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Abstract. This paper is a continuation of the authors’ study of ap-
proximation by reciprocals of polynomials. A Jackson~type theorem for
such approximants is established for a certain class of functions f
analytic and nonzero in the disk |z| ¢ 1 and continuous on |z| ¢ 1.
Furthermore, we obtain the sharp degree of convergence for reciprocal
polynomial approximation on |z] { 1 to functions f that are anal-
ytic on |z| € 1, nonzero in |z]| ¢ 1, and vanish somewhere on’

'2' = 1.
1. Statement of results.
In our papers [1], [2] we investigated the rate of approximation

of real and complex-valued functions on [-l;l] by reciprocals of

polynomials. Here we extend some of these results to the case of
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approximation on the unit disk of the complex plane C.
For any continuous function f in the closed unit disk

D= {z:{z] ¢ 1}, let Eon(f;D) denote the error in best uniform ap-

proximation of f on D by reciprocals of polynomials of degree { n.

J.L. Walsh [4] proved that Eon(f;D) -0 as n - if and only if

the continuous function f is analytic in the open disk |z| <1 and
does not vanish there. We denote the set of all such functions by

AO(D). Under an additional assumption on f we can prove the follow-

ing analogue of Jackson's theorem:

Theorem 1. Let f € AO(D) and suppose that the set ({f(z):z € D}

lies in a half-plane Re(z;;) > 0, for some z,. ]zol = 1. Then
there exists a constant M (independent of f and =z ) such that

(o]

1

(1.1) E (fiD) ¢ Ma(f;n "), n=1,2,3,...,

where w(f:;6) denotes the modulus of continuity of f(eie) on
[-m.7].

Example. It is easy to see that any single-valued branch of the func-
tion (1~z)a satisfies the assumptions of Theorem 1 provided

0 Ca 1. It follows that there exists a constant ¢ such that
(1.2) Eon((l—z)a;D) <¢en®., 0<a<l; n-=1,2,3,...

It can be also shown that the estimate (1.2) is precise in the sense

that there exists a constant d > 0 such that

(1.3) Eon((l—z)“;n).z dn”™®, 0<a¢1, =n=1,2,3,...

From (1.3) it follows that the estimate given in Theorem 1 is, in gen-
eral, the best possible.

The asymptotic character of Eon(f;D) can be described precisely

if we assume that f is analytic in the closed unit disk.

Theorem 2. Let f € AO(D) be analytic in the closed unit disk D

and assume f vanishes somewhere on |z| = 1. Denote by r the

smallest order of zeros of f on |z| = 1. Then there exist positive




constants A(f), B(f) such that

(1.4) A(£)n" T ¢ E  (£:D) ¢ B(f)n~ T , n=1,2.3,...

In particular, for any positive integer r there exist positive con-
h t

stants Ar. B such tha

r

-r r -r _
(1.5) Arn < Eon((l—z) ;D) ¢ Brn . n=1,2,3,..

Finally, we mention the result of Walsh [4, Theorem V] that des-

cribes completely the functions for which Eon(f:D) decreases expo-

nentially.

Theorem 3 (Walsh). For any continuous function f(#0) on D the

following conditions are equivalent:

(i) lim sup{E_ (£:D)77/™ < 1/R < 1 .
I on

(ii) f is analytic on D and meromorphic and different from zero in
DR1= {z:]z] < R}.

2. Proof of Theorem 1.

By the assumption on f there exists z_, lzo[ = 1, such that

Re(f(z)?o) > 0, z € D.

Cpnsider the function
(2.1) G(z):= £(2z) + Az u(f:n 1),

where A > 0 will be chosen later. Notice that

(2.2) l6(z)| = 16(2)Z,] = l£(z)Z, + Aw(£:n"1)| 2 Ao(£:n™). z € D.

Now set

g(8):= a(el?y, r <o ¢
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From (2.2) it follows that

(2.3) lg(8)] 2 Aw(f:n" 1), - {8 < m.
Furthermore,

-1 -1
(2.4) w(g:n ") = o(f:n )

(recall that w(f:n—l) denotes the modulus of continuity of the

function f(eie) on [-w.,7]).

Let Kn(t) be the Jackson kernel (see Lorentz [3, p.55]). Since

i T oLk -k
J K (t)de = 1, J [t |K_{(t)dt = O(n" "), k = 1,2,
- - n
we obtain for all 8 that
T k -1,.k
(2.5) j lg(e+t) - g(8) 7K _(t)dt < elw(g:n )] . k = 1,2,
-
where ¢ > 0 1is an absolute constant. Now define

18
(2.6) p (6):= j_w ETE%TT K_(t)dt.

n
It is well-known that p_(8) has the form 3 )\kckeike where
k=-n '

w0

E:ckeike is the Fourier series of 1/g(8). Since G # 0 in D (by
-0

(2.2)), 1/G 1is analytic in |z| < 1 and consequently ey = 0 for
k < 0. It follows that pn(e) is a polynomial in e16 of degree ¢ n.

We shall use the notation Pn(z) for the corresponding algebraic

n
polynomial in =z, that is., P _(z) = %:chkzk. Now,

1 U
Z00) pn(9)| = |J;"[1/g(e) - 1/g(8+¢t) IK (t)dt
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< ' BGHEEST ko
) -
———T f_vlg(e+c) - g(0) [K_(t)de (by (2.3))
[g(6)|;w(f;n—1) cw(fin 1) (by (2.5).(2.4))
= Te(OTA
The choice
(2.7) A= 2c
therefore yields
(2.8) l1-g(e)p (8)] < 172 ., -w <0 <,
which implies that
(2.9) lg(e)p (8} 2 172 . -m <8<

From (2.8) we deduce, by the maximum principle, that
|1—G(z)Pn(z)| { 1/2 for |z] ¢ 1 and therefore

l6(z)P (2)] 2 172 lz] ¢ 1.

In particular, Pn(z) # 0 in D and applying the maximum principle

again we conclude that

(2.10) max |G(z) - 1/P_(z)| = ' max |[g(8) - 1/p_(8)].
|z ]<1 n ~w<B¢w n

Now,

T g(8+t) - g(8 )
o) - 1p(o)] = |[7 BERAZEGL . B .k (oa
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18
2] letore) - m(o)]- | Bk (0)ar oy (2.9))
-

2
¢ 2 ls(orer-g(o) I ()ae + 2 18l y (oyq

- I FICES N
< 2co(fin ) + “"2“?T" cfw(fin 1y12
2cu(f;n )

(by (2.5). (2.4) and (2.7))

1

(2¢ + 1)w(f:in ).

From (2.10) and from the definition {(2.1) of G it now follows (see
also (2.7)) that

1

max |f(z) - 1/Pn(z)l < (4e + 1)w(f;n ). o

lz|<1

3. Proof of Theorem 2.

To establish the upper bound in (1.4), we first prove that, for

each positive integer r,

(3.1) E,n((1-2)7:D) < B n™" , n=1,23,
Define
(3.2) p(2)is L2V a e,
where
Q(z):= E%%§;7 .
Since

n
A2) = iy = 1 - -2 + o((-0)?)

p(z) 1is a polynomial (of degree (n-—l)r'2 - r) satisfying
p(1) = (r(n—l)/2)r. Also,
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(3.3) la(z)] = L [1ezeeee+2™ 1 <1 for z] < 1.z # 1.

It follows that p(z) # O in D and consequently it suffices to
estimate |(1—z)r - 1/p(z)] on |[z] = 1. Since p(z) has real
coefficients we may restrict ourselves to the case z = ele.

0 ¢80 ¢ .

Case 1. W2/2n <8 < .

In this case

n|l-z| = 2n sin{6/2) > 2n sin(w2/4n) > 2n % I =T

so that
_.n
(3.4) la(a) | = |ghEy] < 2

Now write

T,T
(3.5) (1-2)F - =2 - (1-yf L = (z) ) - 1]
z p(z) z) [t - Q(z)r]r
_ r,, . r r=l
) [? f Q(i):]r ééé [1-e(z)"1%.

Using (3.3). (3.4) and the obvious inequality |Q(z)(1-2z)| < 2/n, we

obtain

5T 7T rad k
n 2: 2
k=0

1 -r
l(1-2)F - | ¢ =i¢_n ,
p(z) (1 - (2/v)r)r r
where c. depends only on r.
Case 2. 2e/n < 8 < 72/2n, for some 0 < e < 1.

In this case 6 ¢ 2m/n and since the function (sin(n6/2))/sin(6/2)

is decreasing for 0 < 6 < 2w/n, we obtain

sin(n8/2) sin e

1-z" <
n sin(6/2) n sin(e/n)

IQ(Z)I = 'n(l-z)
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Using the Maclaurin development for the sine function one can easily
show that

2

sin € _ ¢ 1 -¢e%/10 for O0<e <1, n 2,

n sin{(e/n)

and therefore

[a(z)]T ¢ (1 - ¢2/10)F < 1 - €2/10

which implies

2/10 for 0<e<1. n > 2.

1 - Q(z)"| 2 e
Using this estimate together with (3.3) and |Q(z){(1-z)] < 2/n we
obtain from (3.5) that
r-1
oTy~T 2: 2k
1 < k=0 _. —2rn—r
P(z)1 °  (2/10)T

(1-z)7 -

where . depends only on r.

Case 3. 0 < 8 < 2e/n, e > 0 1is small enough.

In this case

(3.6) |1-z| < 2e/n
so that
(3.7) [1-z|F ¢ (2e/n)T ¢ n”T if e < 1/2.

Next, we write p(z) 1in (3.2) in the form
(3.8) p(z) = [Lz ]r [rfllc:(z)“]r
1-z k=0

where



. Since

n . n 3
l% z <r;> (Z'I)J-1‘ € 2_:2 3}—(25)3"1 (by (3.6))

J
£ 2ee , if e < 1/2,
we obtain
iifQ(z)k . if r =1
k=0 r + O(e) if r 2 2,
where O(e) depends only on r. It follows that there exists ¢

r'

0 < e < 1/2 (that depends only on r), such that

(3.9)

r=1
Z:Q(Z)k' 2 1 , provided 0 < 8 ¢ 2e& _/n.
k=0 r

From (3.7), (3.8). and (3.9) we obtain for z = e ~, 0 < 8 ¢ Qer/n.

(3.10) l(l—z)r - 1/p{z)} ¢ 1-217 + |1/p(2) ]
-r l-z r
{n + T—:—ET;T
It therefore suffices to show that
(3.11) I—L‘i— ¢ en” ! . n 2,
1 - Q(z) =
or
2
2 2
n_(1-z) = < c2 , n 2 2,
n{l-z) - (1-z")

: i@
where ¢ > O 1is an absolute constant. Putting z = e we have
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(3.12) In2(1-2)2]2 = 16ntsin?(es2) ¢ o%n?.

Next, for 0 < 68 < 2er/n. we have

In(1-2z) - (l—zn)|2 = 2n{n-1) + 2 - 2n(n-1)cos 8 + 2n cos né
~ 2 cos n8 - 2n cos(n-1)6

4n(n-1)sin2(68/2) + 4 sin2(n6/2) - 4n sin(8/2) sin[(n-1/2)86]

4n2sin%(6/2) + 4 sin®(n6/2) - 8n sin(8/2) sin(n8/2) cos[(n-1)6/2]

4{[n sin(6/2) - sin(n9/2)]2 + 4n sin{(6/2) sin(nB/2) sin2[(n—1)6/4]}

> 16n sin(0/2) sin(n6/2) sin2[(n—1)6/4]

16n(2/7)%(6/2) (n6/2)[ (n-1)6/4]2.

2

Hence

(3.13) [n(1-z) - (1-2")]% 3 (4/7Y)e%n2(n-1)2.

The inequalities (3.12), (3.13) yield (3.11) with ¢ = 72. Hence,
l(1-2)7 - 1/p(z)] < (1+72%)n" T, 0 < 8 < 2e /n.

On choosing e = €, in Case 2 we conclude that

max I(l-z)r - 1/p(2z)] < ¢ n" T, n=1,2,3,...
lz|<1 r

where <. > 0 depends only on r. Using a standard technique, the

last inequality implies (3.1) for some constant Br depending only on

r (recall that p(z) is of degree (n-l)r2 - r).

To prove the upper bound in (1.4) we write
b Tj
f(z) = g(2)[ J(z-z)) 7 .
j=1

where ZieZge--in z, are the distinct zeros of f on |z] =1 and g
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is analytic in the closed disk D:|z| ( 1 and different from zero

there. We just proved that

Ty Ty
Eon((z—zj) ;D) < Bjn .

Also, by Theorem 3, there exist constants A > 0 and O < p < 1 such

that

. n _
E n(g:D) < Ap” . n=1.,2,...

Applying Lemma 4.2 in [1] we conclude that for some constants Ao >0

and 0 < pO <1,

v -r
. J n
Eon(f.D) { const(f) jg%n + Aop0

< const(f)'n_r ., no=1,2,3,... .,
where r = min r_.
J
Next we prove the lower bound in (1.5). Pick a polynomial Pn(z)
of degree { n such that
r r .
(3.14) H(1-z) - l/Pn(z)IlD = Eon((l—z) iD) =: En

i6

and let pn(e) denote the trigonometric polynomial Pn(e ). Then

6

(3.15) H(1-e19)F - 1/ (O 47 = Ey

and therefore

(3.186) lp (03| 2 1/E

1

For [8] 2 (m/2)(3E)!/T =:6  we have
l1-e1®|7 = |2stn(os2) |7 » |20/7|7 2 3E_

Hence (by (3.15))
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(3.17) lp (8)] < 1/7(2E)) for le] > 5.

It follows (see (3.16)) that |pn(6)| attains its maximum at some

point 6 in [-6.6]. Now.

0
lp (85) = P (8)] 2 Ip (8,)| - Ip (&) = Wp 0 - |p (6)]
2 Han - l/(2En) .
where Ili-ll denotes the sup norm on [-w,7]. Since Han 2 1/En by

(3.16), we obtain

(3.18) Ip (8) - p (8)] 2 Uup_W/2.

On the other hand,

]pn(eo) - pn(a)| < |eO - 5|‘Hp£" < 28lp Il < 28nlip I

by Bernstein’s inequality (see Lorentz [3, p.39]). Combining this
with (3.18) we obtain that 6 2 1/(4n). From the definition of & it

now follows that

where O <( ¢ <1 1is an absolute constant. This proves the lower

bound in (1.5).

For the general case, we pick a zero of f of the smallest order

r (z=1, say) and write f(z) = (l—z)r(a+g(z)), where a # 0O and
g(z) = O(1-z). We can find e = e(f) > O such that |g(e'®)] < |a|/2
for |6] ¢ e. Using the above argument (with obvious modificatigns)

one can show that

max |(1-¢1%)"(arg(e®)) - 1/p_(8)] 2 c(£)n7"
-e{B8<e

which yields the lower bound in (1.4). o
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