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A Proof of Freud’s Conjecture for Exponential Weights

D. S. Lubinsky, H. N. Mhaskar, and E. B. Saff

Abstract. Let W(x) be a function nonnegative in R, positive on a set of positive
oo

measure, and such that all power moments of W?(x) are finite. Let { p,, ( W2, x)}*
denote the sequence of orthonormal polynomials with respect to the weight
W2(x), and let {A,} and { B, }* denote the coefficients in the recurrence relation

XD (W2, X) = A, Pued(W2, x)+ B, p, (W2, X)+ A, po_y (W2, x).

When W(x)= w(x) exp(—Q(x)), xe(—00,00), where w(x) is a “generalized
Jacobi factor,” and Q(x) satisfies various restrictions, we show that

lim A,/a,=% and lim B,/a,=0,

where, for n large enough, a, is the positive root of the equation

1

n=(2/u) f a,xQ'(a,x)(1—x2)""2 dx,
0

In the special case, Q(x) =|x|* a >0, this proves a conjecture due to G. Freud.
We also consider various noneven weights, and establish certain infinite-finite '
range inequalities for weighted polynomials in L,(R).

1. Introduction

Let w(x) be nonnegative in R, positive on a set of positive measure, and such
that all power moments of w,

J x'wix)dx, j=0,1,2,...,

are finite. Then we shall call w a weight function. Associated with w is the sequence
of orthonormal polynomials {p,(w, x)}, where

Palw, x) =y, x" 4+ - -

has degree n with v, =vy,(w)>0, and

o
1, m=n,
w, X w, x)w(x) dx =
L,”"( , %) P9, X)w(x) {0’ e
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The orthonormal polynomials satisfy the recurrence relation [5]
XPa (W, X) = Ay 1Pasr(W, X) + B pa (W, x) + Ay pi (W, X),
where
A, = A, (W)= v, (W) v (w)

and
o0

xpi(w, x)w(x) dx, n=1,2,3,....

When considering weights with unbounded support, we shall find it convenient
(as did G. Freud) to formulate results for w= W? where W is a nonnegative
function such that W? is a weight function. In 1974 Freud {6] made the following

Conjecture. Let a >0, p> -1, and

We oo = 1%]?? exp(—|x|*),  xeR.
Then
(11) lim nAL(WE,) = Ba/2,
where
(1.2) Ba= ALY
and
(1.3) Ao =T(a)/ 2T (a/2)}P).

Note that B,( Wi,p) =0, as W, , is even. Freud proved the conjecture for o =2,
4, 6 and p > —1. Subsequently, Al. Magnus [13], [14] proved the conjecture for
« a positive even integer and also the analogue of Freud’s conjecture for noneven
weights such as exp(—P(x)), where P(x) is a polynomial of positive even degree
with positive leading coefficient. Maté, Nevai, and Zaslavsky [16] sharpened
Magnus’s result to an asymptotic expansion for A, for the weight Wi, « a
positive even integer. Recently, Bauldry, Maté, and Nevai [2] extended the results
of [16] to some of the weights considered by Magnus in [14]. Several applications
of Freud’s conjecture are discussed by Nevai [22], and related physical applica-
tions have been discussed in Bessis, Itzykson, and Zuber [3] and in Pettifor and
Weaire [24].

It is the purpose of this paper to prove Freud’s conjecture for W7, for all
a>0 and p> —1. We shall also prove the analogue of Freud’s conjecture for
more general weights and establish certain infinite-finite range inequalities for
weighted polynomials in L,(R). Some of our results were announced in [12].

The paper is organized as follows: Section 2 contains the statement of our
main results. In Section 3 we prove infinite-finite range inequalities. Finally, in
Section 4, we prove Freud’s conjecture and its generalization.
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2. Statement of Results

In order to state our results, we shall need to define two classes of weights:

Definition 2.1. Let W(x):=exp(—Q(x)), where Q(x) is even, continuous and

Q'(x) exists for x>0, while xQ’(x) remains bounded as x > 0+. Further, assume
that Q"(x) exists for x large enough and for some C >0 and a >0,

(2.1) Q'(x)>0, xlargeenough,

(2.2) x}Q"(x)|/Q'(x)=C, x large enough,
and

(2.3) lim (1+xQ"(x)/ Q'(x)) = a.

Then we shall call W a very smooth Freud weight of order « and write W € VSF(a).

Note that if « >0 and B €R then
W(x) =exp(—|x|*(log(2+x%))?) e VSF(a).

The class of weights VSF(«a) was introduced in Lubinsky and Saff [11], in solving
a conjecture of Saff [27, p. 252] on weighted polynomial approximations. The
restrictions on Q(x) arise in construction of even entire functions with nonnegative
Maclaurin series coefficients that behave like W™ '(x) on R (see Lubinsky [9],
[10]) and in ensuring that the zero distribution of certain extremal polynomials
is the Ullman distribution of order « [11], [19], [26].

Associated with each We VSF(a), we define a, = a,(W) to be the positive
root of the equation

(2.4) n=2/m) J‘ a,xQ'(a,x)(1-x%)"V? dx.

It is shown in [11, Lemma 3.2] that for n large enough, a, is uniquely defined.
The number a, was introduced by Mhaskar and Saff [18], [19] in studying the
L., norms, and asymptotic behavior, of weighted polynomials. When Q is even
and convex, and W{(x) =exp(—Q(x)), Mhaskar and Saff [18], [19] showed that

25) - IPWI Loy = 1 PW | a1

for each Pe ?,, where %, denotes the class of polynomials of degree at most n.
Further, they showed that a, is asymptotically best possible in (2.5).

In the special case W:= W, ,, the quantity a,(W) takes a particularly simple
form [17]:

(2.6) a,(Woo)=Bn"% n=1,2,3,..., a>0,
where 8, is given by (1.2) and (1.3).
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Definition 2.2. Let
N

2.7 w(x)=1] |x—z|%  xeR.
j=1

where N=1; z,, z,,..., zy are distinct complex numbers, A,, A,,..., Ay €R,
and, for each real z;, the corresponding A, > —1. Then we shall call w a generalized
Jacobi factor.

We use the term “factor” rather than “weight” to distinguish w from the
generalized Jacobi weights, considered by Nevai [21], which vanish outside
[-1,1]

One of our main results is:

Theorem 2.3. Let We VSF(a) for some a >0, and let a, = a,(W) be the root of
(2.4) for n large enough. Further, let w be a generalized Jacobi factor, and let P(x)
be a polynomial of degree less than «. Finally, let

(2.8) W(x):=P(x)w(x) W(x) exp(P(x)), x€R,
where W(x) is nonnegative in R, ¥(x) e L(R), and
(2.9) ' [1|i£r:o T(x)=1.

Then the recurrence coefficients A,(W?), B,(W?) satisfy

(2.10) lim A,(W?)/a, =1
and
(2.11) lim B,(W?)/a,=0.

The special case ¥ =1, P=0, w(x)=|x|"/?, and W(x)=exp(—|x|*), a>0,
establishes Freud’s conjecture for Wf,_p, for all @ >0, p> —1. The above result
also contains the results of Magnus [14] for weights of the form exp(—¢;x™ +
p(x)), where ¢,>0, m is a positive even integer, and p(x) is a polynomial of
degree less than m.

We remark that the limits (2.10) and (2.11) may be reformulated in terms of
Freud’s quantity gq,, which, for n large enough, is taken to be the positive root

of the equation

4.Q'(g.) = n.
In view of Lemma 3.2 in [11], we may rewrite (2.10) and (2.11) in the form

lim A,(W?)/q,=B.a"%/2 and lim B,(W?/q, =0,

where B, is given by (1.2) and (1.3). In the special case
Q(x):=|x|*(log2+x7))%,  xeR,

both g, and a, grow like n'/*(log n)™#/* as n - oo,
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The factors ¥, w, and e” play no role in the description (2.10) and (2.11) of
the asymptotic behavior of A,(W?) and B,(W?), and so one expects that (2.10)
and (2.11) are valid for far more general W. In this direction, we can replace e”
by a more general factor, but at the expense of a more cumbersome formulation:

Theorem 2.4. Let W, w, and 'V be as in Theorem 2.3 and let V(x) be a function
nonnegative in R with the following properties: V(x) is bounded above in each finite
interval;

(2.12) Jim (log V(x))/ Q(x)=0;
Given any sequence {€,}7 of real numbers satisfying
(2.13) lim e, =0,

there exists, for large enough n, a positive integer I, and S, € P, such that

(2.14) lim L,/n=0,

(2.15) lim|V(a,(1+¢,)x)S,(x)l=1 a.e in[-1,1],
and, for some C >0 and all n large enough,

(2.16) ] ” V(an(1+gn)x)sn(x)”Lm[-l,l]SC-
Finally, let

(2.17) W(x):=T(x)w(x) W(x)V(x), xeR.

Then the conclusions (2.10) and (2.11) of Theorem 2.3 remain valid.

We note that Theorem 2.3 follows from Theorem 2.4 by setting V(x):=
exp(P(x)) (see Section 4). In both Theorem 2.3 and Theorem 2.4, we may choose
W to be the characteristic function of the complement of finitely many compact
intervals, so that the support of W consists of several disjoint intervals. Moreover,
while it is not obvious, it can be shown that in both Theorems 2.3 and 2.4, the
conditions on ¥(x) can be weakened in such a way that the support of W consists
of infinitely many disjoint intervals whose complement is unbounded.

The proofs of Theorems 2.3 and 2.4 involve three main elements. The first,
and possibly the most difficult, is the construction of polynomial approximations
for the reciprocal of the weight W(x)—this task was completed in Lubinsky and
Saff [11]. The second element is a sufficient condition for (2.10) and (2.11) to
hold. This condition was established by Knopfmacher, Lubinsky, and Nevai [7],
using the method of proof of Maté, Nevai, and Totik [15] for Rahmanov’s theorem
[25].

The final element consists of inequalities that relate the L, norm of a weighted
polynomial over R to its L, norm over a finite interval. While Mhaskar and Saff
[19], [20] established inequalities of this type for general weights and situations,
the more refined inequalities of the type we need here were established by
Lubinsky [8].
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Theorem 2.5. Let 0<p=oo. Let W=exp(—Q) e VSF(a) for some o >0, except
that we do not assume that Q" (x) exists for any xR, or that (2.2) is satisfied.
Let W(x) be a nonnegative function such that W(x) < L,(R} and

(2.18) Jim {log(1/ W(x))}/ Q(x)=1.

Let a, = a,(W) for n large enough. Then there exist sequences {£,}7 and {5,}7 of
positive real numbers such that

(2.19) lim g, =0,
(2.20) lim 6, exp(n/log n) =0,

and, for n large enough and each Pc P,,

(2.21) IPW I L,y = (14 8 PW |1, (—a, (146 pan1 e

In (2.20) the numbers {log n}}" may be replaced by {6,};", where 6, > as
n - oo, arbitrarily slowly. In special cases, we can also give a rate for {¢,}{.

Theorem 2.6. Let W(x):=exp(—Q(x)), where Q(x):=|x|*, some a >0, or Q(x)
is even, continuous in R, convex in (0, 00), and Q'(x) exists and is positive in (0, 00).
Let 0<p<oo and let {K,}} be a sequence of positive numbers such that, for n
large enough,

(2.22) K >{(2+a_1)/P if Q(x)=|x|* a<]1,

“la/p if Q(X) is convex.
Further, forn=2,3,4,..., let

.={Ma”KﬂbgnvnW3ifQu)=hKa<1,

(2.23) (46K, (log n)/n)?">  if Q(X) is convex.

and assume that

(2.24) lim &, =0.

Then there exists C,> 0 such that, for n=2,3,4,...and each P P,
(2.25) | PWIlL ry= (14 Cin 5| PW|| L, (—a(146,).000+ e

We remark that if « = 1, one may choose &, = (K, (log log n)/n)*? andif a <1,
one may choose ¢, = (K,/n)*? in (2.23), but the right-hand side of (2.25) then
becomes more complicated. The difference to our present proof involves applica-
tion of sharper Nikolskii inequalities for exp(—|x|*), @ <1 (see Nevai and Totik
[23D).

It seems likely that the above result should remain valid when the convexity
of Q(x) is replaced by the weaker condition that xQ'(x) increases to +00 as x
increases to +00,
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3. Proofs of Theorems 2.5 and 2.6

Throughout, C, C,, C,,...denote positive constants independent of n and x.
The same symbol does not necessarily denote the same constant from line to line.

The proofs of Theorems 2.5 and 2.6 will be organized as follows: we first list
some technical lemmas, which summarize some results from [11] and [17]. Then
we prove Theorem 2.6 in the special case W{x)=-exp(—|x|*) and use this latter
result to prove Theorem 2.5. Finally, we use the Poisson kernel for the exterior
of a line segment to prove Theorem 2.6 for W(x) = exp(—Q(x)) when Q(x) is

even and convex.
In describing the asymptotic behavior of extremal and orthogonal polynomials

associated with weights such as
W, (x):= W, o(x) = exp(—|x|"), xeR, a>0,

an important role is played by the Ullman distribution

.
@ a—1g,2 23—1/2

ol A Ul dt, -1,1

(3.1) v(a; x)= qrj,x, (r"=x%) ,  xe[-L1],

0, otherwise.

Associated with v(a; x) is the function
1

(3.2) U,(z):= J log|z — t|v(ea; t) dt—|z|*/ A, t1log 2+ 1/ q,
-1

ze C, where A, is given by (1.3).

Lemma 3.1. Let o> 0. Then:

(i) U,(z) is even, continuous in C, and U,(x) =0 for xe[—1, 1].
(ii) As e->0+,

(3.3) Ul{l+e)=—av2s+ O(e).
(iii) As >0+,
3.4) Ua(1+s)=—a¥sy2+ O(&?).

(iv) Forn=1,2,3,...and each Pc P,, there holds, for all xR,

(3.5) lP(x) Wz(ﬁax)[ = e"U“(X)HP(x) WZ(Bax)”Lco[—l,l]‘
(v) Let >0, 0<p=o0. There exists C >0 such that, for n large enough and
pPe®,,
(3.6) I1P(x) WalBaX)| L, qx=1+5= € " | P(x) Wa(BaX) | -

Proof. (i) This follows from Proposition 2.3 and equation (2.9) in [17, pp.
207-208].
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(ii) Now
3.7) U:,(x)=Jl v(a; )/ (x—1t) dt—ax*""/A,, xe€ (1, 00).
-1
We see using the Monotone Convergence Theorem that, as x> 1+,
UL,(x)—»L %dt—%= ,

by (A.6) in Lubinsky and Saff [11]. Further, writing x =1+ ¢, and using (A.6) in
[11],

! v(a;t 1+&)*!
Ul(1+e)= lfr"’ L gy -2dte)
3 e—1 Ao

r1 't
I L G Y
g 1+e—t Ao

1

= v(a; t)[

. v(a;t)
=—¢ J:,——_——(l+e—t)(1—t) dt+ O(e).

1 1
—— | dt+
1+e—t l—t]dt O(e)

It follows that

! v(a;t)

2 (1+e—t)(1—1)
as £->0+. Now, by (A.4) in [11], uniformly for 3=x=1,

(3.8) UL,(1+e)=-¢ J‘ dt+ O(e),
(3.9) o(er; x) =2 V1= %2+ 0((1-x2)*?).
w
Hence, uniformly for 0=< eu =<3,
v(a; 1—ceu) =2 V2eu- (eu)’+ O((2eu — (su)»*?)
ko

=AY o (),
ao

Letting ¢ =1—eu in the integral in (3.8), we obtain
1/2¢ -1 + 3/2
Uﬁ,(l+s)=—J am” V2eu+ O((eu)’’?)

o (u+1)u

. 1/2¢ du 1 1/2¢
- -1/2
=—an"'V2e L —ul/z(u+1)+0(£/ L uV du>+0(s)

du+ O(e)

-1 * d 1/2
=—aT 28<J’0 ;V—zw—u-+'T)+ O(e / ))+O(8)

=—av2e+0(e),
using a standard integral (see Dwight [4, p. 213, no. 856.02]).
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(iii) This follows by integrating (ii) and using U,(1)=0.
(iv) This is (3.20) in [11].
(v) This is an immediate consequence of (3.18) in [11]. |

We next prove a crude Nikolskii inequality:

Lemma 3.2. Let W(x)=exp(—Q(x)), where Q(x) is bounded in each finite
interval, and, for some C >0, the function Q(x) is increasing in (C,©) and
decreasing in (—o0, —C), while

Il]im Q(x)/log|x| = 0.
Let 0 < p <oo. Then there exists C, depending on W and p only, such that, forn =1,
2,3,...and Pe 2%,
(3.10) IPW|Lrry= Cin*?| PW| L, (gy.

Proof. Let Pc @?,, and let ¢ be such that
|PW|(£) = D PW | Lx) -

Suppose first that £ = C + 1. Then, by standard Nikolskii inequalities [21, pp. 106-
114],

IPW L,y = | PWI|L, 61,61

= W(OIPl L e-1.e1

=Con PW(H|Pll Loe-r.e1

= Con ™7 |PW|() = (C/ n P || PW | xy.-
If £ <—C —1, the result follows similarly. If |£&] = C +1, the result again follows
in a similar way, since W*'(x) is bounded in [-C —1, C +1]. |
Proof of Theorem 2.6 in the case Q(x)=|[x|*, «>0. Making a substitution in
(2.25), we see that it suffices to prove that, for some C,>0 and all Pe 2,
(3.11) ||P(x) "Vm(anx)“L,,(R)S 1+ C1n~K") P(x) Wa(anx)||L,,[—1—a,,,1+a,,],
where W, (x):= W, o(x) = exp(—|x|*), x € R. Now, by (2.6),

a,(W,) = Ban"",

so that
W, (a,x)= W,(B.xX), x€R.
Hence (3.11) is equivalent to ]
(3.12) |Px)Wi(Box) L, =(1+ Cin™ 5[ P(x) Wi(BaX) | L 1—1-ep1 4601

It is not difficult to see that it then suffices to prove, for some C,>0 and all
Pe?,,n=23,4,...,

(3.13) | P(x) Wz(ﬁax)”L,,(|x|21+e,,)S Con™ % | P(x) WZ(Bax)”Lﬂ(R)a
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where {&,}7 is as in (2.23). Let 6> 0 be so small that
U,(1+e)=—(a/2)e*?, ec[0, 8],
such a choice of 8 being possible by (3.4). Then, for £ € [0, §], Lemma 3.1(iv) yields
| P(x) Wa(Ba)l 1,1+ e=ixi=145)
=<exp(—n(a/2)e”)||P(x) Wi(BuX) | L.r)(2(8 —£))/"
= C3(2(8 —£))""? exp(—n(a/2)”*)n*"n" V|| P(x) Wa(Box) 1w

by Lemma 3.2 and a substitution. Note that C; is independent of n, ¢, 8, and P.
Choosing & small enough, we obtain, for Pe ?,, € €[0, 8],

”P(x)W:’X(Bax)”L,,(l+p,<;;|x|<l+5)
=exp(—n(a/2)e*?+(2+a™") p ' log )| P(x) Wa(BaX)l k)

Combining Lemma 3.1(v) and (3.14), we see that there exists ;=8 such that,
for £ €[0, 8,] and Pe P,, n large enough,

”P(X) W:(ﬁax)“L,,(yxtsz)
=2 exp(—n(a/2)e’2+(2+a")p " log )| P(x) W2(Bu) | 1, chy
Next, note that if £ = ¢, is given by (2.23) and ¢, = §,, then
—n(a/2)ey/*+2+a )p log n=(log n){-2K,+2+a Hp "}
=-K, log n,

(3.14)

(3.15)

by (2.22), and by considering separately the cases @ <1 and a=1. Thus, by
(3.15), for n large enough and Pe 2,

“ P(x) Wz(Bax)”Ll,(lx{zl-Fs,,) = 2n#K“ ||P(x) W:'V(Bax)n L(R)>
establishing (3.13) and hence Theorem 2.6 in this case. |

In the proof of Theorem 2.5, we shall need two lemmas that are essentially
drawn from [11].

Lemma3.3. Leta,p, W, and W he as in Theorem 2.5. Let 0< ¢ < o and a,=a, (W)
Jor n large enough. Then:

(i) For |x| large enough,

(3.16) ¥ = | Q) = x| e
(ii) For |x| large enough,

(3.17) x| =] Q(x)] = x| ™.
(iii) For n large enough,

(3.18) nl/(““)sa"s pl/(a=e)
(iv) For each K >0,

(3.19) lim Q(Ka,)/n = K*/A,.

(v) Uniformly in any compact subset of R\{0},
(3.20) lim W(a,x)"" = W,(B.x).

n->oo
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Proof. (i) By (2.3), for x large enough,
(a—e/2-1)/x=Q"(x)/Q(x)=(a+&/2-1)/x

and integrating, we obtain, for x large enough,
(a—e—1)logx=log Q'(x)=(a+e—1)logx,

which yields (3.16).
(ii) By Lemma 3.1(iii) in [11],

3.21) lim xQ'(x)/Q(x) = «a,
and integrating as before yields (3.17).

(iii) By Lemma 3.2(ii) in [11],
(3.22) lim a,Q'(a,)/n=a/A,.
Combined with (3.16), this yields (3.18).

(iv) By Lemma 3.1(iv) in [11], for each K >0,
(3.23) lim Q(Ka,)/Q(a,) = K*.

Further, by (3.21),
lim Q(a,)/(a,Q'(a))=a™".
Multiplying this limit by those in (3.22) and (3.23) yields (3.19).
(v) Let
(3.24) CJ(x)=W(x)/W(x), xeR.
Then J(x) € L,[~a, a] for each a >0, and, by (2.18),
(3.25) |)lc|l§30 Q(x) "log J(x)=0.

Since Q(x) is even, and increasing for x large enough, we then see that, if
0<A<B<®,

sup{J(a,x)*"/": |x| e [A, Bl}= GXP({Q(Ban)/n}{ sup |Q(u)™" log J(u)l})

Jul=Aa,
-1 as n-—>o0,
by (3.19) and (3.25). Hence, also, uniformly for A<|x|=< B,
lim W(a"x)‘/"=r1'i$ W(a,x)"" = W, (B,x),

n-—»oo

where the last equality follows from Lemma 3.2(iii) in [11]. |

Lemma 34. Leta, p, W, and W be as in Theorem 2.5. Let a, = a,(W) for n large
enough.
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(i) Let 8> 0. There exists C >0 such that, for n large enough and P 2,
(3.26) 1PG) W(a)l|yqxi=1 00 = €| PO W(@,%) | 1, w0
(ii) There exists a sequence {p,}T of positive numbers such that

(3.27) lim p¥/"=1

and, forn=1,2,3,...and all Pc P,
(3.28) | P(x) W (BaX) | L, v) =< Pn ||P(X)W(anX)IIL,,(m-
Proof. (i) Let J(x) be given by (3.24). Since (3.25) holds, Lemma 3.5 in [11]

yields (3.26).
(ii) This follows from (3.43) and (3.45) in Lemma 3.6 in [11]. [ |

Proof of Theorem 2.5. In view of (3.26), it suffices to show that, for some & >0,
there exist {¢,}7 and {8,}] satisfying (2.19) and (2.20) such that
(3.29) 1P () W)y rve =ttt = 8a | POX) W (@) 1, s

a substitution and some elementary manipulations then yield (2.21). By Lemma
3.3(v), there exists {p,}7 satisfying (3.27) such that

W(a,,x)Sp,,WZ(B,,x), I=|x|=1+8, n=1,2,3,....
Then, for 0= ¢ =§,, (3.15) yields, for Pe &,, n large enough,
IP(x) W(a,)| 1y <ixi=100) = 20, exp(—n(a/2)e>”
+(2+a )p log n)[| P(x) Wa(BuX)l 1w
=2p.p. exp(—n(a/2)e**+(2+a ) p logn)
1P(x) W (@)l 1,0,
where, by Lemma 3.4(ii), {9,}} is independent of & and P and
fim 57 =1.
Thus we may write
20,0, €xp((2+a ) p 'log n) =exp(nn,), n=1,2,3,...,
where

lim 7, =0.

Then, for 0= ¢ =< §,, n large enough, and Pe 2,

IP(x) W(a,x)| 1o =ini= 10 = exp(n{m, — (a/2)e* || P(x) W(a@,x)| ., ).
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Choose ¢ := g, such that
(a/2)e?* =4 max{n,, (logn) '}, n=2,34,...,
and such that (2.19) holds. It is then easily seen that
8, =exp(n{n,—(a/2)e)?}), n=23,4,...,
satisfies (2.20). Then (3.29) and the theorem follow. [ |

In proving Theorem 2.6 for W= ¢~ < where Q is even and convex, we shall
make use of the Poisson kernel for the exterior of a segment, as did Rahmanov
[26]. In fact, the function U, (x) may be derived using the Poisson kernel for the
exterior of [—1, 1]. Let Q(x) be continuous in [—R, R] for some R >0 and for
ze C\[—R, R], let

V"_' . R Zz_R2 Q(t)
(3.30) u(z, R, Q)=m J‘ARR"{ 2=t }Jﬁd”

where the branch of the square root is chosen so that vz>— R? behaves like z as
zZ—>00,

The function u(z, R, Q) is harmonic in C\[—R, R], and has boundary values
Q(x) in [-R, R]. More precisely, as Q(x) is continuous in [—R, R],

u(z, R, Q)~> Q(x) as z->xe[-R, R]

These properties may be derived from well-known properties of the Poisson
kernel for the unit disc [1] with the aid of a conformal map of C\[—-1, 1] onto
{z:|z|> 1}, and then an inversion z > 1/z.

Lemma 3.5. Let R>0, Q(x) be continuous in R, W(x):=exp(—Q(x)), and let

(3.31) H,(x, R):=u(x, R, Q)— Q(x)+nlog/®(x/R)|,
|x| > R, where, for ze C\[—1, 1],

(3.32) ®(z)i=z+V22 1.

Then, forn=1,2,3,..., PeP,, and |x|> R,

(3.33) |P(x) W(x)| < [|PW| L~ r) €XP(H, (%, R)).

Proof. Now f(z):=log|P(z)®(z/R) "|—u(z, R, Q) is subharmonic in
C\[-R,R] and as z»>xe[—R, R},

f(z)~>log| P(x) W(x)|.
By the maximum principle for subharmonic functions,
f(2)=<log||PW|  rr;,  z€C\[-R,R].
Exponentiating this inequality, and using (3.31), we obtain (3.33). |

We next need some properties of H,(x, R):

Lemma 3.6. Let Q(x) be even, continuous in R, convex in (0, 00) and assume that
Q'(x) exists and is positive in (0,00). Let W=e ° Let H.(x, R) denote the
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derivative of H,(x, R) with respect to x for fixed R>0. Then, for s € (1, ),

’ 2_ 172 o _Z;SJ.IQ(RS)_Q(RI) s dt
(3.34) H,(Rs,R)R(s*—1)"“=n p— P

Further, if a, = a,(W) for n large enough,

‘. . _l
(3.35) ©OHMas a)= -, se(l,®),
a, s+1
and if 0<e<l1,
(3.36) H.(a,s, a,)<—-nve/3(s—1—¢), se(l+eg, ),

Proof. Using the evenness of Q(x), we see from (3.30) that, for x> R,
2 "Q(Rt) x dt
R =2 (x2—R? 1/2J :
ulx R, Q)= "= RO | A= (T2 Ri) (x 4 RO)
Further, since u{x, R, 1)=1, (3.31) yields, for x> R,
LQ(x)—Q(Rt) x dt
x— Rt x+Rt J1-¢

(3.37) Hn(x,R):-.;z;(XZ_Rz)l/zJ‘

1]
X
+nlogd|{—]).
n log (R)
Since ®'(x)/P(x)=(x>—1)""% x> 1, we obtain

2 x J'l Q(x)—Q(Rt) «x dt
7T\/x2—R2 0 x— Ry x+Rt\/1-—tZ

_EJWJIi{Q(x)—Q(RI) X } dt
aT o dx x— Rt x+Rt)]V1-1¢3

(3.38) H,(x,R)= —

+n/~/x2—R2.
Since Q(x) is convex, (Q(x)— Q(Rt?))/(x— Rt) increases as x> Rt increases.

Further, x/(x+ Rt) is also an increasing function for x> 0. Hence, the second
integral in the right-hand side of (3.38) is nonnegative and so, for x> R,

: S 2X [ Q) -Q(RY) _x _ dt
(339)  Hi(x R)Vx*=Ri=n w,[o x—Rt x+RivVi—1%

Letting x = Rs then yields (3.34). Next, note that by definition (2.4) of a, and
an integration by parts,

(3.40) n =% J” a,1Q'(a,t)(1~1*)"? dt
_2 J ' Q(a,) ~ Q(a,t)
o (1_t2)3/2

T
Since (Q(a,s) — Q(a,t))/(s—1t) and s/(s+1) are increasing with s, (3.34) shows
that, for s> 1,

dt.

25 {1 Q(a,)—Qla,t) 1 dt
H:I " n n 2—1 1/25 _—J' - n
(ans, an)an(s™=1) - o 1—1t 1+1V1-12

=pn(l—ys),
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by (3.40). Then (3.35) follows on division by a,(s*—1)"% Next, in view of the
continuity of Q(x), as s> 17,

Hn(ans9 an) e Q(an) - Q(an) +n 10g|q)(1)| =0.

Then, from (3.35), for s> 1+¢,

s

H,(a,s, a,)= H,(a,(1+¢), a,) +a, J H(a.t, a,) dt

1+e

s t—1
an(an’ an)_nj —dt
1+¢ t+1
&
sO—n\/2+E(s—1—e),
and, as € <1, (3.36) follows. |

Proof of Theorem 2.6 for b(x) even and convex. let é>0, n=1, and Pe ?,.
By Lemma 3.5,

[ PWI| L, (1xt=a,(1+2¢0)
1PWhoet e (2

a,(1+2¢)

el

1/p
exp(pH,(x, a,)) dx)

o

1/p
= Clnz/”“PW”Lp(R)(Za,, J' exp(—pnve/3{s—1—¢}) ds) ,

1+2e

by Lemma 3.2 and (3.36) in Lemma 3.6. Evaluating this last integral, we see that,
for >0, n=1,and Pe P,

(3.41) | PW | L, (1x= a,(1+2¢))
= C,n*?||PW| {2V3a,(pnve)"'}'/? exp(—nve/3e).
Since Q'(x) is nondecreasing, it is easily seen from (2.4) that, for some C;,
a,=< Csn, nlarge enough.
Further, it follows from (2.22) and (2.23) that, for some C,,
£,=Cyn *?, nlarge enough.
Then taking & = ¢,/2 in (3.41), we see that, for some C; independent of P and n,
IPWIl L, axi=ani+enn = Csll PW | 1,y exp((log n)(2+3)/ p — ne3/?/ (2V6))
= Cs|| PW/| L, x) exp((log n){(7/(3p)) —2K..})

= Cs| PW| Lm0 €Xp(—(log n)K,),
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by (2.22) and (2.23). Then (2.25) follows. |

4, Proof of Theorems 2.3 and 2.4
We shall need the following result of Knopfmacher, Lubinsky, and Nevai [7].

Lemma 4.1. Let W(x) be a nonnegative function such that Wz(x) is a weight
Sfunction. Suppose there exists an increasing sequence of positive numbers {c,}7 and
a decreasing sequence of positive numbers {8,}Y such that

(4.1) lim 8, =0,

and such that, forn=1,2,3,...and Pe &,
(4.2) IPW | Lyry = (14 8| PW | 1y

Suppose, further, that there exist real polynomials S, _,(x) of degree at most n -2,
n=23,4,...,such that, forp=3 and p=2,

1 _
(4.3) lim 77! J’ W (c,x)S,_2(x)(1=x) 47 dx /1 — x> =1.
n->o0 4
Then
(4.4) lim A, (W?)/c, =1
and
(4.5) lim B,(W?)/¢p.y =0.

The proof of this result uses the method of proof of Maté, Nevai, and Totik
[15] of Rahmanov’s theorem [25].

Proof of Theorem 2.4. In view of Definition 2.2, (2.9), (2.12), (2.17), and Lemma
3.3(ii), we see that

|llim (log 1/ W(x))/Q(x) =1.
Further, We L,(R) by the conditions on w, ¥, V, and W. Hence, Theorem 2.5

is applicable: if a,=a,(W) for n large enough, there exist {5,}7 and {e,}7
satisfying (2.19) and (2.20) such that if

¢, =a,(1+eg,), nlarge enough,
then

[ PW][ L=+ 8N PW| L —cpan
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for n large enough and all P e #,. Further, by Theorem 2.6 in Lubinsky and Saff
[11], there exist polynomials S, _,(x) of degree at most n —2, n=2, 3.4, ..., such
that

. .
lim f [1=1(1=x)Y*W(cx)S,_(x)]P| dx/v1-x>=0
n—>oo f_y

for p=2 and p=3. Then, for p=2 and p =3,

1 1
lim = ! J (1= X)Y*W(c,x) S, _o(x)]P dx/1—x>= 7" J‘ dx/N1=x*=1.
n-—>00 —1 ~1

Thus (4.2) and (4.3) hold. Since (see Lemma 3.2(iv) in [11])

llm an+1/an = 1’
the result follows. 0

Proof of Theorem 2.3. Itsuffices to show V(x) = exp(P(x)) satisfies (2.12)-(2.16)
in Theorem 2.4. Let m be the degree of P. Since m < o, Lemma 3.3(ii) shows
that (2.12) is satisfied. Choose £ > 0 such that m < o —e. For n large enough, let
I, be the largest integer =n™/‘*"®). Then (2.14) is satisfied. Further, for n large

enough,
(4.6) L™ ay=n""/(2a,)
- 00 as n->o0,

by Lemma 3.3(iii). Now let §,,(x) denote the [, th partial sum of the Maclaurin
series of exp(—P(x)). It is easily seen that, for some C,> 0 independent of n,

4.7 lexp(—P(x) =S, (x)|=27",  |x[=Cy/™,
n large enough. Note too that, uniformly for |x| =< a,,,
(4.8) exp(P(x)) =exp(O(a')) =exp(o(l,)),

by (4.6). Combining (4.6)-(4.8), we see that, uniformly for |x|=2a, and some
0<n<l,

11— 8,(x) exp(P(x))| = n",

n large enough. Given {¢,}} satisfying (2.13), it then follows that S,(x):=
S,.(a,(1+¢,)x), for n large enough, is a sequence of polynomials satisfying (2.15)
and (2.16). n
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Note Added in Proof. Since this paper was written, strong or Szegd type asymp-
totics have been obtained for vy,(w) and for P,(w, z) in the plane, for a class of
weights essentially larger than VSF(«). This will appear in a Springer Lecture
Note entitled “Strong Asymptotics for Extremal Errors and Extremal Polynomials
Associated with Weights on (—c0, 00).”
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