JACKSON TYPE THEOREMS IN APPROXIMATION BY RECIPROCALS OF POLYNOMIALS

A.L. LEVIN¹ AND E.B. SAFF²

ABSTRACT. It was previously shown by the authors that Jackson type theorems hold for the case of approximating a continuous real-valued function f on a real interval by the reciprocals of complex polynomials. In this paper we extend these results to the general case when f is complex-valued.

1. Statement of results. Let $C^*[-\pi,\pi]$ denote the set of 2π -periodic continuous complex-valued functions and let C[-1,1] denote the set of continuous complex-valued functions on [-1,1]. For any $f \in C^*[-\pi,\pi]$ (resp. $f \in C[-1,1]$) we denote by $E^*_{0n}(f)$ (resp. by $E_{0n}(f)$) the error in best uniform approximation of f on $[-\pi,\pi]$ (resp. on [-1,1]) by reciprocals of trigonometric (resp. algebraic) polynomials of degree $\leq n$ with complex coefficients.

Our goal is to prove the following Jackson type theorems.

THEOREM 1. There exists a constant M such that for any $f \in C^*[-\pi,\pi]$,

$$E_{0n}^*(f) \le M\omega(f; n^{-1}), \quad n = 1, 2, 3, \dots,$$

where $\omega(f; \delta)$ denotes the modulus of continuity of f on $[-\pi, \pi]$.

THEOREM 2. There exists a constant M such that, for any $f \in C[-1,1]$,

$$E_{0n}(f) \leq M\omega(f; n^{-1}), \quad n = 1, 2, 3, \dots,$$

where $\omega(f; \delta)$ denotes the modulus of continuity of f on [-1,1].

¹ The research of this author was conducted while visiting the Institute for Constructive Mathematics at the University of South Florida.

² The research of this author was supported, in part, by the National Science

AMS Subject Classification: 41A20, 41A17. Received by the editors on September 19, 1986.

For the case of real-valued f, these theorems (with slightly different notation) were proved in our paper [1]. Although the idea of the proof remains the same, the passage to a complex-valued f is not straightforward (in contrast with polynomial approximation). It requires a preliminary construction (see Lemma 1 below) that is trivial in the case of real f but rather complicated in general.

2. Proofs. We first formulate two lemmas. In these results, $||\cdot||$ denotes the sup norm on $[-\pi, \pi]$ and ω is the modulus of continuity on $[-\pi, \pi]$.

LEMMA 1. For any $f \in C^*[-\pi, \pi]$, for any positive integer n, and for any A > 0, there exists a function $g \in C^*[-\pi, \pi]$ such that

- $(1) ||f g|| \le 4A\omega(f; n^{-1}),$
- (2) $|g(x)| \ge \frac{1}{2}A\omega(f; n^{-1}), \quad -\pi \le x \le \pi, \text{ and }$
- (3) $\omega(g; n^{-1}) \le (1 + 8\pi)\omega(f; n^{-1}).$

Also, if f is even, then g may be chosen even as well.

LEMMA 2. There exist absolute constants $A_0 > 0$, $A_1 > 0$ such that, for any $g \in C^*[-\pi, \pi]$ that satisfies (2) with $A = A_0$ and (3), one can find a trigonometric polynomial P_n of degree $\leq n$ such that

$$||g-1/P_n|| \le A_1 \omega(f; n^{-1}).$$

Also, if g is even, then P_n may be chosen even as well.

Theorem 1 is an immediate consequence of these lemmas. Indeed, applying Lemma 1 with $A = A_0$ and Lemma 2 we obtain that

$$E_{0n}^*(f) \le ||f - g|| + ||g - 1/P_n|| \le M\omega(f; n^{-1}),$$

where $M := 4A_0 + A_1$. Theorem 2 follows from Theorem 1 by a standard argument (notice the last assertions of the lemmas).

PROOF OF LEMMA 1. Set

(4)
$$K_1 := \{ x \in [-\pi, \pi] : |f(x)| \ge A\omega(f; n^{-1}) \},$$

(5)
$$K_2 := \{ x \in [-\pi, \pi] : |f(x)| < A\omega(f; n^{-1}) \}.$$

We assume first that $\pm \pi \in K_1$. In this case we can represent K_2 as a union $\cup (a_k, b_k)$ of disjoint open intervals in $(-\pi, \pi)$ with

(6)
$$|f(a_k)| = |f(b_k)| = A\omega(f; n^{-1}).$$

Further, we write K_2 as a union $K_2' \cup K_2''$, where

(7)
$$K_2' := \bigcup \{ (a_k, b_k) : |f(x)| \ge \frac{1}{2} A\omega(f; n^{-1}), \text{ all } x \in (a_k, b_k) \},$$

(8)
$$K_2'' := \bigcup \Big\{ (a_k, b_k) : |f(x)| < \frac{1}{2} A \omega(f; n^{-1}) \text{ for some } x \in (a_k, b_k) \Big\}.$$

Then, for the length $\Delta_k := b_k - a_k$ of any interval (a_k, b_k) in K_2'' , we have the estimate

(9)
$$\omega(f; \Delta_k) \ge ||f(b_k)| - \min_{(a_k, b_k)} |f|| \ge \frac{1}{2} A \omega(f; n^{-1}),$$

by (6) and (8).

For every interval (a_k, b_k) in K_2'' , write (cf. (6)) $f(a_k) = A\omega(f; n^{-1}) \exp(i\alpha_k)$, $f(b_k) = A\omega(f; n^{-1}) \exp(i\beta_k)$, with $|\beta_k - \alpha_k| \le \pi$ and let $L_k(x)$ be the linear function that satisfies

$$L_k(a_k) = \alpha_k, \quad L_k(b_k) = \beta_k.$$

Then, for any h > 0,

(10)
$$|L_k(x+h) - L_k(x)| \le \frac{\pi}{\Delta_k} h, \text{ where } \Delta_k := b_k - a_k.$$

Now define the function g on $[-\pi, \pi]$ by

(11)
$$g(x) := f(x), \quad x \in K_1 \cup K_2',$$

(12)
$$g(x) := A\omega(f; n^{-1})\exp(iL_k(x)), \quad x \in (a_k, b_k) \subset K_2''.$$

From the construction of g it follows that $g \in C^*[-\pi, \pi]$ and satisfies

(13)
$$||f - g|| \le 2A\omega(f; n^{-1}),$$

(14)
$$|g(x)| \ge \frac{1}{2} A\omega(f; n^{-1}), \quad -\pi \le x \le \pi.$$

To estimate the modulus of continuity of g we make use of the well-known inequality

(15)
$$\frac{\omega(f;h)}{h} \le 2\frac{\omega(f;h')}{h'}, \quad \text{for } h \ge h' > 0.$$

Let x, x + h(h > 0) be any two points in $[-\pi, \pi]$.

Case 1.
$$x, x+h \in K_1 \cup K_2'$$
. Then (cf. (11)) $|g(x+h)-g(x)| \le \omega(f;h)$.

Case 2. x, $x + h \in (a_k, b_k) \subset K_2''$. Since $|\exp(it) - \exp(is)| \le |t - s|$, we obtain, from (12) and (10):

$$\begin{split} |g(x+h) - g(x)| &\leq A\omega(f; n^{-1}) \frac{\pi}{\Delta_k} h \\ &\leq 2\pi \frac{\omega(f; \Delta_k)}{\Delta_k} h \quad \text{(by (9))} \\ &\leq 4\pi \frac{\omega(f; h)}{h} h \quad \text{(by (15), since } \Delta_k \geq h) \\ &= 4\pi \omega(f; h). \end{split}$$

Case 3.
$$x \in (a_k, b_k) \subset K_2'', x + h \in K_1 \cup K_2'$$
. Write

$$|g(x+h) - g(x)| \le |g(b_k) - g(x)| + |g(x+h) - g(b_k)|$$

$$= |g(b_k) - g(x)| + |f(x+h) - f(b_k)|$$

$$\le |g(b_k) - g(x)| + \omega(f;h).$$

Since $|b_k - x| < \Delta_k$, we obtain as in Case 2, that

$$|g(b_k) - g(x)| \le 2\pi \frac{\omega(f; \Delta_k)}{\Delta_k} |b_k - x|$$

$$\le 4\pi \frac{\omega(f; |b_k - x|)}{|b_k - x|} \cdot |b_k - x|, \text{ (by (15))}$$

$$= 4\pi \omega(f; |b_k - x|) \le 4\pi \omega(f; h).$$

Hence

(16)
$$|g(x+h) - g(x)| \le (1+4\pi)\omega(f;h).$$

Case 4. $x \in K_1 \cup K'_2$, $x + h \in K''_2$. Just as in Case 3, it can be shown that inequality (16) holds.

Case 5.. $x \in (a_k, b_k) \subset K_2''$, $x + h \in (a_l, b_l) \subset K_2''$, with $k \neq l$. In this case we write (assume $b_k \leq a_l$)

$$|g(x+h) - g(x)| \le |g(b_k) - g(x)| + |g(a_l) - g(b_k)| + |g(x+h) - g(a_l)|,$$

and proceeding as in Case 3 we conclude that

$$|g(x+h) - g(x)| \le (1+8\pi)\omega(f;h).$$

Putting all the cases together we obtain

(17)
$$\omega(g;h) \le (1+8\pi)\omega(f;h), \quad h > 0.$$

The inequalities (13), (14) and (17) prove Lemma 1 for the case $\pm \pi \in K_1$. If $\pm \pi \in K_2$, that is if $|f(\pm \pi)| < A\omega(f; n^{-1})$, we replace f by $\tilde{f} := f + 2A\omega(f; n^{-1})$ and apply the above argument to construct the function g that satisfies (13), (14), and (17) with \tilde{f} instead of f. Since $\omega(\tilde{f};h) = \omega(f;h)$ and $||f - \tilde{f}|| \le 2A\omega(f;n^{-1})$, the same function g will satisfy the requirements (1), (2), and (3) of Lemma 1.

Finally, if f is even, then each of the sets K_1, K'_2 , and K''_2 is symmetric with respect to the origin. From this and from the definition (11), (12) of g it follows easily that g is also even. \square

REMARK. If f is real, the function g can be constructed in a much simpler way, namely we can set $g(x) := f(x) + iA\omega(f; n^{-1})$.

PROOF OF LEMMA 2. The proof is essentially contained in our paper [1]. For the reader's convenience we reproduce it briefly.

Let $K_n(t)$ be the Jackson kernel (cf. Lorentz [2, p. 55]). Then, for any $g \in C^*[-\pi, \pi]$,

(18)
$$\int_{-\pi}^{\pi} |g(x+t) - g(x)|^j K_n(t) dt \le c[\omega(g; n^{-1})]^j, \quad j = 1, 2,$$

where c is an absolute constant. Define

$$(19) A_0 := 4c(1+8\pi)$$

and let g be the function from Lemma 1 with $A = A_0$. Further, define the trigonometric polynomial P_n of degree $\leq n$ by

(20)
$$P_n(x) := \int_{-\pi}^{\pi} \frac{1}{q(x+t)} K_n(t) dt.$$

Then

$$|1 - P_n(x)g(x)| = \left| \int_{-\pi}^{\pi} \frac{g(x+t) - g(x)}{g(x+t)} K_n(t) dt \right|$$

$$\leq \frac{2}{A_0 \omega(f; n^{-1})} \cdot c\omega(g; n^{-1}), \quad \text{(by (2), (18))}$$

$$\leq \frac{2c(1+8\pi)}{A_0} = \frac{1}{2}, \quad \text{(by (3), (19))}.$$

Hence,

(21)
$$|P_n(x)g(x)| \ge 1/2, \quad -\pi \le x \le \pi.$$

Now,

$$|g(x) - 1/P_{n}(x)|$$

$$\leq \int_{-\pi}^{\pi} \left| \frac{g(x+t) - g(x)}{g(x)g(x+t)} \right| \cdot \left| \frac{g(x)}{P_{n}(x)} \right| \cdot K_{n}(t)dt$$

$$\leq 2 \int_{-\pi}^{\pi} |g(x+t) - g(x)| \cdot \left| \frac{g(x)}{g(x+t)} \right| \cdot K_{n}(t)dt \quad \text{(by (21))}$$

$$\leq 2 \int_{-\pi}^{\pi} |g(x+t) - g(x)| K_{n}(t)dt + 2 \int_{-\pi}^{\pi} \frac{|g(x+t) - g(x)|^{2}}{|g(x+t)|} K_{n}(t)dt$$

$$\leq 2c\omega(g; n^{-1}) + 4c(\omega(g; n^{-1}))^{2} / A_{0}\omega(f; n^{-1}) \quad \text{(by (2),(18))}$$

$$\leq (2c+1)(1+8\pi)\omega(f; n^{-1}) =: A_{1}\omega(f; n^{-1}) \quad \text{(by (2), (3), and (19))}.$$

Finally, if $g \in C^*[-\pi,\pi]$ is even, then (cf. (20)) P_n is an even trigonometric polynomial. \square

REFERENCES

- 1. A.L. Levin and E.B. Saff, Degree of approximation of real functions by reciprocals of real and complex polynomials, SIAM J. Math. Anal. 19 (1988), 233-245.
- 2. G.G. Lorentz, Approximation of functions, Holt, Rinehart and Winston, New York, 1966.

Department of Mathematics, Everyman's University, 16 Klausner St., POB 39328, Tel-aviv 61392, Israel

Institute for Constructive Mathematics, Department of Mathematics, University of South Florida, Tampa, FL 33620

