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JACKSON TYPE THEOREMS IN APPROXIMATION
" BY RECIPROCALS OF POLYNOMIALS

A.L. LEVIN! AND E.B. SAFF?

ABSTRACT. It was previously shown by the authors that
Jackson type theorems hold for the case of approximating a
continuous real-valued function f on a real interval by the
reciprocals of complex polynomials. In this paper we extend
these results to the general case when f is complex-valued.

1. Statement of results. Let C*[—x,7]| denote the set of 27-
periodic continuous complex-valued functions and let C[-1,1] denote
the set of continuous complex-valued functions on [-1,1]. For any
f € C*[—m,x] (resp. f € C[-1,1]) we denote by Eg, (f) (resp. by
FEon(f)) the error in best uniform approximation of f on [—7, 7] (resp.
on [-1,1]) by reciprocals of trigonometric (resp. algebraic) polynomials
of degree < n with complex coeflicients.

Our goal is to prove the following Jackson type theorems.

THEOREM 1. There exists a constant M such that for any f €
C*[—n, 7],
Ego(f) € Mw(fin™), n=1,23,...,

where w(f;6) denotes the modulus of continuity of f on [—m,x].
THEOREM 2. There exists a constant M such that, for any f €

C[-1,1],
Eon(f) < Mw(fin™'), n=1,2,3,...,

where w(f;8) denotes the modulus of continuity of f on [-1,1].
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For the case of real-valued f, these theorems {with slightly different
notation) were proved in our paper [1]. Although the idea of the proof
remains the same, the passage to a complex-valued f is not straight-
forward (in contrast with polynomial approximation). It requires a
preliminary construction (see Lemma 1 below) that is trivial in the
case of real f but rather complicated in general.

2. Proofs. We first formulate two lemmas. In these results, || - ||
denotes the sup norm on [—7, 7] and w is the modulus of continuity on
[-m, 7).

LEMMA 1. For any f € C*|—m, 7], for any positive integer n, and for
any A > 0, there exists a function g € C*[—m, 7] such that

(1) |f — gll < 4Aw(f;n7 1),
(@) lg(z)| > 3Aw(f;n™"), —m <z <, and
(3) wlg;n™) < (1 +8m)w(f;n™1).

Also, if f is even, then g may be chosen even as well.

LEMMA 2. There exist absolute constants Ag > 0, Ay > 0 such that,
for any g € C*[—n, 7| that satisfies (2) with A = Ay and (3), one can
find a trigonometric polynomial P, of degree < n such that

llg — 1/Pal| € Ayw(f;n™").

Also, if g is even, then P, may be chosen even as well.

Theorem 1 is an immediate consequence of these lemmas. Indeed,
applying Lemma 1 with A = Ay and Lemma 2 we obtain that

Eg(f) < |If = gll +1lg = 1/Pall < Muw(f;n ™),

where M := 4A¢ + A;. Theorem 2 follows from Theorem 1 by a
standard argument (notice the last assertions of the lemmas).

PROOF OF LEMMA 1. Set
(4) Ky = {z € [-m,1): |f(2)] > Aw(fin )},
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(5) Ky = {w € [-m,] : |f(2)] < Aw(fin ™)}

We assume first that +7 € K;. In this case we can represent Ky as a
union U(ag, by,) of disjoint open intervals in (—m, 7) with

(6) |f(ar)l = |F(bx)] = Aw(f;n 7).
Further, we write K, as a union K3 U K, where

(0 Kp=0{(axbe) 1@ 2 eAw(fin ™), all @ € (arbi) },

(8)
K} = U{(ak,bk) | f(2)] < YaAw(f;n ") for some z € (ak,bk)}.

"

Then, for the length Ay := by — aj of any interval (ak,bg) in K, we
have the estimate

O w(fide) 2 17b0] - min 7] = FAu(fin)

by (6) and (8).

For every interval (a,by) in K, write (cf.  (6)) flak) =
Aw(f;n~1) explion), f(bk) = Aw(f;n~")exp(ife), with |Br — ox] < 7
and let Li(z) be the linear function that satisfies

Li(ox) = ak,  Li(bi) = B
Then, for any A > 0,

(10) |Li(x + h) — Li(x)] < g—h, where Ay, 1= b — ag.
k

Now define the function g on [—m, 7] by

(11) g(z) = f(z), =€ KUK,

(12) g(z) := Aw(f;n Vexp(iLk(z)), = € (ak,bx) C Kj.
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From the construction of g it follows that ¢ € C*[—m, n] and satisfies

(13 If =~ ll < 240(fin),
(14 0()| 2 S Au(fin ), —w<z<m

To estimate the modulus of continuity of g we make use of the well-
known inequality

. < H!
wfih) _ pelfih)
R~ b

Let ,z + h(h > 0) be any two points in [—7, 7.
Casel. x, z+h € KjUKY). Then (cf. (11)) |g(z+h)—g(z)| < w(f;h).

Case 2. z, z+ h € (ak,by) C KY. Since lexp(it) — exp(is)| < |t - s,
we obtain, from (12) and (10):

(15) for h > h' > 0.

lg(z + k) — g(z)] < Aw(f;n’l)Alkh

<228 (g))

Ay
< 4##—% (by (15), since Ay > h)
= dnw(f; h).

Case 3. z € (ar,br) C K, z+ h € K; UK). Write

lg(z + h) — g(z)| <lg(be) — g(x)| + |g(z + h) — g(by)]
= [g(bx) — g(x)| + | f(z + k) — f(br)]
< lg(b) = g(x)| + w(f; h).

Since |by — z| < Aj, we obtain as in Case 2, that

lg(b) — g(z)| < zwf(fA;_kAk)

< 4#%"6_—@ bk — 3, (by (15))
k —fU|

— dmwo(f; bk — al) < dmw(f; b).

by, — x|
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Hence

(16) lg(z + k) — gz)] < (1 + 4m)w(f;h).

Case 4. © € K1UKY, z+h € K. Just as in Case 3, it can be shown
that inequality (16) holds.

Case 5..x € (ag,br) C Ky, z+h € (a;,by) C Ky, with k 7 [. In this
case we write (assume by < a;)

lg(z + h) — g(2)| < |g(bx) = 9(z)| + g(ar) — g(be)| + lg(z + h) — g(ai)];
and proceeding as in Case 3 we conclude that

lg(z + k) — g(z)| < (1 +8m)w(f;h).

Putting all the cases together we obtain

(17) w(g;h) < (1+8mw(fih), h>0.

The inequalities (13), (14) and (17) prove Lemma 1 for the case
+7 € K. If +7 € K, that is if |f(+7)| < Aw(f;n~1), we replace
f by f:= f+2Aw(f;n"') and apply the above argument to construct
the function g that satisfies (13), (14), and (17) with f instead of f.
Since w(f; k) = w(f;h) and ||f — f|| < 24w(f;n~"), the same function
g will satisfy the requirements (1), (2), and (3) of Lemma 1.

Finally, if f is even, then each of the sets K1, K, and K3 is symmetric
with respect to the origin. From this and from the definition (11), (12)
of g it follows easily that g is also even. O

REMARK . If f is real, the function g can be constructed in a much
simpler way, namely we can set g(z) := f(z) + idw(f;n™").

PROOF OF LEMMA 2. The proof is essentially contained in our paper

~ [1]. For the reader’s convenience we reproduce it briefly.
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Let K, (t) be the Jackson kernel (cf. Lorentz [2, p. 55]). Then, for
any g € C*[—m, 7],

089 [ g+ ) - g@F K0 < clolgin Y, 5=1.2
where ¢ is an absolute constant. Define

(19) Ap :=4e(l + 87)

and let g be the function from Lemma 1 with A = Ay. Further, define
the trigonometric polynomial P, of degree < n by

(20) Po(z) = /_ W - ($1+ Kt
Then
1= R = | [ SO

< o el (by () (18)
< 2L _ L oy ), (19))

Hence,

(1) \Po(2)g(z)| > 1/2, —m<z<m.

Now,

l9(z) — 1/ Pu(a)|
" 1g(x +1t) — g(x)
f/_,, a@)g(z +1) |7,

<2 [ later0)-glo)]- |

) [ K (t)dt

Ht‘ Ka(t)dt (by (21))

y " lgla+0) — g(o)
<2 [ lofo+1) - g@IKa(t)it +2 / R (RO

< 2ew(gin!) +4Ae(w(gin™)?/Aew(fin7)  (by (2),(18))
< (2e+ 1)1+ 8mw(fin™!) = Aw(fin™")  (by (2), (3), and (19)).
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Finally, if g € C*[-=,n] is even, then (cf. (20)) P, is an even
trigonometric polynomial. O
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