial derivatives

0F,/0x,, 1 £ j<n, and 8F,/dq (1 <k < n) are continuous in.a neighbourhood of
(xt,..., x5, ¢*)eR™". The continuity of dF/dx, 1 <j< n, can be derived from
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relations (13) and (15) with the help of Lemma 3. For 8F,/dq we have, by the
Lebesgue dominated convergence theorem,

0F, _ [* lpax)l" loglp.(x)l
6_q = J-n T w(x) dx, (16)

and the continuity of this derivative can be verified similarly.

Proof of Theorem 2. Assume that for some 0 < ¢* < 1 we have two sets of points
—l<x<..<x,<land -1 <% <.. <X, <1 such that p,(x) =[], (x—x,)
and j(x) = []i., (x—*,) both minimize (1) and x, # %, for some 1 < i < n. Then, by
Theorem 1,

E(xyy X, q*) = R(X, ... %,,¢%*) =0, I<k<sn,
that is, the system (12) has two distinct solutions for ¢ = ¢g*. By Lemma 5 and the
remark following it, the implicit function theorem is applicable to (12) at
(X35 ---» X4, ¢*) and (%, ..., %,,q*). It implies the existence of C'-functions

—“l<x(g)<...<x,(9) <1

in a neighbourhood of ¢* such that x,(¢g*) =x, | €i<n, and x(q), ] €£i< n, are
solutions of (12) in some neighbourhood of g*. We shall show that the functions
x{q), 1 € i< n, can be extended to [¢*, 1] preserving all the above properties.

Let

6*:=sup{0 < d < 1 —g*:there exist C'-functions —1 < x(g) < ... < x, (@ <1
on [g*, ¢* +J) such that x(g*) = x, and x,(g) is solution of (12) for each
qelg*, g*+9), 1 <i<n}

We have shown above that ¢* > 0. Now we claim that §* = | —g*. Assume that
é* < 1—g*. First we show the existence, for each 1 < i < n, of lim x,(g) as ¢ tends to
q* + 6* from the left. If this limit does not exist for some 1 < j < n, then the function

. x{g) has a non-degenerate interval [«,, f,] of cluster points as ¢ — (¢* +J*)". For any
choice £, of cluster points of x,(q) as ¢ = (g*+6*)", | € i< n, we have by Lemma 4
that —1 <&, <...<¢, <1, and, clearly, the & are solutions of (12) for
g = g*+6* < 1. Applying the implicit function theorem to (12) at ¢,,..., &,, g* + %,
we obtain a contradiction to local uniqueness of the solution to (12). Thus we
may set xf:=lim x(g), as ¢ tends to ¢*+J* from the left, where by Lemma 4,
—l <xf<..<x¥<land {x¥,.. x* ¢*+0J*}is a solution of (12). Obviously, we
can apply the implicit function theorem again to extend the x(g) further to the
right from g* + J*.

We have verified the existence of a C*'-vector function X(g) = {x,(g)}~, such that
X(g*) = {x,}{_, and X{(g) is a solution of (12) for every g* < ¢ < 1. Analogously, there
exists a C'-vector function X(g) = {%(g)}, such that X(g*) = {%,)2, and X(q) is also
a solution of (12) for every ¢* < g < 1. Note that X(g*) # X(g*). On the other hand,
we know from the L,-theory that (12) has a unique solution for ¢ = 1, that is, we must
have X(1) = X(1). Thus there is gq,, ¢* <4, < |, such that X(g,) = X(g,) but
X(q) # X(q) for every g* < g < g,. But this contradicts the implicit function theorem
applied to (12) at g = g,.

ExaMpPLE. The Jacobi weights w, J(x) = (1—x)* (1 +x)* satisfy the conditions of
Theorem 1 if a,f>—}(g+1). The assumptions of Theorem 2 are satisfied if
a,f=0.
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Let us make now some final remarks. By adding some technical details it is
possible to ease the smoothness conditions on the weight w in Theorems | and 2.
However, the main obstacle in extending Theorem 2 to a more general class of
weights (including w, 4(x) with 0 > «,f > —3) are the conditions (a) and (b) imposed
in Theorem 2. These conditions are used only in Lemma 5 for verifying that the
Jacobian of the system (12) does not vanish, namely that 3F,/dx, # 0. This raises the
question of whether Lemma 5 can be proved under more general conditions on w.
It would be of special interest to verify it for , , when —} < a,8 < 0, which would
open the possibility of comparing the location of zeros of minimal polynomials for
w(x) = land 0 < ¢ < 1, with say the zeros of Chebyshev polynomials. For 1 < g4 <
this problem was considered in [3).

Denote by x(q), | €i<n, the zeros of the polynomial p,(x) = x"+... that
minimizes (1) for w(x) = | and 0 < g < 00. It was shown in [3] that

Dl < Ixdgh <x(0)l, 1<i<n,

if 1 <g<o0. An affirmative answer to the above question combined with the
approach used in 3] would allow one to complete the picture by showing that
0 < Ix(g)l <Ix(1)| if 0 < ¢ < 1. Zero is a natural lower bound for |x,(q)|, ¢ > 0,
because as ¢ — 0* the extremal problem (1) transforms to minimizing

f log |p,(x)| dx

and the unique solution to this problem is p,(x) = x", that is, x(0) =0, 1 i< n.
Moreover, we conjecture that even a stronger statement is true; namely, that x(q) is
a strictly increasing function of ¢, [1n] < i < n, as ¢ varies from 0 to + co0. The key to
the solution of this problem consists in verifying that the integral on the right-hand
side of (16) does not vanish if p,{(x) is the solution of (1) with w(x) = 1.
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