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Uniform and Mean Approximation by Certain Weighted
Polynomials, with Applications

D. S. Lubinsky and E. B. Saff

Abstract. Let W(x)=exp(-Q(x)), where, for example, Q(x) is even and
convex on R, and Q(x)/log x - o0 as x - 0. A result of Mhaskar and Saff asserts
that if a, = a,, (W) is the positive root of the equation

1
n =2/ I 4,xQ"(a,x)/N1-x7 dx,

o
then, given any polynomial P,(x) of degree at most n, the supnorm of
P,(x) W(a,x) over Ris attained on [—1, 1]. In addition, any sequence of weighted
polynomials {P,(x) W(a,x)}{ that is uniformly bounded on R will converge to
0, for |x|>1.

In this paper we show that under certain conditions on W, a function g(x)
continuous in R can be approximated in the uniform norm by such a sequence
{P,(x) W(a,x)}7 if and only if g(x) = 0 for | x| = 1. We also prove an L, analogue
for 0< p <co. Our results confirm a conjecture of Saft for W(x) =exp(—|x|%),
when a > 1. Further applications of our results are upper bounds for Christoffel
functions, and asymptotic behavior of the largest zeros of orthogonal poly-
nomials. A final application is an approximation theorem that will be used in a
forthcoming proof of Freud’s conjecture for | x| exp(—|x|*), >0, p> —1.

1. Introduction

In recent years, much attention has been given to approximation on R by weighted
polynomials P,(x) W(x), where P,(x) is of degree at most n, and, for example,
W(x)= W,(x)=exp(~|x|*), @a>0. See Ditzian and Totik [4], Levin and
Lubinsky [13], Mhaskar [26], Nevai [36], and Saff [41] for references, results,
and reviews from different perspectives.

One of the important ideas in such approximaticn is the reduction of an L,
norm over an infinite interval to an L, norm over a finite interval. For example,
if 2, denotes the class of polynomials of degree at most n, there exists (under
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22 D. S. Lubinsky and E. B. Saft

mild conditions on W) a number a, such that for each P, 2,
(1.1) I PaW | Loy = | PaW | -y a1

While related identities and inequalities have been considered by Freud [6] and
Nevai [32], the sharp form of (1.1), namely, the “best” choice of a,, has only
been found recently. See Mhaskar and Saff [27, 29] for the L. version and [31]
for the L, version. Methods similar to those of Mhaskar and Saff were used by
Rahmanov [39], although Rahmanov did not investigate identities such as (1.1).
Subsequently, Lubinsky [19] used the potential theoretic methods of Mhaskar,
Rahmanov, and Saff to investigate L, analogues of (1.1).

One feature of (1.1) is the growing nested sequence of intervals [—a,, a,],
n=1,23,.... In order to work with functions on a fixed finite interval, it is
convenient to contract [—a,, a,] to[—1, 1] and to consider weighted polynomials
of the form p,(x) W(a,x), p,e #,,n=1,2,3,..., whose norm “lives” on [ -1, 1].
This contraction is important in describing the asymptotic behavior of orthogonal
and extremal polynomials associated with weights on R and typically leads to
the Ullman distribution—see Mhaskar and Saff [27], [29], Nevai and Dehesa
[37], Rahmanov [39], and Ullman [45], [46].

A second aspect of (1.1) is the following: under mild conditions on W, any
sequence of weighted polynomials { p,(x) W(a,x)}7, p. € ?,, uniformly bounded
on R, will tend to zero for |x|> 1. But what can be said about the behavior of
such a sequence in [—1, 1]? In this paper we consider this question for certain
weights W(x) =exp(—Q(x)). We prove that if g(x) is a function continuous on
R, there exists p,e P,, n=1,2,3,..., such that

(1.2) rlrijg)”g(x)“Pn(x) W(a,x) ” Lory =0,

if and only if g(x) =0, |x|=1. Here, for suitable W, and n large enough, a, is
the number in (1.1) that may be defined to be the positive root of the equation

1
(1.3) n=(2/m) J a,xQ'(ayx)/¥1—x2 dx.

0
We also prove an L, analogue of (1.2}, for 0<p<co. While the L, theorem
(0< p <oo) may be applied to W,(x) for any a >0 without restriction on g(x),
the L, theorem may be applied to W,(x) for any a > 1 without restriction on
g(x), and for 0< @ =1 if g(0) =0. For a > 1, the L, theorem proves a conjecture
of Saff [41] that had been proved for @ =2 by Mhaskar and Saff [30].

A second theme in this paper is “mean relative approximation.” Under certain

conditions on W and on a function f(x), positive almost everywhere in [—1, 1],
we show that there exists P, € ?,, n=1,2,3,..., such that

f(xX)P,(x)W(a,x)~>1, n->o, xel{-1,1],

in a mean sense. This type of result is an important step (see [12]) in the proof
of Freud’s conjecture for weights on the form |x|° exp(—|x|*), a>0, p> -1,
which appears in [21].
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A final application of our results is the estimation of some quantities in the
theory of orthogonal polynomials. We obtain the asymptotic behavior of the
largest zero x,,, of the nth orthogonal polynomial for W?(x), for weights including
exp(—|x|*(log(2+x%))?), @>0, BeR, thereby extending previous results of
Rahmanov [39]. We also obtain upper bounds for the Christofiel functions

A(W5 %)= inf Jw (P(u) W())? du/ P(x),

in the interval |x|= (1 —¢)x,,, for any £ > 0. Except for the weights exp(—x>™),
m=1,2,3, and exp(—x*+ S(x)), Se P; [1], [34], [43], such upper bounds were
previously known to be true only in |x|=< cx,,, for some unspecified positive
number c¢. These upper bounds lead to extensions of the range of validity of
several results of Bonan [2], Freud [9], Lubinsky, Maté, and Nevai [20], and
Nevai [35].

The paper is organized as follows: Section 2 contains the statements of our
main approximation results. Section 3 contains notation and background. In
Section 4 we prove a theorem concerning approximation by P,(x)/ Hy(a,x),
P,e ?,, where Ho(x) is a certain entire function studied in Lubinsky [17], [18].
In Section 5 we use the result of Section 4 to prove the results of Section 2. In
Section 6 we state and prove the upper bounds for Christoffel functions. Finally,
the Appendix contains the detailed calculations required for investigating the
positivity of a function associated with the Ullman distribution. '

2. Statement of Approximation Results

For n=1,2,3,..., let #, denote the class of polynomials of degree at most n.
Further, let
W(x)=exp(—Q(x)),

where Q(x) is even and continuous in R, and Q'(x) exists for x > 0. Throughout
this paper, whenever it is uniquely defined, we let a, = a,( W) denote the positive
root of the equation

1
(2.1) n=2/m) J a,xQ'(a,x)/~N1—x? dx,

4]
n=1,2,3,.... When Q(x) is convex or Q(x)=|x|*, a>0, results of Mhaskar
and Saff [27, p.210], [29, p. 77] imply that, for n=1,2,3,..., and each P, € 2,
(2.2) I PaW | Loy = | PaW | -1

In the special case W(x)= W,(x), where
(2.3) W, (x) = exp(—|x|*), a>0,
a,(W) takes a particularly simple form:

(2.4) a,(W,)=pB.n"*, n=1,2,3,...,
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where

(2.5) Ba=Aa"",

and

(2.6) A, =T(a)/{2° 7T (a/2)%}.

Because of the homogeneity of | x|,
W, (n"*x)= W(x), xeR.
Thus in this case, (2.2) may be rewritten in the form

(2.7) | PaWall Ly =1 PaWall Log—p.pa1s

P,e?, n=1273,....

This form of (2.2) is significant for several reasons. When investigating extremal
problems associated with general weights W(x) on R, having possibly discon-
nected support, it is more appropriate to consider weighted polynomials of the
form P,(x)W(x)", rather than P,(x)W(x) or P,(x) W(a,x). The nth power of
W(x) also plays a natural role in questions concerning asymptotic behavior of
extremal and orthogonal polynomials—see Goncar and Rahmanov [11], Mhaskar
and Saff [29], [31], and Saff [41].

One consequence of the results in [27] is the following: let @ >0 and let
{P,(x) W(x)}7 be asequence of weighted polynomials that is uniformly bounded
in R. Then

lim P,(x) Wi(x)=0, |x|>B..

Thus, if we are to approximate a function g(x) continuous on R by such a
sequence in the uniform norm, then, necessarily, g(x) =0 for |x|= 8,. Saff [41,
p. 252] conjectured that this should be the only restriction on g(x) for such an
approximation to be possible. The conjecture was generalized, and proved for
a =2, by Mhaskar and Saff [30]. Here we prove the conjecture for all @ <1 and,
with a minor modification, for a > 0:

Theorem 2.1. Let a > 0. Let {k,}T be a sequence of nonnegative integers such that

(2.8) lim k,/n=0.

Let g(x) be continuous in R. If 0<a =1, we assume in addition that g(0)=0.
Then there exists P,e #,_, , n=1,2,3,..., such that

(29) tim | g(x) = P.() Wi () | 1 =0

if and only if g(x) =0 for | x|= B,.
The following is the L, analogue:

Theorem 2.2. Let 0<p <o and a>0. Let {k,}T be a sequence of nonnegative



Approximation By Certain Weighted Polynomials 25
integers satisfying (2.8). Let g(x)e L,(R). Then there exists P,e P, ., n=
1,2,3,..., such that

(2.10) 'lti_)n;”g(x)-—P,,(x) Wa(x) ” L,,(R)=O

if and only if g(x) =0 for almost all | x|= B,.

Both Theorems 2.1 and 2.2 foliow from more general results involving approxima-
tion by weighted polynomials of the form P,(x)W(a,x). In order to state them,
we first define a suitable class of weights.

Definition 2.3. Let W(x):=exp(—Q(x)), where Q(x) is even, continuous and
Q'(x) exists for x >0, while xQ’'(x) remains bounded as x -> 0+. Further, assume
that Q"(x) exists for x large enough, and for some C >0 and a >0,

(2.11) Q'(x)>0, x large enough,
(2.12) x2|Q"(x)|/Q'(x)=C, x large enough,
and

(2.13) lim (14 xQ"(x)/ Q'(x)) = a.

Then we shall call W a very smooth Freud weight of order a and write W € VSF(a).

We remark that if @ >0 and B eR, then W(x)=exp(—|x|*(log(2+x*))?)e
VSF(a). The conditions on Q(x) above arise in the construction of even entire
functions with nonnegative Maclaurin series coefficients and behaving like
W™ (x) on R, see Lubinsky [17], [18]. They can be somewhat weakened, but we
retain the above formulation for the sake of simplicity.

Our two main results follow:

Theorem 2.4. Let W e VSF(a) for some a > 0. Let a,, = a,(W) be the root of (2.1)
for n large enough. Let g(x) be continuous in R. If

(2.14) lim sup a,/n>0,

we assume in addition that g(0) =0. Let {k,}} be a sequence of nonnegative integers

satisfying (2.8). Then there exists P, e P,_, , n=1,2,3,..., such that
(2.15) lim || g (x) = P, (x) W(ax) || 1.0y =0

if and only if g(x)=0 for |x|=1.

We remark that the conditions on W(x) ensure the existence of a, for n large
enough—see Lemma 3.2. Further, if o > 1, then

(2.16) lim a,/n=0,

n—>0o
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while, if o <1, then

(2.17) lim a,/n =oco.

If @ =1, then any of the relations (2.14), (2.16), or (2.17) may be valid—see the
comments after Lemma 3.2.

Theorem 2,5. Let 0<p <00, Let We VSF(a) for some a > 0. Let a, = a,(W) be
the root of (2.1) for n large enough. Let {k,}7 be a sequence of nonnegative integers
satisfying (2.8). If ge L,(R), there exists P,e P, , n=1,2,3,..., such that

(2.18) ’lli_>r£10||g(x)—Pn(x)W(a,,x)||L,,(R>=0

if and only if g(x) =0 for almost all |x|=1.

We remark that in Theorems 2.4 and 2.5, one may replace W(a,x) by

W(a,(1+¢,)x), where {¢,}7 is any sequence of real numbers satisfying

lirg £, =0.
This may be seen by substituting x = (1+¢,)u in (2.15) and (2.16). Further, if
we replace W(a,x) in (2.14) by 1/Hy(a,x), where Hy(x) is a certain entire
function that behaves like W '(x) in R, then the restriction involving g(0) =0 is
no longer necessary—see Theorem 4.1.

One application of Theorem 2.4 is in obtaining upper bounds for Christoftel
functions—see Section 6. As a prerequisite, we investigate asymptotic behavior
of the largest zeros of orthogonal polynomials—see Section 3. A final application
is to the mean relative approximation of functions, in a sense made precise in
the following result. The rather cumbersome formulation will be required in a
forthcoming proof [21] of Freud’s conjecture for [x|"W,(x), «>0, p>—1.

Theorem 2.6. Let We VSF(a) for some o > 0. Let a, = a,( W) be the root of (2.1)
Jor n large enough. Let {k,}Y be a sequence of nonnegative integers satisfying (2.8),
and let {e,}7 be a sequence of real numbers satisfying

(2.19) lim &, =0.

n—->o0

Let W (u) be a function nonnegative in R, such that V(u)e L (R) and
(2.20) lim ¥(u)=1.

|u]>o0

Further, let V(u) be a function nonnegative in R, with the following property: for

n=1,2,3,..., there exists a positive integer I, and S, € P, such that
(2.21) lim [,/n=0,

(2.22)  lm|V(a,(1+¢,)u)S,(u)|=1, almost everywhere in [—1,1],



Approximation by Certain Weighted Polynomials 27

and for some C >0,

(2.23) H V(a”(1+8n)u)sn(u)HLm[_l’l]S C, n':l, 2, 3,... .
Next, let N=1; z,,2,,...,z2y€C; AL,A,,...,ANvER,;
N
(2.24) A=Y A,
j=1
and
N
(2.25) w(x)=T] |x—z|%, xeR.
j=1
Let
(2.26) W(x)= W(x)V(x)¥(x)w(x), xeR.

Finally, let r,, r,>0, and if, for some 1<k= N, z; € R, assume that
(2.27) A, > -1, j=1,2.
Then if f(x) is continuous and positive almost everywhere in [—1, 1], there exists
PoeP,.,,n=1,23,..., such that, forj=1,2,
1
(2.28) lim J‘ 11=]|f(x)W(a,(1+¢&,)x)P,(x)|7](1-x*)""? dx =0.
n>o

Note that if V(u) is taken to be a positive constant, the conditions (2.21)-(2.23)
are trivially satisfied.

3. Notation and Background

Throughout C, C,, C,, ... denote positive constants independent of n and x. The
same symbol does not necessarily denote the same constant from line to line.
Given two sequences {c,}7 and {d,}{ of real numbers, we write

c.>=d,
if there exist C;, C,> 0 such that
Ci=c¢,/d,=C,, nlarge enough.
Similarly, we may define
Sa(x)=gn(x)

uniformly for x in a specified range.
We first establish some elementary properties of We VSF(a). Note that the

only results in this section whose proofs require the existence of Q"(x), or (2.12)
to be satisfied, are Lemmas 3.10 and 3.11.
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Lemma 3.1. Let We VSF(«) for some a>0. Then:

(1) xQ'(x) is strictly increasing for x large enough.
(ii) Uniformly for r in any compact subinterval of (0, ),

(3.1) lim Q'(rx)/ Q'(x) = rel
(ii)
(3.2) lim xQ'(x)/ Q(x) = e

(iv) Uniformly for r in any compact subinterval of (0, o),

(3.3) lim Q(rx)/ Q(x) = r"

Proof. (i) For large enough x, (2.11) and (2.13) imply that
(d/dx)(xQ'(x)) = Q'(x){1+xQ"(x)/ Q'(x)}
= Q'(x}{a/2}>0.
(ii) Let 0< e <a. By (2.13) there exists A> 0 such that, for x = A,
a—1-e=xQ"(x)/Q'(x)=a—-1+e
Let r=1. Then, if x= A,

Q'(rx)/Q'(x) = eXP<J' Q"(u)/ Q'(u) du>

zexP<er (a—1—¢)/u du) = pate

Similarly, for x=A and r=1,
Q(m)/ Q'(x)=r"71"".
If 0<r<1, we similarly obtain
(3.4) = QN () QN (x)= o TE, x= A,

Then (3.1) follows, since r**>1 as £-0, uniformly for r in any compact
subinterval of (0, ).
(iii) First note from (3.1) that

(3.5) linol0 xQ'(rx)/ (xQ'(x))=1r"

uniformly for r in any compact subinterval of (0, c©). The monotonicity of xQ'(x)
and (3.5) imply that

(3.6) lim xQ'(x) = c0.

X0
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Let A> 0 be so large that uQ’(u) is positive and increasing for u= A and (3.4)
holds for some 0 <& <a. Let 0<7n <1. Then, for nx> A,

Q(x)= Q(A)+“:x+r }Q'(u) du,

nx

so that
n

(3.7) Q(x)/(xQ'(x)) = Q(A)/(XQ’(x))+J

A/

Q'(sx)/Q'(x) ds

+ J Q'(sx)/ Q'(x) ds.

In view of (3.6), the first term on the right-hand side of (3.7) tends to 0 as x - co.
Next, by (3.4),

J Q'(sx)/Q'(x) deJ s* T ds ="/ (a —e).

n
Afx 0

Finally, by (ii),
1

liﬂ‘or Q'(sx)/ Q'(x) ds =I s*Hds=(1-1%)/a.

n
Since 7 >0 is arbitrary, we deduce that

lim Q(x)/(xQ'(x)) =1/

(iv) Using the expression
rx

Q(rX)/Q(X)=CXp(J Q'(u)/ Q(u) du>,

X

and using (3.2), we obtain (3.3). ]

Let We VSF(«a). For n large enough, we let g, denote the positive root of the
equation
(3.8) n=q,Q'(q)-

In view of (3.6) and Lemma 3.1(i), this is uniquely defined for n large enough.
The quantity g, was considered in detail by Freud [8], [9]. Throughout, we
denote by a, = a, (W), the positive root of the equation

(3.9) n=/w) j a,xQ'(ax)/N1—x? dx,

0

whenever it is uniquely defined. Further, we shall abbreviate a,( W) as a,, except
when confusion may arise.

Lemma 3.2. Let We VSF(a) for some a > 0. Then:

(i) For n large enough, a, is uniquely defined.
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(ii) If A, is given by (2.6), then

(3.10) lim n/(a,Q'(a,)) = A,/
and
(3.11) lim ¢,/a,=(A./a)"".
(iii) Uniformly in compact subsets of R,
(3.12) lim W(a,x)"" = W,(B.x).

(iv) Let {k,}T be any sequence of integers with

(3.13) lim k,/n=0.
Then
(3.14) lim a,/a,.i,=1.

Proof. (i) Let
I(a)= J axQ'(ax)/¥1—x* dx.

From (3.6) and Lemma 3.1(i), it is easily seen that

lim I(a)=ococ.

a—>00

It then suffices to show that I(a) is increasing for a large enough, and to this
end we express I(a) in the form

A I, 1

I(a)=j uQ'(u)/va*— v’ du+J axQ'(ax)/v1—x2 dx,

0 Ala

where A >0 is so large that uQ’(u) is positive and increasing for u= A and
1+uQ"(u)/ Q'(u)>a/2, uz A

Then we see that

I'(a)= —J uQ'(wa(a®—u) > du+ AQ (A1 -(A/a)?) V2 Aa™?
+ j xQ'(ax){1+ axQ"(ax)/ Q'(ax)}/¥1— x> dx

A/

=-Cia’+(a/2) J

A/

1

xQ'(ax)/V1—x2 dx

z—c,a*2+(a/(2a))AQ'(A)J 1/v1—x%dx
Ala
=Cya™!

for a large enough and some C,>0.



Approximation by Certain Weighted Polynomials 31

(i) Now,

n _EJ" a,xQ'(a,x) dx
anQ’(an) o o anQI(an) \/l—xz‘
Since (3.6) holds and uQ'(u) is increasing for u large enough, while uQ'(u)
remains bounded as u - 0, it is easily seen that there exists C;>0 such that
anle(anx)/(anQ/(an))S CB’ XG(O, 1),
and n large enough. Then (3.5) and Lebesgue’s dominated convergence theorem
show that

n 2 ' x*®
lim - =— J — dx.
n*OOanQ(an) ™ 0\/1_x2
In the special case Q(x)=|x|° this limit relation is still valid, and the left-hand
side is (aB2) "= A,/ @, see (2.4) and (2.5). Thus (3.10) is valid. Next, by (3.8),
we may rewrite (3.10) in the form

lim 4,Q'(4,)/{@,Q"(a,)} = Ao/ e

Using (3.5) and the monotonicity of xQ'(x), (3.11) follows.
(iii) Now, by Lemma 3.1(iii) and (iv) and by (3.10), we have

. Q) Qa) \[@Q(a)
i‘»“é‘oQ(“"")/”‘l‘»“?o<Q(a»)(ano'(an))( n )
=|x|"a " (a/Aa) = (Ba|x|)%,

uniformly in any compact subset of (0, c0). Thus (3.12) holds uniformly in any
compact set not containing 0. It remains to show that (3.12) holds uniformly in
[0,1]. Let £ > 0. Then there exists n, such that, for n=n,,

|Q(ax)/n—(Ba|x)*|=3(Bae)”,  e=|x|=1.

Further, since Q(x) is continuous in R and increasing to  as | x| (by (3.3)),
for n large enough and x€[0, ¢],

|Q(ax)/n—(Balx)¥|= Qane)/n+(Bae)* > 2(Bag)*  as n->co.
Thus, for some n,=n,(e), n=n,, and x<[0, 1],
| Q(anx)/n—(Ba|x|)"|=3(Bae)"

Then (3.12) follows uniformly in [0, 1].
(iv) It follows from (3.10) that

1"{.10 an+k,,Ql(an+k,,)/{anQ,(an)} = hm (n + kn)/n =1

Then (3.14) follows easily from (3.5). [ ]

Note that if @ > 1, (3.1) shows that Q'(x) >0 as x> o0, Then (3.8) and (3.11)
imply that
lim n/q,=lim n/a, =0,
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Similarly, if @ <1, Q'(x)—>0 as x>0, and so

lim n/q,=1lm n/a,=0.

n->0co

If =1, consideration of Q(x)=|x|(log(2+ x?))?, with 8 <0, B8=0, or 8>0,
shows that any of (2.14), (2.16), or (2.17) may hold.

Next, we need alemma that reduces the L, or L, norm of a weighted polynomial
over an infinite interval to that over a finite interval. If W = e~ ?, where Q is even
and convex, recent results of Mhaskar and Saft [29], [31] are almost immediately
applicable. However, when Q is nonconvex, we have to use extra arguments,
which explains the lengthy procedure below.

Throughout, given a >0, v(«a; t) denotes the Ullman distribution, defined by

1
(3.15) v(a;x):=g‘|‘ 1Y =X dt, |x]<1.
[

v Jlx |

Associated with v(a; t), there is the function
1

(3.16) U,(z):= J loglz—t|v(a; t) dt —|z|*/Ae +l0g2+1/a,
—1

which plays an important role in decribing the asymptotic behavior of extremal
polynomials associated with weights on R. We first state the inequalities for W, :
Lemma 3.3. Leta, 6>0 and 0<p, r=oo0.

(i) There exist C,, C,>0 such that, forn=1,2,3,... and P ?,,
(3.17) | P(x)Wo(Bax)| L(rR)= Cin‘: | P(x) Wa(B.x) || Ly(R)-

(ii) Given 8> 0, there exists C = C(8) and ny=no(8) such that, for n = ny(8)
and Pe P,

(3.18) || P(x) WZ',(BQX) ” L,,(|x|21+8)5 e <" ” P(x) Wﬂ(ﬁax) “ L,[~1-8,1+5]>

and

(3.19) ” P(x) W:(Ba'x) || LR= a1+ ean) ” P(x) Wg(ﬂax) ” Ly[—1-58,1+5]"

Proof. (i) This follows from Theorem 3.1 in [27, p. 213], with a substitution in
the expressions defining the L, and L, norms,

(ii) By Theorem 2.2 in [27, p. 208], with a = (n/A,)"* and a suitable substitu-
tion, and by (2.9) in [27, p. 207], we see that

(3.20) | P(x) We(BaX) | < || P(u) Wi (Batt) | g 111 €xp(nU,(x))

for Pe @, and | x|> 1. Next, by Theorem 2.6 in [27, p. 209], U, (x) <0 for |x|>1.
Further, it is clear from (3.16) that U,(x) - — as |x|->co. Thus, if

C:=C(8)=min{—U,(x): |x|=1+8},
we have, for Pe @, and |x|=1+35,

(3.21) | P(x)Wi(Bux)|=e | P(u) Wia(Batt) | Log-1.11-
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Thus (3.18) and (3.19) are valid for p=00. Next, let p<oo. It follows from
Theorem A in [15, p. 264] or results in [27, pp. 230-231] (see also [31]) that there
exists ny, K >0 and 0<% <1 such that, for n=n, and P 2,,

(3.22) [ P(x) Wa(Bux) | L ax=r)= 0" | P(x) Wo(Bax) || L, cr)-
Next, from (3.21),
| PO W2(Ba) [l 11352t = € | PO W(Box) | g1 (2K) 7
= C3n“e” || P(x) Wi(BeX) || L,y
by (i) of this lemma. Together with (3.22), this yields
(3.23) | P)WalBax) | yixl=140) = € " | P(X) Wa(BaX) || 1, n0-
Then (3.18) and (3.19) follow. n

Lemma 34. Let I'=[a,b] be a compact interval. Then, if d(x,I)=
min{|x—a|, |x—b|} denotes the distance from x e R\I to I, we have, for Pc P,

and x ¢ 1,
(324) [P()|=(1+8{d(x, I)/(b—a)+(d(x, I)/(b=a))' " | Pl cr)-

Proof, If I=[-1,1], the Walsh-Bernstein lemma [47] asserts that, for Pe P,
and x& I,

PG| =|x+Vx2=1"| Pl 1ocr)-

Here the branch of the square root is chosen so that |x+vx>—1|>1 for |x|>1.
For general intervals I =[a, b], we see from the above that

| PO |=|u+vid=1]"| Pl sy, x21,
where
u=-1+2(x—a)/(b—a)
maps I onto [—1, 1]. It is easily seen that
d(u,[-1,1])=(2/(b—a))d(x, I),
and
lu+vVu—1|=1+4d(u,[-1,1]) +4d (u,[-1, 1]) V%

Then (3.24) follows. [ ] !

We next generalige parts of Lemma 3.3. Note that the conditions on W below ‘

are equivalent to W being nonnegative, L, integrable over each finite interval,
and satisfying

|1|1£20 log W(x)/Q(x) =-1.
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Lemma 3.5. Let We VSF(a) for some « >0, and let §>0 and 0<p=oo, Let
J(x) be a nonnegative function in R, whose restriction to each finite interval I
belongs to L,(I) and assume also that

(3.25) |l‘im (log J(x))/ Q(x) =0.
Let a, = a,,(W) for n large enough, and

(3.26) W(x)= W(x)J(x), xeR.
Let {g,}7 < (0, ) satisfy

(3.27) lim g, =0.

Then there exist n,, C >0 and {p,}7 < (0, ) with the following properties:
(3.28) lim p)/"=1.

n->o

Forn=n, and Pe %,

(3.29) 1 PCx) W (@) || stz ey = o | POO W(@,) || 1, e <1121
(330) [ P)W(aX) |l L quimieer=e I PO W(@nX) | 1o, =hel=148)5
and

(3.31) I P(x) W (@) 1,0 = pa | P(X)W(@,X) | 1, e <lt<145)-

Proof. For the purposes of this proof, we say that {p,}} is of class o if
{p,}7 (0, ) and (3.28) holds. Note first that (3.31) follows easily from (3.29)
and (3.30), possibly with initially a different {p,}7 in (3.31) to that in (3.29). To
prove (3.29) we first note, from Lemmas 3.1 and 3.2, that, for any fixed positive
integer /,

(3.32) Qla, )< Q(a,, )<< Q(gm )< Q(g,).
In view of (3.25), we may choose B so large that
llog J(x)|/Q(x)=1, [x|=B.
It then also follows from (3.25) and (3.32) that, for any K >0,
(3.33) nh_)r?o (sup{J*'(x): B=|x|=Ka,})/"=1.

We shall assume, without loss of generality, that {¢,}]” approaches 0 so slowly that
(3.34) €nd,= B, n large enough.

Next, for some ng, n=n, and Pe 2,,

(3.35) PG W(@) || ytsi=en = I Pl etz | Wy cr-

Now, from (3.27) and Lemmas 3.1 and 3.2, we see that

(3.36) lim Q(a,e,)/n = lim Q(a,e,”*)/n=0.
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Applying Lemma 3.4 to I:=I,:=[e,, &,+£./?] and then Lemma 6.3.11 in [33,
p. 111], we see that

1P ) isten = (1+8{2e/)+ 22D | Pl Lo,y
= (1+16e/)" sup{ W (X): £,a, =|x| = (g, + ¥ ?)a,}
X C'n7 || P(x) W(@nx) || 1,e, =isi=1)
=: pi || P(x) W(a,x) [FA———

Here, by (3.33), (3.34), and (3.36), we see that {p,}7 is of class . Combining
this last inequality with (3.35), we obtain (3.29).

To prove (3.30) we first note from Lemma 3.4 that, for some n;, n=n,, Pc #,,
and |x|=2,

IP(X)‘S (1+ 16|x|)rl ” P “ Loo(e,=|x|=1)
= (20|x’)" ” P ” L,,(E,,Slx|51),

by standard Nikolskii inequalities [33, p. 114 f]. From (3.32) to (3.34), we see
there exists n, and C > 1 such that

Wl ax)=C"  e<|x|=1, n=n,.
Hence, given K > 2,
(337) [ P(u) W (@) || 1, ul=r)
=(20C)" || u"W(a,u) | 1, ul=x) | P(x) W(a,)|l Lo, =lxi=1)-

Here, in view of (3.25), for n large enough,
(3.38)  ||u"W(am) || o, qu=x)= 14" W (@) || L, ui=x)

= u*" W (@) | Lol v™" | ygui=x

=a,>"(qin W(ga,)) (K" /(1= np)}'/7.
Since, from Lemma 3.1 and 3.2,

=G =qan,

we can choose K so large that the right-hand side of (3.38) is bounded above
by (40C)™". Thus, from (3.37),

(339) I P@)W(anm) | ,qui=rr=2""| P(1) W(@u) | 1, e, =lui=1) -
Next, by (3.25) and Lemma 3.2(iii),
lim W(a,u)"" = W, (B.u) uniformly for 1+8=<|u|=K.

Hence, for some {p,}] of class &, we have

(3.40) ” P(u) W(anu) " 1_,,(1+55|u|sl<)S Pn ” P(u) WZ(ﬁau) || L,(1+6=u[=K)
= P;194C" ” P(u) Wi(Bau) ” L,(Jul=1+5)»
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by (3.18) in Lemma 3.3. Again, by Lemma 3.2(iii), there exists {p}}} of class .«
such that

(3.41) || P(u) Wﬁ(Bau) || L,,(yu|<,1+5)5 Pn H P(u)W(a,u) ”L (lul=1+8)
=p, ” P(u)W(a,u) ” Ly(e,=lul=1+8)

for some {p'}7 of class o, by (3.29) applied to W, rather than to W. In view of
(3.33) and (3.34), we have, for some {p,}T of class </,

(3.42) || P(u)W(a,u) “ L,,(F,,<\u|<1+a)—Pn || P(u)W(a u) || Ly(e,=lul=1+8)-
Combining (3.40) to (3.42), we have, for some C’> 0,

1 P(u) W(a,u)| stz = € P) W(auu) || e =tui=1+5)
for n=n,; and Pe P,. Together with (3.39), this yields (3.30). |

For future use, we record the following lemma, whose proof is essentially
contained in that of Lemma 3.5.

Lemma 3.6. Assume that p, W, J and W are as in Lemma 3.5. Let 0<r=co,
Then there exists ny, and a sequence {p,}} satisfying (3.28) such that, for n = n,,
Pe®,, and P#0,

(3.43) pa =[P(x)W(ax) |,/ | PO Wa(BaX) [l 1, Ry = Pns
(3.44) pn' = P(x) W(ax) || L,/ Il P(x) W(aX) || Lcry < P
and

(3.45) =| P(x)W(a x) ”L w®/ || P(x) W(a,x) ||1_ (R)= P

Proof. Since the L, norms of P(x)W(a,x) and P(x)W_(B.x) both “live” on
[—(1+8), 1+ 8], in the sense outlined in Lemmas 3.3 and 3.5, and since Lemma
3.2(iii) holds, (3.43) follows easily. Next, (3.44) is true for the special case
W= W,, by Lemma 3.3. Then (3.43) implies (3.44) in the general case. To obtain
(3.45), we note first that, for {¢,}] satisfying (3.27) and (3.34),

{W(a,x)/ W(ax)}'"=T(ax)"">1 as n->oo,

uniformly for &,=|x|=1+8. Since the L, norms of both P(x)W(a,x) and
P(x)W(a,x) “live” on {x: g, =|x|=1+ 8}, in the sense of (3.31), we then easily
obtain (3.45). |

We shall need various properties of certain L, extremal polynomials associated
with W primarily for p=2 and p = . Accordmgly, if p, W, W, and J are as in
Lemma 3.5 and a, = a,(W) for n large enough, we set

(3.46) E, W) igf‘ | (x™"+ P(x)) W(anx)” Lu(R)-

Further, we let T,,,p(W, x) denote any monic polynomial of degree n satisfying

(3.47) I Top (W, %) W(a,x) || 1,0y = Enp( W).
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It is known that T,,,,,(W, x) exists (if a, does) and has all real zeros. The zero
distribution of extremal polynomials closely related to those of T,,,,,(W, x) has
been studied by Mhaskar and Saff [27]-[29], Rahmanov [39], and Goncar and
Rahmanov [11]. For n large enough, and ¥ <R, we let

v,(¥) = (number of zeros of T,,,,,(W, x)in &)/n.
Using the results of [27], we prove:

Lemma 3.7. Assume that p, W, J, and W are as in Lemma 3.5. Then

(@)

(3.48) lim E,,,,,(W)‘/"zligé Eno( W)V =e"V)2,
(ii) If —Y, and X, denote the smallest and largest zeros of T, ,( W, x), then
(3.49) lim Y,=1lim X, =1.

(ifi) For each function f(x) bounded in [—2,2] and continuous, except possibly
for finitely many discontinuities,

(3.50) lgrgoj £x) dv,,<x)=J F(x)o(as x) dx,

where v(a; x) is defined by (3.15).
(iv) Uniformly in compact subsets of C\[-1, 1],

(3.51) lim | T,,,(W, 2) W(a,| 2])/ E,.,(W)|"" = exp(U,(2)).
Proof. (i) If P,(x) is a monic polynomial of degree n,n=1,2,3, ..., it follows

from Lemma 3.6 that
lim {|| P, (x) W(@ux) | 1,0/ | P () Wi (Bax) | Lo} /" = 1.

Since

Wo(Bax) = Wo(a,(Wo)x),  xeR,
it follows that

fim, B (W)?" = lim oW

This establishes the first equation in (3.48). The second follows from Theorem

2.9 in [27, p. 211] and a substitution.
(ii) and (iii) Assume that for some 8> 0, and some infinite sequence of positive

integers ¥,
X, =1+38, newnN.

Define, for ne W,
Po(x)={(x~(1428))/(x = X,)} T, (W, x),
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a monic polynomial of degree n. We see that the expression in { } has value in
(0,1) for xe[—(1+8), 1+ 8], and increases to its maximum value at x = —(1+8§).
Thus

maxal(x—(l+28))/(x—X")| =(2+38)/(1+8+X,)

bel=1%
=(2+38)/(2+48)=n<1
for ne N. Then, for some C’'>0, (3.30) in Lemma 3.5 implies that
| P.(x) W(anx) I L=+ e ") | P.(x) W(anx) [ L[—(146),1+5]
<(1+e ")y | T,,(W, x) W(a,x)| Ly(~(1+8),1+5]
=(1+e “")nE,,(W).
For large enough n, this contradicts the definition of E, ,( W). Thus
(3.52) limsup X, =< 1.

n-—oo

The corresponding lim inf will be established below. Next, by Lemma 3.6 and
(i) of this lemma,

lim | Wa(Bx) Top(W, ) | iy = lim | W(a,) T (W, ) [ ity = €71/ 2.
Then Theorem 3.6 in [27, p. 215] asserts that, for [¢, d]<[-2, 2],

(3.53) lim J dv,(1) =J v(a; f) dt.

-0
n c

Then (3.50) follows. Further, as v(a; t)\ is positive in (—1,1), it follows from
(3.53) that 1 is a limit of zeros of T, (W, x), so

liminf X, = 1.

n—>o0

Together with (3.52), this establishes the second equation in (3.49). The first
follows similarly.

(iv) This is an easy consequence of the definition (3.16) of U, (z) and the limit
relations (3.12), (3.33), (3.48), (3.49), and (3.50). [ |

We remark that if p =2, (3.49) implies that the laArgest zero Xx;, of the nth
orthonormal polynomial associated with the weight W2 on R satisfies
(3.54) lim x,,/a,=1.

In the special case Q(x)=|x|%, this result was established by Rahmanov [39].
Since Definition 2.3 allows more general growth of Q(x) at o, such as

Q(x) =|x|*(log(2+ x?))", BeR,

(3.54) extends this result of [39]. For the weight exp(—x"), m a positive even
integer, sharper asymptotics have been obtained by Maté, Nevai, and Totik [24].
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Fig. 3.1. Y(¢; 0).

We next define a region in which we can prove that U,(z) is positive:

Definition 3.8 (Figure 3.1). Given £>0 and 0 < 8 < 7, we define
(3.55) G(e; 0):={x+iy:|x|=1,0<|y|<e}
U{t(1+ye"): te (0, w/2) and 0<|ysint|<e}.
Theorem 3.9. Let >0 and 0<8 < /6. There exists n>0 with the following
property: let K be any compact subset of 4(vn; w/3+8). Then
(3.56) min{U,(z): ze K}>0.
Proof. The detailed calculations required for this appear in the Appen-
dix. ]

The final part of this section concerns an entire function that, along the real
axis, behaves like the reciprocal of a weight. Let We VSF(«) for some a > 0.
Recall that g, is defined by (3.8) for n large enough. For the finitely many
remaining positive integers, we set g, = 1. Define

(3.57) Golx)i=1+ °z° (x/42)"n ™" exp(2Q(qn)).

Lemma 3.10. Let W e VSF(a), for some a > 0. Then
(3.58) lim Go(x) W (x) = (ma)'/%.

Proof. The conditions on Q in Definition 2.3 ensure that W is a ‘“‘smooth Freud
weight” in the sense used in [18]. Then Theorem 5 in [18] shows that, as |x|-> oo,

Go(x) ={mT(x)}""? exp(2Q(x)){1+ O(Q(x) "*(log x)*'")},
where
T(x)=1+xQ"(x)/ Q'(x).
By (2.13), T(x)~ a as |x|-> 0. Then (3.58) follows. [ |

We shall need an entire function growing like W '(x), rather than W 2(x):

Lemma 3.11. Let W=e “c VSF(a) for some a > 0. Let
(3.59) Ho(x)= GQ/Z(X)(WG)_I/Z,



40 D. S. Lubinsky and E. B. Saff

where Gg,2(x) is the entire function associated with e @2 by (3.57). Let

(3.60) ¢ (x)={Ho(x)W(x)}", xeR.
Then
(3.61) lim ¢(x)=1,

and there exists b >0 such that
(3.62) b '=¢(x)=bh, xeR.

Proof. Note first that e~ ©/>€ VSF(«) also. Then (3.58) and (3.59) yield (3.61).
As both Hy,(x) and W(x) are positive and continuous in R, (3.62) follows
immediately. |

Note that Lemmas 3.10 and 3.11 are the only results in this section whose
proofs require the existence of Q”(x) and (2.12). Further, even if (2.12) does not
hold and Q" (x) is not assumed to exist, (3.62) remains valid, since both W{(x)
and W'?(x) are still “Freud weights™ in the sense of [18].

4. Uniform Approximation by P,(x)/Hy(a,x)
The aim of this section is to prove

Theorem 4.1. Let W:= ¢ %€ VSF(a) for some a > 0. Let Ho(x) be the associated
entire function defined by (3.59). Let h(x) be continuous in R, with h(x) =0 for
|x|>1. Then there exists P,e #,, n=1,2,3,..., such that

(4.1) '111210 | A(x)— P.(x)/ Hola,x) | Lor)=0.

We remark that the proof of the above result does not require the existence
of Q"(x) or (2.12) to hold, since it requires only (3.62) in Lemma 3.11. Further,
the specific form of Hg(x) is not used, and Theorem 4.1 is true for any even
entire function H(x) with nonnegative Maclaurin series coefficients satisfying

H(x)W(x)=xI, xeR.

Our strategy in approximating a function h(x) is as follows: we form the
Lagrange interpolation polynomial L,{x} of degree at most #» — 1, which interpo-
lates to h(x)Hy(a,x) at the zeros of T,.(W,x), and then expect that
L,(x)/Hy(a,x) is a good approximation to h(x). This turns out to be correct.
To show that the error in approximation approaches zero as n approaches oo,
we use the Hermite contour integral error formula for Lagrange interpolation.
Because of the delicate nature of the error estimation, we need to choose the
contour integral in the Hermite formula very carefully:

Definition 4.2. Let We VSF(«), for some a>0. For n large enough, let &,
denote the largest positive number for which

(4.2) | Thool W, &) W(a,€,) | = E ol W).
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Fig.4.1. T,.

Let 0<e <1, and let

(4.3) Ta={(&+)" 0=sy=se}

for n large enough, where the branch of the square root is the principal one. Let
— denote complex conjugation and I',, denote the horizontal line segment joining
I',; and (-T,,), so that

(44) T,,={z:|Re(z)|=Re(¢i+ie)"? and Im(z)=1Im(&2+ig)"3.

Finally, let
(45) Fn ::rnlUfnlu(—rnl)u(_fnl)urnzur‘nz,

oriented in a positive sense (Figure 4.1).

Note that, as is well known, T, ..(x) W(a,x) has n+ 1 points of equi-oscillation,
and &, above denotes the largest. Let We VSF(a) for some a > 0. Since &, is to
the right of the largest zero of T, (W, x), Lemma 3.7(ii) ensures that

lim inf &, = 1.

Further, (3.30) in Lemma 3.5 applied to W=w and p = co ensures that given § > 0,
£, <1+8, n large enough.

Thus
(4.6) lim &, =1.

n-—>co

We remark that when Q(x) is even and convex, results of Mhaskar and Saff {29]
ensure, in addition to (4.6), that £, =1 for n large enough.

Lemma 4.3. Let W e VSF(a) for some a > 0. Let g(t) be analytic for |t|<2 and
real valued in (—2,2). For n large enough, let

g(x)(xz—fi), XE('—fn, gn)a

0, XER\(—gny fn)-

Further, let L,(x) denote the Lagrange interpolation polynomial of degree at most

n—1 to h,(x)Hy(a,x), in the zeros of T, (W, x). Then, for n large enough and ¢
small enough, there exists C, (depending on & but not on n or g} such that

(4.8) | h(x)— Lp(x)/ Ho(awX) || Lcwy

(4.7) h,(x) 1={

= C, max{|g(1)|: |1] 52}J E, ol W)/| Tl W, ) W(a,|t])]]dt].

ol
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Proof. Inside and on I',,, we continue h,(x) to the complex plane, using the first
of the formulae in (4.7). The Hermite error formula for Lagrange interpolation
states that, for xe (—¢,, &),

1 J hn(t)HQ(ant) Tn,oo(mx) dt

(49) HQ(anx)hn(x)_Ln(x)=—2—. f—x T (W t)

bidl
Further, the contour integral representation for L, (x) [47] shows that, for | x|> £,,
1 h,(t)Hp(ant) T, (W, x
—L,,(x)——f (1)Ho(ant) Toue( W, %)

r

dt.
I—Xx Tn,oo( “/7 t)

Then, taking account of the definition (4.7) of h,(x), we see that (4.9) holds for
all real x # +£¢,. Next, as Hp has nonnegative Maclaurin series coefficients, we
see that, for t€ C and xR,

(4.10) | Ho(at)/ Ho(awx)| < Ho(a, | ])/ Ho(a,x)
=b*W(a,x)/ W(a,|t]),

by Lemma 3.11. Then, by (4.9), (4.10), and continuity of h,(x), L,(x), and Hyp(x),
we see that

(4.11) ” hn(x)_Ln(x)/HQ(anx)“Lw(R)
= b*(27) ' max{|g(t)(’—£2)/(t—x)|: teT,, xR}

2mi

xj E, o W)/| T W, 1) W(a, | t])] | dt].

Recall that (4.6) is valid. Then, for n large enough, xeR, and rel",,, say
t=(¢&+in)'"?,
[ =g/l t=x|=(t]+|& D] =& /|1 =x|
=4|(1+iy/ )" =1|/|Im(1 + iy/ £3) |
=8

for 0<y =g, by the binomial expansion, provided only that ¢ is small enough.
Similar estimates hold for xeR and rel', L (=I's)u (-T,)). Next, for xeR
and tel',,uTl,,,

|2 = gnl/|t—x|=6/Im(£,+ie)"?| =24/ ¢

for n large enough and & small enough. Combined with the symmetry in the
definition of I',,, and the fact that T, (W, 1) W(a, |t]) is even and real valued,
these last two estimates and (4.11) yield (4.8). [ |

We turn next to estimation of the integral in the right-hand side of (4.8). Note
that the integral is independent of g.

Lemma 4.4. Assume the hypotheses and notation of Lemma 4.3. For ¢ small
enough, there exists 0<8 <1 and C >0 such that, for n large enough,

(4.12) J E, o W)/| T, oo(W, ) W(a,|t])] | dt|< C5".
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Proof. Let 0<8 < /6, and let n > 0 be the corresponding number in Theorem
3.9, so that U,(z) is positive inside 4(n; w/3+8). We show that if ¢ is small
enough, I',, is contained in %(n; w/3+8). First note that if 4(xn; 7/3+96)
contains the endpoints of a horizontal line segment, it also contains the segment—
see Figure 3.1. Because of symmetry, it suffices to show that the right endpoint
of I',.,, namely, (¢2+ig)"/?, is contained in 9(n; m/3+8). Let

2, = (Eh+ie) P =1
=(&—1)+ie/(26) + e/ (46)+- -

for n large enough. Then, for small enough, but fixed, ¢ and for n=n,(¢), we
see that

arg(z,) = arctan(Im(z,)/Re(z,)) = arctan(e ') > 7/3+ 6
and
|z, |=e,
provided ¢ is small enough. Hence, for n= n,(¢) (compare Figure 3.1),
(&+ie)?=1+2z,€ 4(n; m/3+6).

The above arguments also show that there is a compact set K of 9(n; w/3+8)
that contains I, for n large enough. By Lemma 3.7(iv), we have, uniformly for
zel',< K,

lim sup{ By W)/ | Ty W, 2) W(a, | 2]) [}1/" = exp(—min U, () <8 <1,
by Theorem 3.9. Then (4.12) follows. |

Lemma 4.5. Assume the hypotheses and notation of Lemma 4.3. Given >0, we
have, for & small enough and n large enough,

(4.13) L= J Epo W)/ | T ool W, ) W(a, | t])||dt| = 8n 2.

Proof. Let
s(y)=(&+iy)'?,  0=y=e
Then, by definition of T',,; and §,,

I :JE Tan(ul,fn)W(a,,fn) dy
N o [ Tuse W, () Wia, [s() D 125G

(4.14)

Firstly,
ls()|=(gh+yH) 4 =g, +2y°

for 0= y =< g, £ small enough, and n = ny(¢). Now, as Q(x) is increasing for large
enough x, we have, for 0=y =e¢ and n=ny(e),

Q(a,|s(y)]) — Q(a.é,) = Qa, (& +2y%)) — Qané,) =2y*a,Q'(ac)
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for some ¢ between £, and &, +2y%, say ¢ =2. In view of (3.1) and (3.10), we see
that, for n large enough,
a,Q'(a.c)=4a,Q'(2a,)
=2""q,Q'(a,) = An,
where A:=2""a/A, depends only on a. Thus
(4.15) W(a.£,)/ Wa,|s(y)]) < exp(2y*An)

uniformly for 0= y=¢ and n=ny(e). Next, if (x) denotes the greatest integer
=x, and z,,,, Z3,, - - . » Zny denote the zeros of T, (W, x), and if 0<r <1,

T (W, &)/ rn,m<w,s<y>>|={ N EREA }{rg,. U5y
= [1 Q+{y/(&-z)) "

zj,>0
1 2 2452
SeXP<—5 Y log{l+y"/(1+r—z;) }>
0<z, <l—r
for any 0<r<1, and n so large that £2<1+r If & <gy(r), we see that, for
O=y=eand0=s=<1-r,
log{1+y*/(1+r—s"Y}=G)y*/(1+r—5s7)°

Hence, for n=ny(r), £ <ey(r), and 0<y =g,

(4.16) |Tn,oo(W,§n)|/|Tn,oo(W,S(y))|Sexr><—(:';)y2 ) 1/(1+r—2f,.)2).

0<zj,,<1—r

Here, by Lemma 3.7(iii),
1-r

limn' Y 1/(l+r—212-,,)2=(£)J‘ vlay )/ (1+r— ) dt.

n—>00 O0<z;<l-r —1+r

As r - 0+, Lebesgue’s monotone convergence theorem shows that this last integral
increases to

Jl v(a; t)/(1—1»)*dr

It is easily seen from (3.15) that this last integral diverges (see also (A.5)). Thus,
given 8 >0, we can find r>0 and n,(r) such that
@ Y 1(+r—z,)'=n(2A+877)
0<zj,<1—r

for n=n,(r). Combining (4.14), (4.15), and (4.16), we obtain

Inlsf exp(—=8°ny?) dy < én'"? J exp(—x?) dx

0 0

for n large enough. |
We summarize Lemmas 4.3-4.5 in the following:

Lemma 4.6. Let W e VSF(«) for some a > 0. Let g(t) be analytic for |t|=2 and
real valued in (=2,2). Let L,(x) be defined as in Lemma 4.3, for n large enough.
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Let

_ (806D, xe(-1,0),
o3 e

Then there exist C >0, ny> 0 independent of n and g and {8,}7 independent of g
such that lim, .. 8, =0, and, for n=n,, i

| A(x) = Lo (x)/ Ho(@x) || Loy = C max{|g() |: | t|=2}(|1 - &, |+ 8.n7"?).

Proof. With the notation of Lemma 4.3, we see, from Lemmas 4.3-4.5, that, for
n=n, and some {8,}T as above,

(4.17) 1 ha(x) = Lo(x)/ Ho(@uX) | oy = C max{| g (1) |: [ 1| =2}8,n 77,
where both C, and n, are independent of g. Now, for |x|=<min{¢,, 1},
(4.18) |h(x) = h,(x)|=]g(x)]|1-&|
=3 max{|g(1)[: |t|=2}[1-&|,
provided n is large enough. For | x| between £, and 1, we have
(4.19) |h(x) = h(x) | = max{| h(x)], |, (x)[}
=max{|g(1)|:|t|=2}1- £
Since h(x) and h,(x) vanish for | x| = max{1, £,}, we obtain the result from (4.17)
to (4.19). [ ]
Finally, we complete the proof of Theorem 4.1.
Proof of Theorem 4.1. In view of Lemma 4.6 and (4.6), it suffices to show that,
given £ >0, we can find a polynomial g(x) such that
[ A(x)~g(x)(x* =)l L1y <e.
Let S(x) be a polynomial such that
A (x) = S || Log-1,11< /3.
Let P(x):=8(x)—-S(-1)(1—-x)/2-S1)(1+x)/2. Then
| A(x) = P(x) || g1, < &/3+|S(=1)|+|S(1)|< e

as h(£1)=0. Further, P(£1) =0 so has the form g(x)(x*—1), where g(x) is a
polynomial. |

For future use, we record the following lemma:
Lemma 4.7. Let We VSF(a) for some a > 0. There exists a sequence {n,}7 of
positive numbers such that

(4.20) lim 7, =0,

n->00
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and such that, for each function h(x) continuous in [—1, 1], there exists P, € P, _,,
n=2,3,4,..., such that

(421) ’I'Ln; ” h(x) —P,,(x)/HQ(a,,x),H Lm(|fo§,,-—n,,nil/2) = 0.

Proof. It suffices to consider the case where h(t) is analytic for |1/ =2 and real
valued in [—2,2]. Let P,(x) denote the Lagrange interpolation polynomial of
degree at most n—1 to h(x)Hy(a,x) in the zeros of T, (W, x). Then (4.9) is
valid for x e (—¢,, &,), provided we replace h, by h. Proceeding as in the proof
of Lemma 4.3, we obtain, for |x|< £, and with b as in Lemma 3.11,

(4.22) |h(x)—P,(x)/Ho(a,x)|
= b’ max{|h(1)|: |t|=2} J‘r E W)/ |(t = x) T, W, t) W(a,|t])|| dt|
=4b> max{|h(2)|: |t|=2}1,(x),

where

(423) L(x)=(&—|x))™ ﬁ Epod W)/ | Too(W, 1) W(a, | ])| | dt]

nt

+lIm(§f,+ie)1/2|"J’. E, ool W)/| T, (W, 1) W(a,|t])]|dt].

2

Note that I,,(x) is independent of h. Now given 8 >0, Lemmas 4.4 and 4.5 show
that there exists ny= ny(6) and p = p(8) € (0, 1) such that, uniformly for n = ny(§)
and x€(=¢§,, &),

L(x)=(&—|x[)"'on"" 2+ p"
=(&—|x])7(8n "2 +3p").
Choosing 6 =4, >0 to tend to zero sufficiently slowly with n, we obtain
L(x)=(&—|x])7"28,n""2

If lean _”fln’fm

, n large enough, where {7, }{ satisfies
6n:0(7]n)’ n-> 00,
we obtain (4.21). ||

It seems likely that &, —n,n "/? in (4.21) can be replaced by 1— C(log n/n)*>

for some C > 0.

5. Proof of the Results of Section 2

This section is organized as follows: we first prove Theorem 2.5 and deduce
Theorem 2.2. We then prove Theorem 2.4 and deduce Theorem 2.1. Finally, we
prove Theorem 2.6.
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Proof of the “if”’ part of Theorem 2.5. We note that it is sufficient to consider
the case where g(x) is continuous in R and vanishes outside [—1, 1]. By Theorem
4.1, there exists P,e ?,, n=1,2,3,..., such that

(5.1) lim || g(x) = P, (x)/ Ho(anx) Il oiry =0

| Then, if ¢(x) is given by (3.60), we have
lim P,(x) W(a,x) = lim{P,(x)/ Ho(a,x)}¢"(a,x)

=g(x),
by (5.1) and (3.61), provided x # 0. Further, this even yields, forany 0 <& < A <00,
(5.2) lim || P, (%) W(@nx) = (%) || 1te=prl=2) = -

Also, from (5.1) and (3.62), there exists C > 0 such that
(5.3) | P.(x) W(ax)| oy =C, n=1,2,3,....
Hence, by Lebesgue’s dominated convergence theorem, for any A> 0,

’111_{130 | Pa(x)W(a,x) - g(x) “ L[~-AA]l= 0.

By (3.30) in Lemma 3.5 and (5.3), we then have, if A>1,
lim || P, (x) W(aux) || ,xi=) = 0.

Since g(x) =0 for |x|=1, we have

(54) hm "g(x)_Pn(x) W(anx) ” L,,(R)zoa

n—>00

and so (2.18) is true in the special case k, =0, n=1,2,3,.... Now let {k,}T be
a sequence of nonnegative integers satisfying (2.8). We make the substitution
x = sa,/a,_, in the following consequence of (5.4):

'111_)7?0 | g(x) = Puie,(x) W(an_i,x)|| L, =0

In view of Lemma 3.2(iv), this substitution yields

(55) 31_)1’2) ” g(san/an—k,,) - Pf(s) W(a,,s) " L,(R) = 0’

where, for n=1,2,3,...,
Pi(s)=P, 4 (x)€P,4,.

Since g(x) is continuous in R and vanishes outside (—1, 1), Lemma 3.2(iv) shows
that

(5.6) lim || g(s) —g(san/@n—r,) |l 1, =0.
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Combining (5.5) and (5.6), we obtain the ““if”” part of Theorem 2.5, namely,
(2.18). |

Proof of the “only if”’ part of Theorem 2.5. Suppose g€ L,(R) and (2.18) holds.
It is then an easy consequence of (2.18) and (3.30) in Lemma 3.5 that
ll_)ngo ” Pn(u) W(anu) “ L,(ul=1+8) = 0

for each 6> 0. Then (2.18) implies that

lell Ly(lul=1+8) = 0
for each 6 > 0. |

Proof of Theorem 2.2. This follows from Theorem 2.5, since

W, (a, (W, )u) = Wi(B.u). L
Proof of Theorem 2.4. We prove the “if” part. The “only if” part follows from
Lemma 3.5, as above. Let g(x) be continuous in R and g(x) =0 for |x|>1, and

let P,e P,, n=1,2,3,..., satisfy (5.1). Then (5.2) and (5.3) also hold. In view
of (3.30) in Lemma 3.5 (with p =0), (5.3) yields

'1.15130 “ Pn(x) W(anx) II Lo(]x|=A) =0

for any A>1. Combined with (5.2), this yields
(5.7) lim sup |} g(x) = P, (x) W(@,%) [l L(1xl=e) = 0

for any £>0.
Let us now assume that g(0) =0, and let » > 0. Then we can find £ > 0 such that

lgx)|=n  |x|se
Then (5.1) and Lemma 3.11 show that
lirflﬂsotlp |g(x)=P,(x) W(ax) | Lf-ee1=n(1+b).

Since 5 >0 is arbitrary, this last inequality and (5.7) show that
,1111510 [ g(x) = P.(x) W(a.x) | Lor) =0,

so that Theorem 2.4 is true in the special case when g(0)=0 and all k,=0,
n=1,2,3,.... As in the proof of Theorem 2.5, a substitution of the form
x=a,s/a,_,, ylelds the conclusion of Theorem 2.4 when g(0)=0 and {k,}7
satisfies (2.8).

Finally, we remove the restriction g(0) =0, in the case when

(5.8) lim a,/n=0.

n—oc

Let {/,}7 be a sequence of positive integers with
(5.9) lima,/l,=0 and lim/,/n=0.
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Since ¢(u) of Lemma 3.11 is uniformly continuous in R, with modulus of
continuity w(-), say, Jackson’s theorem shows that there exists S, e ?,, n=
1,2,3,..., such that, for |x|=2a,,

‘(;b(x)_Sn(x/an)|SAw(an/ln)a n:1’2’3"-"
where A is an absolute constant. In view of (5.9), we obtain
(5.10) lim | ¢(a,u)—S,(u)|=0 uniformly for |u|=2.
Now, let P,(u) be a polynomial of degree at most n—k,—1,, n=1,2,3,...,
satisfying
(5.11) lim || g(u) = B, (u)/ Ho(a,u) || Ly = 0,
where {k,}% satisfies (2.8). The existence of {P,}¥ follows from Theorem 4.1,

and a substitution, as above.
Let

P,(u)=PB,(w)S,(w)e P, n=1,23,....
It follows from (3.61), (5.10), and (5.11) that
lim || g () = P () W(an) || or-2.21=0.

Further, then, Lemma 3.5 shows that
1111—>r£lc || Pn(u) W(anu) || Lw(|u122) = 0

These last two limit relations imply (2.15).
Proof of Theorem 2.1. This follows directly from Theorem 2.4.

Proof of Theorem 2.6. Let 8 >0 and define
g(x)=min{1/8,1/(f(x)|x|")},  [x|=1-8.
Further extend gs(x) continuously so that
g5(x) =0, |x|=1,
and
g () =1/(f(0)|x["), 1-s=[x|=1
Note that if
E={xe[-1,1]: f(x)|x|*=8}u(-1,-1+8)u(1-§,1)
and
Fi=[-1,1\€&
we have
(5.12) g(f(x)[x|*=1,  xeZ,
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and
(5.13) 0=gs(x)f(x)|x[*=1, xe[-1,1].

Recall that {kA,,}‘{o and {1,}7 satisfy respectively (2.8) and (2.21). By Theorem 4.1,
we can find P,e ?,, n=1,2,3,..., such that

'1.15210” gs(u)— ﬁn—k,,fl,,(u)/Ho(an—k,,—l,,u) ” Lo® =0,
Making the substitution u = xa,(1+¢,)/a,_x,_;, and taking account of (2.8),
(2.19), (2.21), and the uniform continuity of g;(u), we see that

Pi(x)= ﬁn-k,,—l,,(u) €P, ki, n=1,2,3,...,
satisfies

'111_{2” g5(x) _Pf(x)/HQ(an(l“'gn)x) ” Lo®) = 0.

In view of (3.60), we may rewrite this as

(514) )I(Lr{l ” gﬁ(x)_P;':(x) W(an(1+ En)x)(b(an(l +8n)x) ” Loo(R) :O-

Let

P, (x)=a,*P¥x)S,(x)e P, 4, n=1,2,3,....
Then, from (2.20), (2.22), (2.25), (2.26), (3.60), and (5.14), we see that
(5.15) lim | P, (x) W(a,(1+&,)x)|

= lll{;{aZAW(an(l +e,)x)H| PH(x) | W(a,(1+&,)x)}

x| V(a,(1+£,)x)S,(x)|¥(a,(1+&,)x)
=|x|*gs(x) for almost all xe[—1,1].

We may assume that all z;, j=1,2,..., N, are distinct—if not, reorder them and
add the relevant indices A;. We may also assume 0€{z,, z,, ..., zy }—if not,
simply append it to the set and define the corresponding A; to be 0. Let

s’=min|z;—z/] and K =max|z],
=k J

and let
Sy={x:|(1+e)x~z/a,|<s/4a)}, j=1,2,...,N

s

and

N
Fo=U I, n=1,2,3,....
j=1

Choose n, so large that

i=1+e,<2, n=ny.
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For x¢ $, and |x|=4K/a,, and n=n,, we have
Ix|/4=|x|/2-K/a,=|(1+e,)x~z/a,|=<2|x|+K/a,=<3|x]|,
while, for x ¢ ¥, and |x|S4K/a,,, and n=n,, we have
s|x|/(16K) <s/(4a,)=<|(1+¢,)x —z/a,|=9K/a,=T2K |x|/s.
The last inequality follows since 0e{z,,..., zy}.
Hence, for n=n, and some C,, C, depending only on w,
(5.16) Clx|*=a,*w(a,(1+e,)x)= C|x|*,

x€[—1, 1\ 1,. Then, for some C; independent of r and 8, we obtain, from (5.14),
(5.16), and (2.23), that, for xe[—1, 1]\ %,

O W(a,(1+€,)x)| Pa(x) | = Cs f(x)(g5(x) +1)| x|*
= C,(1+]x[%),
by (5.13). Now let us assume first that
(5.17) Ar>-1, j=1,2.
Combined with (5.15) and Lebesgue’s dominated convergence theorem, this

yields, for j=1, 2,

(5.18) liwasogpj |1=1 () W(a,(1+ £,)x) P, (x) 7| (1 = x°) ™"/ dx

[-1,1N\Z,

1

=1 |1—-] f(x)|x|*gs(x)|7] (1 —x7) 7" dx

v

= |1__|f(x)|x|Ag6(x)lrjl(l—x2)71/2 dx

.
=| (1-x»""2dx,
JE

by (5.12) and (5.13). Next, if x € $,, for some 1=</= N, then, by definition of s,
fork#I 1=k=<N, and n=n,,

s/Qa)=|(1+e,)x—z/a,|=2|x|+K/a,<11K/a,.

Hence, for j=1,2 and some C; independent of n,

K/a

J‘ |a,*w(a,(1+¢e,)x)|7 dx= Cs(1/a,) "> J " du
Pt

0

= Cya, """ >0 as n->00,
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by (5.17). Since, as above, for xe %,
| f(x) W(a,(1+e,)x) P,(x)| = Cra;*w(a,(1+e,)x),
and since meas(.%,)~>0 as n >, we have, for j=1,2; I=1,2,..., N,

liggj 1] £() W(a, (1 + £,)x) P,(x)[7] (1 - x?) "2 dx = 0.

Tl

Thus, from (5.18), for j=1, 2,

IimaSonJ‘ [1—]f(x)W(a,,(1+s,,)x)P,,(x)]’i (1—x?)" 12 dxsj (1-x3""2dx.

As meas(&) -0 as 6> 0+, the result follows.
Finally, suppose that (5.17) is not satisfied. Then let z5 =i and choose Ay,
such that

N+1
A*= Y A
j=1
satisfies A*r,>—1, j=1,2. For xeR, let
N+1
wH(x)i= [ [x—z]%
Ji=t
and
W*(x) =exp(—Q*(x)),
where
Q*(x) = (An11/2) log(1+x%) + Q(x).

Then we see that W* e VSF(a) also and w* W*=wW. Since (5.17) is satisfied
for W= W*VW¥w* the result follows. |

6. Upper Bounds for Christoffel Functions

Let We VSF(«) for some a >0, and define

e}

(6.1) A,.(Wz;X)=Pig}f J (P(u) W(u))? du/ P*(x),

the nth Christoffel function associated with W?>(x). The Christoffel functions play
an important role in weighted approximation and in the theory of orthogonal
polynomials—see Nevai [36]. One of the many reasons for this is the identity

[71, [36]

(62) MW x)=1 /S (WP,
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where p;( W2 x),j=0,1,2,..., are the orthonormal polynomials associated with
W?, so that

o0 1 —
prm(Wz; x)pa (W2 x) W2(x) dx={0: :?ﬁ:

In order to place the new result we obtain below in perspective, we first briefly
review existing estimates for Christoffel functions. For the sake of simplicity we
restrict our discussion to W, (x) = exp(—|x|*), @ >0, and merely note that many
of the quoted results hold in greater generality.

For a =2, Freud [9] (see Nevai [36]) established the lower bound

(6.3) )\,,(Wf,;x)ZCn_””“W?,(x), xeR, n=1.

Subsequently, Levin and Lubinsky [13], [14] showed that (6.3) is also true for
1<a <2. For a =1, the analogue of (6.3) (with n~'*"/* replaced by (log n)™")
appears in Freud, Giroux, and Rahman [10] and, for 0 <« <1, the analogue of
(6.3) (with n™'""/* replaced by 1) appears in Lubinsky [16].

Concerning matching upper bounds, Freud [8] showed that, for o > 1, there
exist C;, C,> 0 such that

(6.4) A(Wi; x)=Cin” T OWi(x)
for
(6.5) |x|= CynVe, n=1.

The analogue for a =1 appears in [10]. For 0 <a <1, the upper bounds seem
not to have been considered, though in this case there is a trivial constant upper
bound to match the lower bound for x in any finite interval. In any event, upper
bounds are not of such great interest for 0 << a <1, see Nevai and Totik [38].

One unfortunate feature of the above upper bounds is the unspecified constant
C, in (6.5). For a =2,4,6 [34], [1], [43], much deeper results on asymptotic
behavior of orthogonal polynomials show that (6.4) holds for
(6.6) Ix[=(1~¢)x,
n=1,2,3,..., where £¢>0 is arbitrary and x,, denotes the largest zero of
p.(W2; x). One may use Lemmas 3.5 and 3.7 to show that one cannot replace
(1—¢) in (6.6) by (1+8), for any 8> 0. .

Even for o =8,10,12, ..., (6.4) has not been proven true for the range (6.6).
This is somewhat surprising, in view of A. Magnus’s [22], [23] proof of Freud’s
conjecture for these values of «, and the subsequent sharpening of Magnus’s
results by Mété, Nevai, and Zaslavsky [25]. Evidently, Freud’s conjecture is not
related to upper bounds for Christoffel functions. The next result establishes (6.4)
for the range (6.6) for any = 1.

Theorem 6.1. Let W e VSF(a) for some o > 0. Let ¢ > 0. Then there exists C >0
such that, forn=1,2,3,...,
(6.7) AW x)=Cla,/myWiHx),  |x[=(1-e)xy,,

where x,,, denotes the largest zero of p,(W?; x).
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In view of (3.11), one may replace a, by g, in (6.7). Further, (3.54) shows that
one may replace x,, by a, in (6.7). Of course, the above resuit is of interest only
if a=1.

Theorem 6.1 may be used to extend the range of several results in orthogonal
polynomials. Again, for the sake of simplicity, we restrict ourselves to the weights
W,(x), a>1. For n=1,2,3,..., let us denote the zeros of p,(WZ; x) by

—00< X, < X Xy, <00,

n—1,n

6.1. Spacing of Zeros

Using (6.7) and the method of proof for upper bounds [8, pp. 293-294], as well
as the method of proof for lower bounds [9, p.37], one may show that, given
0<e<l,

X, —-1+1/a

—_ —
(in — X j1 N

uniformly for | x|, |x;i1 .= (1 —€)x,,, n=2,3,4,....

6.2. Lower Bounds for Orthonormal Polynomials

Let a be a positive even integer. Bonan [2] and Nevai [35] showed that the exist
C,, C,> 0 such that

(6.8) Pa(Was %) Wa(x,) = Cin~ V"

uniformly for j and » such that

(6.9) |x;, | = Con'/e.

In [35], Nevai suggested that (6.8) should be true in the larger range
(6.10) |x,|=(1-¢)x,,

for any £ > 0. A glance at the proof of either Bonan [2] or Nevai [35] indicates
that the missing ingredient is the upper bound (6.7). Thus (6.8) is true in the
range (6.10).

6.3. Estimates of Quadrature Sums

In [20, Corollary 9], Lubinsky, Mdté, and Nevai estimated quadrature sums of
the form

| IZ " /\jnlp(xjn)\pw;r(xjn)a

Xin|=Cnl/

where A, == A, (W? X;,), p, r>0, and P(x) is a polynomial of degree at most a
constant times n. The constant C was unspecified because of a lack of upper

bounds for A,(W23; x). Using (6.7), one may replace Cn'/* in the range of
summation by (1 —¢)x,,, where £ >0 is arbitrary.
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Proof of Theorem 6.1. Making the substitution x = a,u in (6.1), and using (3.30)
in Lemma 3.5, we see that, for some n, and n=n,, xeR,

(6.11) )\,.(Wz;x)s2a,,Pinf J‘ P*(au) W?(a,u) du/ P*(x)

ePyy

=2a, inf I S (u)W(a,u) du/ S*(x/a,).

SePy-,

Let 0 <e < 1. Suppose that we can find a sequence of polynomials {R,}" with
the following properties: there exist C;, C,>0 and 0<% <1 such that, for n

large enough,

(6.12) R, (x) has degree p,=n(1—17),
(6.13) |R,(x)W(ax)|=C,, |x|=1-¢,
and

(6.14) | R, () W(aux) || Lof-221= Ci.

Then, choosing S:= R,P in (6.11) for some P of degree <n—1—-p,, we obtain,
for n large enough and |x|=(1-¢)a,,

/\..(WZ;X)S2anW2(X)(C1/Cz)2P Inf J P*(u) du/ P*(x/ a,)

= Cy(a,/n) W(x)

for |x|=(1-¢)a,, by standard estimates for the Christoffel function of the
Legendre weight [33, p. 79] and since

n—p,=nn/2, n large enough.
It remains to find polynomials {R,} satisfying (6.12)-(6.14). Let

1-x?% [x|=1
0, otherwise.

h(x):={

By Theorem 4.1, we can find polynomials Ié,,(x) of degree =(n(1-7)) (where
{x) denotes the greatest integer <x), n=1,2,3,..., such that

l‘j{}o | A(x)— Iin(x)/HQ(aO,(l,,,»x) | Locry = 0.

Making the substitutions x = a,4/d,(1—ny and R,(u) = Ié,,(x), we obtain

(6.15) }.Lnolo ” h(anu/a(n(l—n)>) - R, (u)/ HQ(anu) || L) = 0.

Now, by (3.10), we see that

'IILH; a(n(l—n))Q'(a<n(1—n)>)/{anol(an)} =(1-mn).
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Hence, using (3.5), it follows that

lim ag,_p/a,=(1— n)Ve.
n—->oc

Then, choosing 1 small enough, we have, for n = n,(n),
h(a,,u/a<,,(1,,,)>)2C4>0, |u|51_8.

In view of Lemma 3.11, (6.15) then implies (6.13) for n large enough. Further,
(6.14) follows immediately from (6.15). Finally, (6.12) is satisfied by choice
of R,,. |

Note that the proof of the above result does not require the existence of Q" (x)
or (2.12) to be satisfied, since Theorem 4.1 and (3.62) do not require these
conditions. Furthermore, the above method may also be applied to the L,-
Christoffel functions [16]

Aop(W; x) 1= ,inf [ PW (|1, /| P(x)], 0<p=o0,

We may also estimate A,( W?w; x), where w is as in (2.25), by a modification of
the above method.
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Appendix: Proof of Theorem 3.9

Recall that, if a >0,

1 —_——
(A1) v(a;x):gJ 1"71/\/12—x2dt, |x|S1,
T J x|
and
1
(A.2) U,,(z):=J‘ log|z—t|v(a;t)dt—|z]*/A,+log2+1/a.
-1

We shall split the proof of Theorem 3.9 into several steps: in Lemma A.1 we
note some properties of v{a; x). In Lemma A.2 we establish the existence of an
angular region at +1, in which U,(z) is positive-compare Figure 3.1. In Lemma
A.3 we show that, for any 0<< 8 < 1, there is a rectangular region above and below
[6,1]w][—1,~8], in which U,(z) is positive. In Lemma A.4 we consider the
interval [~8, 8] for @ > 1, and in Lemma A.5 we establish the analogue of Lemma
A4 for 0<a =1. The latter requires special care.
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Lemma A.1l. Let a>0. Then

I -2 1
(A.3) v(a; x)=2\/1—x2—g(i-——)J t° 73 P —x? dt, |x]<1.
T

o x |

Given 8 >0, we have, uniformly for 6 <|x|=1,
(A.4) v(a;x):g\/l_xk*_ O((1-x2)¥?),
T

There exists C > 0 such that, for |x|=<1,
(A.5) v(a;x)ZC~/1—x2.
The following identity is valid:

(A.6) . J‘ v(a; t)/(1-t)dt=a/A,.

Proof. Integrating (A.1) by parts, yields (A.3). Then (A.4) follows, as
JE—x2=0((1-x)"?) uniformly for |x|=|t¢|=1.

For | x| close enough to 1, (A.4) implies (A.5). For | x |=1-6,any 0<6<1, (A.5)
follows as v(a; x) is bounded by a positive number. To prove (A.6) we first note
that, from equation (4.8) in [27, p. 218] and equation (4.36) in [27, p.221],

a—1

1 . x
(A7) J CICHU . —aJ. U= 12 de
—1 1

x—t A,

for x> 1. Since, for te(—1,1), 1/(x —1¢) increases as x decreases to 1, we may
let x>1+ in (A.7) and use Lebesgue’s monotone convergence theorem to
deduce (A.6). |

Note that U,(z) is continuous in C, and vanishes in [~1, 1], see Proposition
2.3 in [27, p. 208].

Lemma A.2. Leta>0. Let 0<< 8 < /6. Then there exist ¢ > 0 and C > 0 such that

(A.8) U,(1+ye)=Cy*?, yelo,el, Oec[mw/3+8, w/2].

Proof. Differentiating U, (1+ ye™) partially with respect to y and letting z:=
1+ ye™, we see that

aU, (1t 6+
—3(2)=J (——lgs—z——yv(a; t) dt—~£|z|““2(cos 0+y).
ay - |z—t| Ao

Further, for some ¢, C,>0and y€[0,¢], 8 [0, 7],
|z|“72=|1+yeig|“"251+C1y.

Using (A.6), we see that, for some C, and all y [0, ],
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U, Y-t 0+ os 0
“(z)z'[ {( Jcos 6y cos }v(a;t)dt—C}y
y - |zt 11t
2/y
ucos+1 cosé
=L {|u+ei9|2 — }v(a;l——yu)du—C}y

(by the substitution 1—1¢ = uy)

2/y
v(a;, 1—yu
j {1—2c0520—cosB/u}ﬁzdu—czy.

0]
Now, for y=<4, y V2=u=2/y, and 6 e[n/3, w/2],
1-2cos’#—cos /u=3—y'?=0.

Hence

(A9) U, J" v(a; 1—yu)

ay“(z)z {1—-2cos® 8 —cos 6/u} B du—Cyy

0 l
= I(6;y)— Cyp.

Next, by (A.4), we have, uniformly for 0=<u=y ? and y =},

v(a; 1—yu>=§J1—<1—yu>2+0<{1—(1-yu>2}3/2)
=%«/2yu —(up)*+ O((yu)*’?

=%\/_2yu(1+ o(y").

Then, uniformly for 6 e{#/3, #/2], as y >0,

3 yo1/2 1/2
I(G;y)N‘:ij {1-2 cos? 6 —cos 8/ u} ——— du{1+ O(y"*)}
T Jo ]u+e |

av2 [ u'? du
:TJO {1-2cos® 6~ cos H/u}m(1+0(y”2))

+ O( J"’O {u3?+yu>"? du)(l +0(y"?).

—1/2
y/

Now, letting u=1v"", we see that

o ul/2 oov—x/zdv
J _fﬁd":J T ep— A
o |u+e®| o |v+e”|

Hence, we see that, uniformly for 6 €[ #/3, 7/2],

1(6; ) _av2
vy @

(A.10) {1-2cos 6 —cos BYA(1+ O(y"?)+ Oy
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as y—>0. Since 1 -2 cos® 8 —cos 8= C,>0 for § [m/3+ 8, 7/2], we obtain from

(A.9) and (A.10) that, for 0 <y =g, & small enough, and 6 e[n/3, 7/2],

19} ;

122 (1+ye)=C,>0.

8y
Multiplying by y'/?, and integrating, we obtain (A.8), as U, (1) =0. [ ]
Lemma A.3. Let a>0. Let 0<8 < 1. Then there exist € >0 and C,> 0 such that
(A.11) U,(x+iy)=Cy*?, s=lx|=1, O<y<e.
Proof. Since U, is even and real valued in R, it suffices to prove (A.11) for
d=x=land0<y=1l.Ford=x=1,0<y=1,weseethat, forsome C, depending

only on 8 and a,

1

yo(e; t) o 2, 2va/2-1
—— = —— y(x’+
._1(X'-t)2+y2 /\ﬂy( J’)

(¥ yv(a; )
Jx—5/2 (x—1)*+y?
[*/® v(e; x ~ uy)

= . ———ule——du—Czy.

(A.12) We (1 iy)
3y

=

dt - Czy

Now, by (A.5),
o(a; x—uy)=Cv1—(x —uy)?
= CV1—x%+2upx — (uy)?
= Cy26uy — (uy)?
= Cy(uy)'?
for 0=u=§/(2y), with C; independent of x, 4, and y. From (A.12) we obtain
~129U, N Y2 gy

T H - 1/2
(A.13) y Py (x+iy)=G; L N Cyy

=C,>0
if 0<y=e¢ and ¢ is small enough. Here the upper bound on ¢ and C, are
independent of x. Since U,(x) =0 for § =x =1, we may multiply (A.13) by y"/*
and integrate to obtain (A.11). [}

We next estimate U, (x+ iy) below, for x near 0 and y>0. The case 0<a =1
is more difficult than the case a > 1. We first dispense with the latter:

Lemma A.4. Let a>1. There exist e >0 and C >0 such that
(A.14) U, (x+iy)= Cy*?, |x|=1, O<y<e.
Proof. Let a:=min{l, « —1}. Let | x|=3. We see from (A.12) that, for some C,

independent of x and e,

U, boyvlast)
— (x+iy)= = dt - Cy°
3y ( y) J’—1 (x—1)*+y? 1Y

i y a
=C ————dt-C
: L—l/4 (x—1)’+y? Y
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1/(4y} du
= C2 J Clya,
0

wr+1 B
where C,=min{v(a; t):|t|=3}>0, and we made the substitution x —¢=uy.
Thus, as a >0, there exist £ >0 and C;>0 such that
olU,
a—(x+iy)2C3>O, |x|=3, O<y<e
y
Hence, integrating this inequality and using U,(x) =0, we obtain
Udx+iy)=Cyy, |x]|=3 0<y<e
Together with Lemma A.3, this implies (A.14). |
Finally, we consider the harder case a <1:

Lemma A.5. Let 0<a =1. There exist ¢ >0 and C >0 such that

(A.15) U, (x+iy)=Cy>, |x|=1, O0<y<e.
Proof. It suffices to consider x = 0. Since o <2, {(A.3) shows that, for !x|s 1,
1
(A.16) v(a;x)Z(a(Z—a)/w)‘[ 3= x)Y2 di
[ x]
=[x|"A(|x]),
where

1/r
(A.17) A(r)2=(a(2—a)/w)J 5973 (s2=1)"2 ds, re(0,1).

Note that A(r) decreases as r increases, and

s

<00 <
(A.18) A(0)= lim A(r){ a<l,
r>0+ =00 a=1,

Let A:=(x’+y”)"/?, and assume that x, y€(0,3), so that 0<A=1/v2. From
(A12),

U, ! 3t
(x+iy)=J —y”(“2 )2dz—“—yAH
oy a(x=0)+y Ao

1 t aflA t ,
[ A o
o AT =2xt+1t A
by (A.16). Letting ¢ = As in this last integral, we see that

U, VA 5] T A(As]) a
i ey ][ ) o)
( ) ay (xtiy)=y Cyya 1-2xs/A+57 A

Now we see that

1/A LX»lA A 1/4
J IsI""A(als]) |s|)dszj s“"A(As){ L] }ds
o

_ya 1—2xs/8+ 57 1—2xs/A+s> 1+2xs/A+s’

1/A
2-[ s TTAASY(1+ sD)/H(1+ D)~ 4x% s/ A%} ds

v

1/A
2 J' s TTA(As)/ (1 +57) ds
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as 0=(1+s%)°—4x’s’/A’=(1+5°)°. As A decreases to 0, this last integral
increases, by Lebesgue’s monotone convergence theorem, to 2A(0) B, where

B:= J’Oos"‘_l/(1+s2) ds.

0

Let 6> 0. It follows from (A.19) and these last considerations that there exists
n >0 depending only on « and 8 such that, for 0=x=<% and 0<y <1,

(A.20) a—@%(ﬁiy)ZyA“*z{zA(o)B—a/)\a — 8}

We next show that C, :=2A(0)B— «/ A, is positive. Firstly, if o =1, (A.18) shows
that C, =, Now suppose 0 <a <1. Making the substitution s=1/¢ in (A.17)

and letting r—> 0, we see that
1

A0 =(a(2—a)/ ) j T (1-HY2 dg
=(a(2—a)/2aNTAI((1-a)/2)/T((4-a)/2),

by a standard integral—see, for example, no. 855.41 in Dwight [5, p. 212]. Using
the replication rule for the gamma function, we see that

(A.21) A(0) = (a/ 2V m)T((1-a)/2)/T(1-a/2).
Next, by a standard integral—see, for example, no. 856.07 in [5, p. 213], we see
that
(A.22) B=7/(2cos((a—1)m/2))=n/(2sin(am/2)).
Then, combining (2.6) and (A.21) and (A.22),
C,=(ava/2)T({(1-a)/2}/{T(1 = a/2)sin(an/2)} — a2 T(a/2)*/T(a).
Next, using the identity [40, p. 21]
MNa/2)T(1—a/2)=ma/sin(am/2)
and Legendre’s duplication formula [40, p. 24]
Val(a)=2"""T(a/2)T(a/2+3),
we see that
Co=al(a/2iT((1-a)/2)T((1+a)/2) — 7}/ {2VmT((« +1)/2)}
=al(a/2)0Va{l/sin(m(a+1)/2) -1}/ {2T((a +1)/2)},
by the rule
I'(z)I'(1 —z) = nw/sin(7z) with z=(a+1)/2.
Hence C, >0, and, choosing 8 small enough in (A.20), we have

U,
—(x+iy)=yC,/2
ay

for 0=x =7 and 0 <y <. Integrating, we obtain
Ufx+ip)=y>C,/4, 0O=x=m, 0<y<n.
Together with Lemma A.3, this yields (A.15). n
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Proof of Theorem 3.9. Lemmas A.2, A4, and A.5 and the fact that U,(z)=
U,(2)= U,(-z) show that, for any 0<8< /6, there exists n>0 such that
U,(z) is positive in 9(n; m/3+8). Since U,(z) is continuous in C, the result
follows. [ |

Note Added in Proof. Generalizations and improvements of the results of this
paper, as well as applications to Szegd type asymptotics for extremal polynomials,
appear in the authors’ paper entitled “Strong Asymptotics for Extremal Errors
and Extremal Polynomials Associated with Weights on (—0, 0©0).”
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