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Abstract: The approximants mentioned in the title are related to vector-valued continued fractions and the vector
e-algorithm devised by Wynn in 1963. Here we establish a unitary invariance property of these approximants and
describe how the classical (1-dimensional) Padé approximants can be obtained as a special case. The main results of
the paper consist of De Montessus—-De Ballore type convergence theorems for row sequences (having fixed
denominator degree) of vector-valued approximants to meromorphic vector functions.

1. Introduction

In this paper, we discuss a natural extension of ordinary Padé approximation to approxima-
tion of a vector-valued function f(z) which is analytic at the origin. We may then expand f(z)

as

f(2)=co+tez+ -+ +ez"+ -+, (1.1)
and this series converges in some neighbourhood of the origin. Formally, we assume that ¢, € C¢,
i=0,1,..., and f: C > C“ Rational fractions of the form

r(z)=p(z)/q(z)

normally exist and approximate f(z) in the sense that

p(z)/q(z) =f(z) + O(z""), (1.2)
A{p}<n, 03{q}=2k, (1.3)
q(z) | p(z) -p*(2), ,; (1.4)

and that r(z) is normally uniquely defined by (1.1)-(1.4) [3]. (The notation of (1.2)—(1.4) will be
defined later in this section.) The rational form of #(z) can be obtained by using the e-algorithm
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to extrapolate the partial sums of (1.1) and using generalised (Moore—Penrose) inverses for the
vector valued quantities. Consequently, such fractions are called generalised inverse, vector-valued
Padé approximants, or GIPAs for short.

The following requirements seem natural for an interesting system of vector-valued Padé
approximants of f(z):

(i) If all the coefficients {c;} have the same direction, i.e. ¢;=Ad;, i=0,1,2,..., A fixed,
A€ C and R(z) is the (ordinary) Padé approximant of ¥ ,d,z’, then AR(z) is the
vector-valued Padé approximant of f(z).

(ii) There is some sense in which the vector-valued Padé approximant is unique.

(iii) The poles of the vector valued Padé approximant normally occur at common positions in
the z-plane.

Two distinct systems of vector-valued Padé approximants, which satisfy these requirements,
have been established. Simultaneous Padé approximants, also known as solutions of the German
polynomial approximation problem, were investigated by Hermite, and they satisfy these
requirements. Row convergence theorems for simultaneous Padé approximants (analogous to
those in this paper for GIPAs) have been obtained by Mall [8] and Graves-Morris and Saff [6].
The latter paper contains the relevant up-to-date references.

GIRI and GIPA methods grew out of Wynn’s [11] vector-valued continued fractions, and
McCleod’s [7] analysis of their connection with the vector e-algorithm.

The system of GIPAs also satisfies the requirements (i)—(iii) above. The equivalents of GIPAs
for rational interpolation on distinct points are called GIRIs. A practical application of these has
been made by Roberts and Graves-Morris [10] to the modal analysis of vibrating structures. The
method enables data from different ports of the structure (corresponding to the different
components of f(z)) to be handled simultaneously, leading to uniquely determined values for
the modal parameters. The data are supplied at distinct frequency points, but otherwise the
model used is equivalent to that treated in Section 3 of this paper.

The issues of existence and degeneracy of GIPAs were ignored in (1.2)—(1.4). These equations
need to be replaced by the precise formulation of Graves-Morris and Jenkins [4], which we give
in (1.8)—(1.11).

Notation. We say that a function £(z) = O(z"*?) if
€0)=¢/(0)= -+ =£7(0) =0,

No bounding properties on £(z) are implied.
p(z) denotes a d-dimensional vector of polynomials, i.e.

p(Z) = (pl(z)a p2(z),...,pd(z)).

0(p) = max 3{p,}. (1.6)
The order of magnitude of a sequence { x,,} is denoted by the symbol 8(«”). The statement that
{x,} =0(a")
means that

lim sup|x,|Y" < |al.
n—o0
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A superscript * denotes complex conjugate. In (1.4), for example, * denotes functional complex
conjugate. If p(z) = a + bz, where a and b are constant complex vectors, p*(z) =a* + b*z. We
also reserve the notation Re f(z), Im f(z) for the real and imaginary functional parts. For
example,

Re f(z) =3(f(z) +f*(z2)). ‘ (1.7)
Truncation of Maclaurin series between orders /, m inclusively is denoted by

m

[e o} m
[ > cjzjl = ¢z,
=0 ! J=1

Definition. (p(z), g(z)) are said to be generalised inverse, vector-valued Padé polynomials
(GIPPS) of type [n/2k] for Zﬁocjzj if p(z), q(z) are polynomials satisfying

0 <hn-— ‘
ORI g :}} = _aza} for some a > 0, g
(i) q(2)1p(z)-p*(2), . (1.9)
(iii)  q(z) =q*(2), (1.10)
(iv) either g(0) # 0 or ¢g(z) has a zero of even order 28 (precisely) at the origin,
)  p(z)—q(2) X ¢z’ =0(z""P*1). (1.11)

i=0
Graves-Morris and Jenkins [5] showed that (non-trivial) GIPPs (p(z), g(z)) exist for the
problem expressed by (1.8)—(1.11). A solution can be found as follows: a matrix M has its
elements (row index i =0, 1,...,2k — 1; column index j=0,1,...,2k) given by

M,;=0, (1.12a)
j—i—1 .
M= Y Cliin-aks1” Gren—zis J> 1 : (1.12b)
I1=0
i—j—1
My=—= Y Cujin-2is1" Crinaier 1> (1.12¢)
1=0

Let ’

9= (G2ks 2k-15--->90)- (1.13)
Then any non-trivial solution of the equations

Mg=0 (1.14)
defines a denominator polynomial

q(z) =qo+ gz + -+ +qy2". (1.15)

Its corresponding numerator polynomial p(z) can be found from (1.11). If g, # 0, (p(2), q(2))-
are GIPPs of type [n/2k] for f(z); if g, =0, certain common factors of p(z), g(z) may have to
be removed to produce GIPPs. The details are given by Graves-Morris and Jenkins [5], and their
conclusions are summarised in Theorem 2.3.
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Definition. If (p(z), ¢(z)) are GIPPs of type [n/2k] for f(z), and if

q(0) #0, ’ (1.16)
then

r(z)=p(z)/q(z) (1.17a)

is called a generalised inverse, vector-valued Padé approximant of type [n/2k] for f(z), or
GIPA for short.
Definition. If (p(z), q(z)) are GIPPs of type [n/2k] for f(z), then

r(z)=p(z)/q(z) (1.17b)
is called a generalised inverse Padé form of type [n/2k] for f(z), or GIPF for short.

The GIPF defined by (1.17b) is unique [5], and a fortiori the GIPA defined by (1.17a) is
unique too. From (1.12)-(1.15), we obtain the generalised inverse Padé denominator as

0 M, My, U MO,2k—1 M0,2k
_M01 0 M12 e M1,2k—1 M1,2k
— My, - M, 0 Tt M2,2k—1 M2,2k
q(z) = : . : ) (1.18)
Mo 2k~1 M1,2k—1 —M2,2k—1 0 M2k—1 2k
42k Z2k=1 Z2k=2 2 1

provided that ¢(0) # 0. Again, the corresponding numerator polynomial follows from (1.11) and
r(z) =p(z)/q(z) is the GIPA for f(z). A specific instance of (1.18) for the [1/2] type GIPA is
given in Example 3.1.

In Section 2 of this paper, we establish the connection between a Padé approximant of f(z)
and the corresponding GIPA of (f(z), f*(z)). We derive the unitary invariance property
connecting GIPAs of ( f(z), f*(z)) and (Re f(z), Im f(z)). An amusing consequence of this
analysis is that our methods allow the construction of an (ordinary) Padé approximant of f(z)
from a GIPA of (Re f(z), Im f(z)) using real arithmetic only.

In Sections 3 and 4, we establish two theorems about row sequences of GIPAs. Under
conditions on f(z) similar to those of De Montessus’ theorem [9], we show that all GIPAs of
sufficiently high order in the appropriate row exist and converge to f(z) in the familiar domain.

2. Further properties of generalised inverse Padé forms

We establish here the remarkable relationship between a Padé approximant of a function f(z)
and the corresponding GIPA of (f(z), f*(z)). For a vector function f(z), we derive a unitary
property of each GIPF of the extended vector function

f2(2) = (f(2), £*(2)). 2.1



P.R. Graves-Morris, E.B. Saff / Vector-valued Padé approximation 67

Moreover, the row convergence theorem to be proved in Section 4 shows how natural it is to
form GIPFs to f¥(z). We also derive a result about degenerate approximants in Theorem 2.3
which we need for the proofs of the convergence theorems of Sections 3 and 4.

Let f: C - C4 denote the vector-valued function to be approximated, and consider f&: C —
C?“ defined by (2.1). Let (p®(z), q(z)) be GIPPs of type [n/2k] for fF(z). We define p(z)
componentwise by

pi(z)=pF(z), i=1,2,....d. (2.2)
By definition, therefore,

f(2)q(z) —p(z) = O(z"""). (2.3)
From (2.3) and (2.3*),

PE(z) =(p(2), p*(2)). (24)

Next, we prove that the process of formation of GIPPs is invariant under unitary transforma-
tions.

Theorem 2.1 (Unitary Invariance). Let U be a d X d unitary matrix, let ¢ be an arbitrary complex
constant and let f(z): C —>C?% If (p(z2), q(z)) are GIPPs of type [n/2k] for f(z), then
(cUp(2),q(z2)) are GIPPs of type [n/2k] for cUf(z).

Proof. The accuracy-through-order property,
cUf(2)q(z) — cUp(z) =O(z"*#*1)

follows from (1.11). The divisibility property holds because
(Up)* - (Up)=p*-p. O

Corollary 2.1. The unitary property holds also for generalised inverse rational interpolants defined on
real interpolation points by the equations

p(x) =f(x)q(x), i=0,1,...,n. (2.5)

Proof. The proof is virtually the same, except that the modified interpolatory condition (2.5)
replaces the accuracy-through-order condition (1.11).

Example 1. Let I denote the d X d identity matrix and let
V2 IV2
U:=
—i N2 /2
define a 2d X 2d unitary matrix. Then
(1/V2)UfE=(Re f,Im f), | (2.7)

where Re, Im denote the real and imaginary parts of the functional form, as in (1.7)."
For the case of d =1, we consider the particular function

f(z2)=f(z)=v/(z ). (2.8)

26
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Let y=a+if, with a, 8 € R. From (2.8) we find that

_ gl(z) - gz(Z)

Ref(z)—(z_g)(z_g*), Im f(z) RO, (2.9)
where

gi(z)=az—Re(§*y),  g(z)=Bz—Im({*v). (2.10)
We define g(z) = (g,(2), g,(2)), so that

) = g(z)

(Re f(z), Im f(z)) OG- (2.11)
From (2.10),

g(z)-g*(2)=1v1*(z=§)(z—-¢*) (2.12)
and we observe that g(z)-g*(z) vanishes at the pole of f. Had we first considered

h , hy
FE) = (£(2), £7(2) = Aale): Pa(2) (213)

(z=8)(z-¢%)
with 7,(z) =y(z—{*), hy(2)=v*(z—{), h(z)=(hy(2), h,(2)), we would have observed
directly that

h(z)-h*(z)=2]y|*(z=§)(z = §*).
This form makes the vanishing of k- h* at the pole of f more obvious.

One conclusion to be drawn from the previous Theorem and demonstrated by Example 1 is
that formation of GIPPs to ( f, f*) and to (Re f, Im f) are unitarily equivalent processes.

Theorem 2.2 (Reduction to the Padé case). Let f(z) be analytic at the origin, so that f(z) =
):jlocjzj, and let f5(z) = (f(z), f*(z)). Suppose that f(z) has an [l/m] type Padé approximant
(in the classical or Frobenius sense) with a(z), b(z) as its numerator and denominator polynomials.
Define

n:=I[+m,

A(z)=(a(z)b*(z), a*(2)b(z)), B(z)=0b(z)b*(z). (2.149)
Then (A(z), B(z)) are [n/2m] type GIPPs for f&(z).

Proof. We assume that a(z) and b(z) have the properties
d{a} =A</, a{b}=p<m,
b(z)f(z)—a(z)=0(z"*"""1). (2.15)

If 5(0) =0, let the multiplicity of the zero of b(z) at the origin be 8 precisely. Otherwise, let
B:=0. From (2.14), (2.15),

A(z) — B(z) fB(z) = O(z"*F+1). (2.16)

The divisibility condition, that B(z)|A(z)-A*(z) is easily verified. For the degree checks, the
value a = m — pu is non-negative and we get

0{B} =2m—2a, {Ad}<sn—«a
as required for GIPPs. O
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Corollary 2.2. Let f(z) =X7_oc;z’, and suppose that ((p(z), p2(2)), q(z)) are GIPPs of type
[n/2m] for (Re f(z), Im f(2)). Then

r(z)=(p(z) +ip,(2))/q(2) (2.17)
is the (classical) Padé approximant of type [n — m/m] for f(z).

Proof. The rational fractional forms of a Padé approximant and of a GIPF are unique, and so
the corollary follows from (2.7) and Theorem 2.2. O

Corollary 2.2 implies that f(z), as expressed by the right-hand side of (2.17), is reducible from
type [n/2m] to type [n — m/m]. This property is exhibited by the following example.

Example 2.1. From the determinantal representation (1.18), we have

0 |co|2 cgepteffec
1/2 —
¢z = el 0 e 2
z? z 1

=leol*{leo|?~ (e ey +ef-eo)z+ |01|222}

and by cross-multiplication

Pll/z](z) = |c0|2{00|c0|2+z[c1|c0|2——c0(c5“ Y +cl*'co)”
which form the [1,/2] type GIPPs of £7_,c,z’. If we now consider the case when ¢,, ¢; € R?, and
set

(ags Bo)=¢o, (an, By)=c¢y, do=ap+1By, dy=a;+ip,

q(2) =gV (2)/1¢01%,  p(z)={pl"?(2) +1p}"(2)} /112,
then we readily find that

q(z) = (do — zd)(dg — zd;*), p(z) =d3(dg — zdy*).
The polynomials p(z) and g¢(z) share a common factor of (d¢ —zd{*). We notice that
p(z)/q(z) is the [0/1] type Padé approximant of X7 ,d;z’, and so Corollary 2.2 is verified in
this instance.

It is worth remarking that this method provides Padé approximants of power series with
complex-valued coefficients using real arithmetic only.

Were Theorem 2.2 to have the stronger hypothesis that f(z) have an [//m] type Padé
approximant according to the Baker definition with 5(0) =1, and the same constructive
definitions (2.14), the conclusion would be that 4(z)/B(z) is an [n/2m] type GIPA for f&(z).
The converse of these remarks applies to Corollary 2.2.

The next theorem concerns degeneracies of GIPPs. It is used primarily as a lemma for
Theorems 3.1 and 4.1. The proof of the theorem is given by Graves-Morris and Jenkins [5].

Theorem 2.3. Let ( p(z), q(2)) be the polynomials constructed from a solution of the homogeneous
equations (1.14), plus (1.15) and (1.11). Let A be the least non-negative integer for which

[27%4(2)] .= #0, (2.18)
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and let
o=[3(A+1)]. (2.19)
Then GIPPs (p(z), 4(2)) of type [n—o/2k — 20] for f(z) exist such that §(0) # 0 and
p(2)/4(z) =r(z) =p(z)/q(2).
Thus r(z) is the unique GIPA of type [n —o/2k — 2a] for f(z).

Moreover, (22°p(z), z2°4(z)) are GIPPs of type [n/2k] for f(z) satisfying the extended
accuracy-through-order condition

22°p(z) — 2%°4(z) f(z) = O(z"* 7). (2.20)
Notice that the accuracy-through-order result in equation (2.20) is stronger than one might
expect a priori.

3. First convergence theorem for rows

In this section, we consider approximation of a vector function f(z), which is analytic in a
disk except for poles of total multiplicity k, using GIPAs of type [n/2k]. For our main theorem,
we suppose that the given function may be expressed as

f(z)=g(2)/0(z) (3.1)
where
(i) Q is a monic real polynomial of degree k
with roots { z,,...,z, } and 0 < |z,| <p, i=1,2,...,k; (3.2)
(1))  g(z)is analyticin |z| < p; (3.3)
(i) g(z,)-g*(z)#0, i=1,2,... k. (3.4)

If z; is real, then (3.4) is equivalent to g(z;) # 0. We remark that, for £ even, the convergence of
GIPAs of type [n/k] to f(z) should not be expected: suppose that {(P!"/*1(z), Q"/¥1(z)),
n=k/2, k/2+1,...,} is a sequence of GIPAs converging to f(z) in |z| < p with

lim Q"/*1(z) =Q(z) and lim P"/*1(z)=g(z).

The property that

0(z)1g(z)-g*(2)
would follow from the divisibility condition for GIPAs, and this would falsify (3.4).
To identify the domains of convergence needed in Theorems 3.1 and 4.1, we make the
following definitions. For any positive r, let

D= {z:|z|<r}. (3.5)
we define a disk with the poles deleted by

k
Dy =0,= U (). (3.6)
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For any positive p < p, let K be any compact subset of D,” N D,. Also, let E be any compact
subset of C. We establish convergence of the row sequence of GIPAs in the domain D, .

Theorem 3.1. Let f(z) be a vector function such that (3.1)—(3.4) are satisfied. Let (P,(z), Q,(2))
be GIPPs of type [n/2k) in which Q,(z) has leading coefficient equal to unity. Then

lim P,(2)/Q.(2) =f(z), z€D;, (3.7)
and the rate of convergence is governed by

Him sup | f-P/Q, " <w/p. (3.8)
The denominators converge according to

lim 0,(z) = 0*(2) (3.9)
and the rate is given by

10, = Q%I < max % (3.10)

Proof. We use the non-trivial polynomials p,(z) and g,(z) which constitute the [n/2k] type
GIPPs to f(z). Following Theorem 2.3, equations (2.18)—(2.20), we assign non-negative integers
a,, A, to the GIPPs and obtain the properties
P.(2) = f(2)q,(z) = O(z"" ") | (3.11)
and
Pa(2) P (2) = my 2 (2)4,(2) (3.12)
for some polynomial =,,_,.(z) of degree 2n — 2k at most.
From (3.11) and (3.12),
0 (2) (Tan2i(2) = Pa(2) - £*(2) = P (2) - £(2) + 4, (2) £(2) £ *(2))
— O(ZZ(n+7\,,—o,,+1)). (313)
Multiplying (3.13) by 0*(2)/q,(z) and using (2.19), we get
Q*(2)myy_2i(2) — Q(2)pa(2) - 8*(2) — Q(2) p¥(2) - 8(2) + 4.(2)8(2) - g*(2)
=0(z*"*). (3.14)
We use Hermite’s formula to give precise form to the right-hand side of (3.14). For any p’ < p, we
define

A= =5 [ ()80 420 0} 2SS
-G [, A0l 8 0+ [ a0l 50) 7208
(3.15)
and
G =T [ 080 87 () (3.16)
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Then, for z € D, (3.14) becomes
Q*(2)myy_2i(2) = Q(2) pa(2) - g*(2) — Q(2) p¥ (2) - 8(2) + 4, (2)g(2) - g*(2)

=A4,(z)+C,(z2). (3.17)
From (3.16), we estimate the sth derivative of C,(z) by
CO(z)=0(1z1/p)", s=0,1,2,... . (3.18)

(We have prematurely taken { ¢,(¢)} to be uniformly bounded in |7| < p in equation (3.16), but
see (3.22).) To obtain a similar result for 4,(z), we need to interpolate ¢,(z) at the zeros of
Q(z). We express

v

0(z)=TT(z—¢)"™ (3.19)

j=1
where the {{;, /=1, 2,..., »} are distinct and satisfy
ISl <&l < - <|§ ] <o (3.20)
We have ¥’ _;m; = k for compatibility with (3.2). We use a Hermite-Lagrange basis,
B:= {Bj,s(z), J=1,2,...,v;5=0,1,....2m,— 1}
of polynomials for P,, _; with the properties that
[(d/dz2)'B; (2)],_, = 8:8,,  1<I<w, 0<i<2m,—1.

Then we can express ¢,(z) in interpolated form by

D= T a0)B,(:)+ 600 (3.1

We assume a normalization for g,(z) in which ¢, > 0 and
y 2m;—1
R DYDY
Jj=1 s=0

An important consequence of this normalisation is that {g,(z)} are uniformly bounded in
z] <p.
We claim that
a2 (&) =00181/0)",  j=1,2,...,v, 5=0,1,....2m,— 1. (3.23)

First, we consider {;, a zero of Q(z) closest to the origin, and our immediate aim is to estimate
q,($,) using (3.17) evaluated at {,. Since f(z) is analyticin |z| < |{; |,

[£(1)q, ()]s =0(2/8)" for 1] > |4 |. (3.24)

Suppose that 0 <s < m; — 1. Taking the sth order derivative of (3.17), and setting z = {;, we
obtain

2 ($)|=1. (3.22)

[(d/d2)*{4,(2)g(2) - g*(2)}] cmp, = AP (§1) + € (1) (3.25)
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From (3.24) and (3.15), we have
AD(G) =0(4/p)", 5=0,1,....
Combining this with (3.18), we have
[(d/d2)*{g.(2)2(2)  g*(2)}] :=s, = 0(:1/0)".
Since g({;) - g*($,) # 0, a simple induction on s shows that
g(5) =0(8/p)", O<s<m -1
Now suppose that
[l =1861= - =181 <1l
We have just shown in (3.28) that

qn(‘)(§j)=0(§j/p)", j=12,...,7, 0<s<m;—1.

Next we prove that

q£3)(§7+1)=0(§1+1/p)n: O<S<m7_1.
To estimate 4$7(¢, . ,), observe that we can rewrite (3.21) as

Because B; (¢) f(?) is analytic in |7] < |[{;],

g (&) [ B () F(D)] g =0(t/p)", |11 > 14|

+ _ i q;SS)(gj)Bj,s(t)'*'chz(t)-

73

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

for 1<j<7,0<s<m;—1, and so the contribution of these terms (in the splitting of (3.31)) to
A, (¢, 1) as given by (3.15) is 8({,../p)*". For the remaining values of j, s, the function

B, () f(¢) is analytic in |z ]| < |{, .1 |. Thus, recalling (3.22),
thS)(gj)[Bj,s(t) f(t)]; =0(1/¢,41)" 111218441
and
¢, [@%(1) ()] o =6(1)" for |1] <p.
Therefore
AD(,41)=0(8,01/p)", O<s<m, -1
and so from (3.17),
(d/dz)"{g.(z)g*(z))

from which (3.30) follows.
Continuing in a step-by-step fashion, we deduce that

g (§)=0(3/p)", 1<j<v, 0<s<m;—1

z=§ 41 = 0(§7+1/p)n'

and
AD(8)=0(8/p)", s=0,1,....

(3.32)
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We now consider the case of the sth order derivatives of (3.17) for m; < s <2m;— 1. Initially,
we put z = {; in the sth derivative of (3.17), and obtain

[(d/d2)" {4.(2)g(2) - 8*(2)}] .-,
=AP(§) + ) + D (%), mi<s<2m —1 (3.33)

with

D,(z)=Q(z){g(2) - [4.(2) f*(2)]o + &*(2) - [4.(2) £(2)]5}- (3.34)
Consequently,

DI () = 0 () {8(2) - [4.(2) F*(2)] 5+ 8*(2) - [4u(2) F(D)]G}],er- (3.35)
From (3.32), and since B; (¢) f(¢) is analyticin |z| <[],

0 (&) B, (1) F(D] g =0(e/p)", 1112181, (3.36)

for 1 <j<», 0<s<m;— 1. For certain other values of these indices, namely j=1, m; +1<s

<2m—land2<j<vy, m;<s<2m;—1,
(z-$)0Q(2) | B, ,(2).

Therefore, for these values of j, s, the function B, | f is analyticin |z| <p,

[B;,(2) £(2)] =, = 0, (3.37)
and incidentally
[0%(2) £(2)] .=, =0. (3.38)

Referring back to (3.34), we need the interpolated form of g,(z) with the B, ,, (z) term displayed
explicitly. From (3.21), we obtain

yp m;—1
(4. F15 =2 @) [Bim flo+ X L a2(5)[B,. f],

Jj=1 s=0
2m1_1 v 2mj—l
* X @B+ L X a2(8)[Bys f o + el @10, (3:39)
s=mq+ ) Jj=2 s=m;

where the variable z has been suppressed for brevity. For z = {,, equations (3.36), (3.37) and
(3.38) provide estimates for all the terms in the right-hand side of (3.39) except the first.
Therefore

(2. £10(81) = 45" () [ Bum, £ o($1) + 8(51/0)". (3.40)
Similarly, we find that
[‘]nf*] o($1) = qrsml)(gl)[Bl,mlf*];(gl) +0(81/0)". (3.41)

Because B, ,, (z) f(z) is analytic at {,
[Bim, F]o(81) = [ Bim F](§1) asn— oo,
From (3.1),
[Bim £](61) = [ B /@] ($1)8(81) = 8(81) /@ (81).
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Hence we find that

[ By £]0(80) — £8(5)/Q(31) (3.42)
and similarly that
[ Biw £]0(50) = 8*(51)/0™(51). (3.43)

Substituting (3.42), (3.43) into (3.40), (3.40) into (3.35), and then (3.35) into (3.33) with s =m,
yields with (3.32)

_g(fl) 'g*(fl)quml)(gl) = 0(§1/P)n,

and hence

q'('m1)(§1) = 0(§1/P)n-

The remainder of the proof that
Q,(,s)(fj)=0(§j/ )", 1<j<7, 0<s<2m;—1 (3’44);

follows in a step-wise fashion similar to that preceding (3.32). From (3.21) it now follows that
¢, 1 as n — co and that we may define

0.(2) = q,(2)/c, (3.45)
for n sufficiently large. The results (3.9) and (3.10) now follow from (3.44) and (3.21). We again
exploit the remainder formula to prove convergence of the approximants. For sufficiently small
€>0, and z € K, we have

. {f f(1)Q,(t) dr E f f(1)0.(2) dt}_
|

Zn
e Y P B Y P s

(3.46)

Using (3.21), (3.44) and (3.45), we estimate the right-hand side of (3.46) and get
f(2)0,(2) - B(z)=6(|z|/p)", zEK.

Using (3.9), it follows that the approximants converge at the rate governed by (3.8).

4. Second convergence theorem for rows

As an alternative way to approximate a vector function f(z) which is analytic in a disk except
for k simple poles, we consider in this section formation of GIPAs of type [n/2k] to
(f(2), f*(z)). In Section 2 we explained that this procedure is unitarily equivalent to formation
of GIPAs to (Re f(z), Im f(z)), which involves real-valued coefficients only. Our main result is
another row convergence theorem for a vector-valued function having the following properties.

Let

f(z)=a(z)/b(z) (4.1)

where

b(z)=TT(z-¢). @2)
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S={{, &* §, 55§, §F ) 18 a set of 2k distinct points with 0 < |{;| < p for all j, and let
a(z) be a vector function analytic in |z | < p, for which

a($)+0, i=1,2,..., k. (4.3)
Let

fE(2)=(£(2), f*(2))=(a(z2)/b(z), a*(z)/b*(z)) (4.4)
and so fE(z) has precisely 2k distinct poles in |z| < p. We are led to define

g(z)=a(z)b*(z), (4.5)

0(z)=b(z)b*(z). (4.6)
so that

fE(2)=(g(2), g*(2))/Q(2). (4.7)
Because the elements of S are distinct,

g(&)#0, i=1,2,... k, (4.8)
but

g({,) 'g*(gi) =g(§i*) 'g*(g‘i*) =0, i=1,2,..., k. (49)

Equation (4.9) shows that g(z)-g*(z) and Q(z) have § as a set of common zeros, and so (4.7)
suggests that convergence of the row sequence of type [n/2k] to f%(z) should be a natural
occurrence. This contrasts with the hypothesis (3.4) for convergence of the row sequence of type
[n/4k] in Section 3. Our main result involves the definitions (3.5) for D,, D, = D, —U{{,, {*}
and the associated definitions of K and E.

Theorem 4.1. Let (PE(z), 0,(2)) be a GIPF of type [n/2k] to f¥(z)=(f(z), f*(z)) as
specified by (4.1)—(4.3), and let PF(z) = (P,(z), P*(z)) as required by (2.4). Then, as n — oo,

P(2)/Q.(z) > f(z), z€D; (4.10)
and the rate of convergence of these approximants is governed by

lim sup | £~ B,/Q, X" < p/p. (4.11)
Additionally, if Q,(z) is normalised to have leading coefficient unity,

0,(z) > 0(z), z€C, (4.12)
and the rate of convergence is governed by

lim sup || Q, — Q11" < max |1/p. (4.13)

Proof. We use the non-trivial polynomials ¢,(z) and

pr(2)=(p,(2), p¥(2))
which constitute [n/2k] GIPPs to fF(z). Following Theorem 2.3, equations (2.18), (2.19), we
assign non-negative integers o,, A, to the GIPPs and obtain the properties

p.(2) = f(2)g,(z) = O(z"**"1) (4.14)
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and
P.(2) - pf(2) =7y _2:(2) g, (2) (4.15)
for some polynomial ,, _,,(z) of degree 2n — 2k at most. From (4.14) and (4.15), we obtain

4:(2){(M2n—21(2) = Pu(2) £ *(2) = p¥(2) - £(2) + q,(2) f(2) - f*(2)}
= Oz Ur*o*D), (4.16)

By multiplying (4.16) by Q(z)/q,(z) and using Theorem 2.3, we find
Q(2) M2k (2) = Pa(2) - 8*(2) = p¥(2) - 8(2) + g(2) - £*(2)4,(2)Q(2)
=Q(z*"*1). (4.17)

We can now use Hermite’s formula to give precise form to the right-hand side of (4.17). We find
that

0(2) Ty 2i(2) —Pu(2) -g*(2) —p¥(2) -g(z) + 8(2) -g*(2)q,(2)Q(2) "

=A4,(z)+C,(z2), (4.18)
where, for any p’ <p and z € D,,
22n+1 .
4,(2) =~ 5= fm {pa(t)-g*() +pr(1)- g(t)}——)w (4.19)
and
Z2n+1
— # et
()= [, _ a0 a(0a.() gz )tz,,ﬂ (4.20)
From this representation of C,(z), we find that
C.(2)=8(z/p)"", |zl <p. (4.21)
To obtain a similar result for 4,(z), we interpolate ¢,(z) in {{,, {*, I=1,2,...,k} by
k k
4.(2) = ¢,0(z) + X 4,(§)Bi(2) + X 4,(8%) B*(2), (4.22)
=1 =1
where £= { B/(z), Bj*(z), I=1,2,..., k} forms a Lagrangian basis in which
B,($,) =Br(3X) =9,
,*(gs) ! (KS*) Pl s=1,2,...,k,
B, (fs) =B,(§*) =0,
We choose the normalisation for ¢,(z) in which ¢, > 0 and
k
e, t22 14,(8)1=1, (4.23)
=1

so that { g,(z)} is uniformly bounded on any compact set for large n.
Using (4.22), we obtain :

pr(1)=[a.(t) F*(1)]o

k k
=c,[Q(1) £*()]o+ Elqn(fz)[Bz(t) o+ lgqn(iz*)[Bz*(t)f*(t)] 0
(4.24)
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Substituting (4.24) into (4.19), we find for |z| <p

k k 2n
A4,(2)= L a,(6)nh ) + X a () +e( 2] (425)

where

(e m = S [ e [0 i+ (OB F0015) (S

27i
(4.26)
From (4.26), we can estimate
n(2) =8(z%/p8,)". (4.27)
Unless ¢,($;*) = 0, and this trivial case is easily included, (4.25) becomes
k 2n
4,(2) = ¥ a,(&7)e(2) +6( 2 (4.28)
=1
where
e (2)=u7"(2) + m*(2) 4, (§) /9. (§*). (4.29)
Again, we estimate
z2\"
ef(z)=0(—) , I1=1,2,... k. (4.30)
29

Equations (4.21), (4.28) and (4.30) provide the bounds required for 4,(z) and C,(z) in (4.18).
Next, we evaluate the left-hand side of (4.18) at {;:

{(QMp-2k—Pn 8% — P 'g+a'a*qn}(§j)
=g($) (f*a,—pr}(), j=12,.., k. (4.31)

In (4.31), we use the remainder formula again,

§n+l
=5 ff (t)Qn(t)_nW

where I; is a simple contour enclosing 0, {; but no singularities of f*(z). Let f*(z) have
residue y,* at its pole at {*. From (4.7), we find that

{(f*a—pr}( (4.32)

=g(8)/0'(8), j=1,2,... k. (4.33)
The contour I is ‘expanded’ to become the contour |#| = p’, with max, |{;| < p’ <p, giving
* % D n+1 . ‘Yl*qn(gl*)
g(6) {f*a,—px}&) =7 =) X o s (4.34)
=18 (fz - fj)

where

§""+lg(§~) dr
D,_ > J * _de
€ ¢ SR e '/1‘t|=p'f (t)Qn(t) Z"+1(t—§j) . (4_35)
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79
We have an easy error bound for (4.35):
V"
e ==0(-i) : (4.36)
: P
Substitute (4.34) into (4.18) evaluated at {; to find

k k n
vy D ool
gj g(gj) l§1 fl*(nﬂ)(fz*‘gj) léqn(g'l Jei ({1 ) P
for j=1,2,..., k. Let

(4.37)

gu(2) =gq,(z)z7" 7"
and then (4.37) becomes

i [g($;) v .\ ({,*
=1 j

b4

(4.38)

§1* - § 5
Using (4.33), this reduces to

(4.39)

[V ] ey — l)n
;_g-l*_gj_"‘j ]qn(g'l) 0(p

~

(4.40)
where

x\nt1
(M = Q’(§,)(%) e ($).
From (4.30), we obtain

e =0(8/0)"
andso e’ —»0asn—o0, j=1,2,....k
In the Appendix, the matrix M, whose elements are
Y Y .
Aljl::m’ l,]=1,2,...,k,
is shown to be invertible. It follows from (4.40) that
and from (4.38) that
nli’n:osuplqn(gl)ll/ns|§I|/p, l=1a25-~-7k-

(4.41)
The proof now follows the lines of Theorem 3.1, and we find ¢, — 1. For n sufficiently large,
let

Q,(2) =q,(2)/c,

and then (4.12), (4.13) follow. With the representation equivalent to (3.46), equations (4.10) and
(4.11) follow too and the proof is completed. O
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5. Conjecture and conclusions

In Sections 3 and 4 we established two row convergence theorems, each appropriate to its own
distinctive setting. There remains open, however, the general question of establishing a de
Montessus de Ballore type theorem for any vector-valued meromorphic function of the form

f(z) =g(2)/0(z),

where Q(z) =IT}_,(z—z,), 0 < |z;| <p, g(z) is analytic in D,: |z| <p with g(z,) # 0 for all
J. Without loss of generality, we may assume that Q is a real polynomial (cf. (2.1)-(2.4)). It
seems plausible that for a suitable choice of fixed denominator degree, say 2», the GIPAs of type
[n/2v] will converge to f in Dp\U’j;l{zj} as n — oo. Based on Theorems 3.1 and 4.1, the choice
of 2» seems likely to be fixed by the following criterion. Let m; be the precise order of the pole
of f at z; and let A; be the order of the zero of g-g* at z;, with the convention that A ;=0 if
(g-g*)(z;) # 0. (Note that (g-g*)(z;) = | g(z)) | 2£0if z; is real). We then take

2y= glmax{@mj—}\j), 1}.

Observe that the right-hand side of this expression is necessarily even because
(i) A;=0 for real poles,
(ii) non-real poles occur in conjugate pairs.

Note. After original submission of our manuscript, we were informed of the relevance to it of
Madison Report MRC626 (1966) by P. Wynn. In this (unpublished) report, and in the context of
the vector e-algorithm, a result similar to our Corollary 2.2 is stated.

We are grateful to Prof. C. Brezinski for this information, and to Prof. P. Wynn for a copy of
his report.
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Appendix

Theorem. A set of distinct complex (or real) numbers {m,;}7_, is given, with the property that
Ren;#0, i=1,2,.... (A1)

A set {a;}1-, of non-null complex (or real) vectors with a; € C? is also given. The elements of
an n X n matrix L are defined by

I ai-aj’-"
& 7]:""")7’

i, j=1,2,...,n, (A2)

where we assume that each L,; is finite.
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Then det L +# 0 and
sign{det L} = sign{ T1Re ni}. (A.3)
i=1

Proof. The result is obvious for the case of n =1, We will prove the result for the cases of
n =2, 3. The method used for the case of n =3 exemplifies the method for larger values of n,
and we feel that this style of proof is clearer for this theorem than the equivalent using
multi-indices [1].

Case of n=2. Let a:=a,, b= a, for short. By elementary algebra, we find that

la|? a-b*
mE+nT om0y
Pr= (g +n3)(m; +n3)

(my + 0¥ )(ny + 03 b g* 5|2

mtnf  mtn3
2 5 2
a a-b -
—| lal NESPR A R (A4)
b-a* |b| M+ 13

The determinant on the right-hand side of (A.4) is a Gram determinant. If @ # Ab for any A, this
Gram determinant is strictly positive. Otherwise, a = Ab for some A, and then the second term
in the right-hand side of (A.4) is strictly positive, since { 7;} are assumed to be distinct. Therefore
P>0.

Case of n = 3. This case is proved in four stages.

Stage 1. We first consider the case of d =1, which is the one dimensional case, and let a := a;,
b:=a,, ¢:=a, for short. The formula for a Cauchy determinant [2] leads to the result

la|? ab* ac*
mt+ny mtnr mtnl

ba* 152 bc*
ntny metmy Myl

ca* cb* lc|?
m+ny mytny mz+ag

_ |a|2|b|2|C|2 I =22 = 2 s —my |2 (A.5)
8(Re . )(Re my)(Re m3) |y + 9% |2 my+ 03 |2 ms+mf |2 '
Therefore the theorem holds for the particular case of d=1, n= 3. To establish the result for
d > 1, we make the inductive hypothesis that the theorem holds for the case of
a,eC¥ D i=1,2,3.
Stage 2. For a,€ C?, let a:=a,, b=a,, ¢=a, for short.
We define
at=(0, a,, a3,...,a,)
so that
a—a*=(a,0,0,...,0),
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and similarly for b and c¢. We assume, for the moment, that a*, b+ and ¢ are non-null. We
consider the determinant.

1 1 c
* * - * 0 O
Tt M+ 13 M+ M3
1 1 cof
* * ! ) 0 0
Ny +m Ny + M2 Nyt M3
I ¢ lch c.l..aJ_* c_J_-b_L*
s+ mytny oty N3 + 17 3+ 13
L 1 % 1,2 1 1o
a ‘¢ -b
O O % !a I* 2 *
M +n; m+n m+mn;
bJ" 1L o% L, L* bJ. 2
O 0 ¢ * b a* I |*
Ny + M3 Nt m Ny + 13

: (A.6)

which is a real quadratic form in the variable c;. As such, we define D¥, D®, D implicitly by

D® = |¢;|’DY + ¢, DP* + ¢} DP + DP.

For example, the coefficient of |¢;|? in (A.6) is

DY =

Using (A.4), we find that D{¥ 0 and

1 1 1
m+n  mt+ny  n+n3
1 1 1
Nt om0y Mty
1 1 1
mtnf mtad my+nf
0 0 0
0 0 0

sign{ DY} =sign{Re 7,}.

The discriminant of the quadratic form (A.7) is

4® .= DODO* — DEDP.

0 0

0 0

0 0
|a_L|2 a.L.b_L*
m + 07 m + 13
b.L_aJ.* ‘bJ_IZ
ny +nf ny+ 03

Jacobi’s identity is directly applicable to (A.10), and we find

AP = _Ds(g?ssD (4),

(A7)

(A.8)

(A.9)

(A.10)

(A.11)
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where
1 1 1
0 0 0
mtny m+ny m+al
1 1 1
: 0 0 0
ntnt  mytany  my a3
1 1 1
0 0 0
n+nT mytny ny a3
D@
Ia.L|2 aJ..bJ_* a.L_cJ.*
0 0 0
M+ 03 M+ 03
Lo, Lox 12 L, Ll x®
0 0 0 b~ -a : | b~ | * b~ -c ;i
nytm Ny + 13 Ny + 13
R L 'bJ‘ * 12
0 0 0 c”-a : c : fe | ;
N3+ N3+ N3 N3+ 13
(A.12)
and Dy is obtained by deleting rows 3, 6 and cols 3, 6 from the determinant in (A.12). In later

equations, we continue to use this notation: for a generic determinant D, D, , is defined to be the
determinant D with row p and column r deleted, and D, ,, is defined to be the determinant D
with rows p, ¢ and columns r, s deleted.

By using the inductive hypothesis and the result for Cauchy determinants (used in Stage 1), we
find that D® > 0, D, > 0 and hence we obtain

A® <0
in (A.11). This result, together with (A.7) and (A.9), shows that D® = (0 and
sign{ D@} = sign{Re n5}. (A.13)

We also need two corollaries of this result (A.13). By the same method, we find that D{} + 0,
DR, #0 and

sign{ DY} = sign{(Re n,)(Re n3)}, (A.14)
sign{ D{2,; } = sign{Re n,}. (A.15)
Stage 3. Consider the determinant
1 b ot 0
m+tnt mt+n; m + 03
b, |b|? b-c* b' a**
5 | Mt metwy mtany mptaf
DP = 5 L (A.16)
o c-b* |e] cTa*
n+ny mtn: n3 + 0% n3 + 07
aJ'-bJ‘* a.L_cJ.* |a.L|2
0
7+ 03 03 i+
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which is a real quadratic form in b,. We define D®, D?®, D{ implicitly by
D® = |b,;|*D{ + b, DP* + b¥DP + DP. (A.17)

By inspection,

1 1 g} 0
m+nt m+ny m+nd
1 1 o 0
DO = ny + i n,+ M3 M2t N3 (A.18)
2 T c o |c|2 etgt* .
N3+ n3 + 03 M3+ 103 M+ m
0 at-ct* |a 1 | 2
N3 m +
In fact, D{? = D). By (A.14) we obtain D{? # 0 and
sign{ D{®} = sign{(Re n,)(Re 13)}. (A.19)
The discriminant of the quadratic form (A.17) is
AP = pPp@* — pPDP. (A.20)

Again Jacobi’s identity applies directly to (A.20), and we find that
A® = —DpODY, ..

From (A.13) and (A.15), we find that A®’ < 0. From (A.17) and (A.19) we deduce that D® %0
and

sign{ D@} =sign{(Re n,)(Re n,)}. (A.21)
As a corollary, we find by the same method that D{% + 0 and
sign{ D{} } = sign{(Re n;)(Re n,)(Re n5)}. (A.22)
"Stage 4. Our aim is to analyse the determinant
la|? a-b* a-c*
mtar mtar mtad
b-a* |b|? b-c*
DW= A.23
LTSk L Pak A PR 1 (A23)
c-a* c: b* le|?
mAm mstn my+ad

which is a real quadratic form in a,. We define D{, D{" and DV implicitly by
D® = | g, |1*D{P + a, DP* + a DM + DV,

By inspection, D{V = D{%. Hence D{P # 0 and
sgn( D" = sign{ (Re )(Re m,)(Re 7))

(A.24)

(A.25)
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The discriminant of the quadratic form (A.24) is
AV = pOpO* — pOPD = — pADD, . (A.26)
Using Stage 1, we find that D3, # 0 and
sign{ D1(¢21314 = sign{(Ren,)(Re 1)}
Taking this result with (A.21), (A.26), we find that A < 0. Hence D® # 0 and
sign{ DV} =sign{ D{P } = sign{(Re n,)(Re 1,)(Re n3)}.
Ifat=0,b"+*0and c* #0,
D® =|a,|*DJA.
The same method of analysis as that given in stages 2,3 remains applicable, and (A.22) remains
valid. The special cases in which one or more of a*, b* and ¢* are null are treated similarly.
This completes the inductive proof of the theorem for the case of n = 3, and exemplifies the
method for the cases of n=4,5,6,... . O
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