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Bi-orthogonality in rational approximation
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thsiract: The well-known connection between Padé approximants to Stieltjes functions and orthogonal polynomials is
rucial in locating zeros and poles and in convergence theorems. In the present paper we extend similar types of
:nalysis 10 more elaborate forms of approximation. It transpires that the link with orthogonal polynomials remains
:lid with regard to rational interpolants, whereas simulianeous Padé and Levin-Sidi approximants yield themselves
analvsis with bi-orthogonal polynomials.

1. Introduction

The theme of the present paper is a generalisation of the familiar Padé theory of Stielijes
‘_nctions to more elaborate forms of approximation—rational interpolation, simultaneous Padé
.-proximation with German polynomials and Levin-Sidi approximation.

Let f be a Sueltjes function that is analytic at the origin,

f(z)=foacM z€ C\ (-0, 0),

14727

where ¢ is a distribution. Moreover, let P /Q, be the m/n Padé approximant to f, m» n — 1,
rnormalised so that @, (0) = 1. It is well known [2] that the inverted polynomial :

Qn(x) = ana(‘_ 1/x)’
i~ the degree n monic orthogonal polynomial with respect to the weight function 777 "*! d{/(7).
Censequently. ;all the poles of Q, lie irr (= o0, 0) and are simple.
The case m=n —1 is of particular interest, since now the inverted polynomial

(x)=x""1P,_4(-1/x)

i~ the (n — st numerator polynomial [7] with respect to the orthogonal polynomial system
Q¥ Thus. the zeros of @, and P,_, interlace, implying that the residua at the poles of the
approximant are positive. Hence P,_;/Q, remains uniformly bounded in any compact subset of
C (=2, 0). Convergence now follows easily by the Vnali theorem.
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It is of interest to extend this analysis to other forms of approximation. It transpires that the
connection between an underlying approximant and orthogonality is helpful in one application.
However, for our remaining two forms of approximation we need to use, instead. bi-orthogonal-
ity. The theory of bi-orthogonal polynomials has been systematically introduced in [9]. Here it
suffices to mention that, given a function ¢(x, p), x € (a, b), p € 2 C R. which is a distribution
in %, and distinct points By by € §2, the monic degree m polynomial p,, is bi-orthogonal if

b
fpm(‘x; I‘Ll""‘num) dé(x'l P’I)::O’ 1<1<)ﬂ.

It is necessary and sufficient for a unique p,, to exist for all m > 1 and distinct p,,...,p,, €2
that the matnces.

([ dotew)) :

are non-singular for all m>1 and distinct Biseeos Bome In that case we say that ¢ is regular.
Fmally, let dé(x,"n) = w(x, p) da(x), where « is a distribution which is independent of p and
w is in CY(2) as a function of u. We say that ¢ possesses the interpolation property if for all

> 1, distinct x,,..., x,, € (a, b) and distinct g, ..., u,, € {2, the matrix (w(x,, 1, )i sm1.....m 1S

non-singular. If ¢ possesses the interpolation property, then each p, has m distinct zeros thhm
the support (a, b).

Elsewhere in this issue [10], the theory of bi-orthogonal polynomials has been applied to the

problem of mapping zeros of polynomials under various transformations, whereas in [8] it has
been used in investigating numerical methods for ordinary differential equations.

2. Rational interpolation -

Let m and n be two non-negative integers, m>=n -1, and wg, wy,...,w,,, be complex
numbers which are either real and positive or appear in conjugate pairs. We consider the
interpolation of a Stieltjes function f by a rational function £,/Q, of type m —1/n, Q,(0) =1
at the points w,, 0 <k <n+m.

Let, again, Q, be the ‘inverted’ denominator Q,. It has been proved in [4] that O, is the’

monic orthogonal polynomial with respect to the distribution -

n+m

gt dy(r H (1 +w,\'r

Note that, as w, — 0, 0 < k < n + m, we recover, as expected, the Padé approximant.

Consequently, all the poles of the interpolant are negative and distinct. Alas, the zeros can no
longer be analysed by the familiar Padé techniques—e.g., for m = n — 1 the ‘inverted’ P, _, is no
longer the numerator polynomxal (m the sense of [7]).of Q,, Instead, we can use a dynamlc proof
to demonstrate that, for n — 1 < m < n, poles and zeros interlace. Herewith the proof for m = n:
let P*/QF be the n/n Padé approxxmant of f, with zeros {{*}%_, and poles {nf }%.,. Since
interlace is true in the Padé case, we may assume without loss of generality that

tr<mr<i <o <{r<gr<O. (1)
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We set 0,(7) = r1w,. 0 < k <2n, 7€[0, 1] and consider the n/n functions 2,(-, 7)/0 (-,
that interpolate f at o,(7), 0 < k < 2n. Clearly,

B(2,0)/0,(z,0)=P*(z)/0x(z);  B(2,1)/0,(2,1)=P,(z)/0,(z).

Moreover, it follows from [4] that no m/n function can interpolate f at more than m +n + 1
positive or complex conjugate points. Hence P, T)/Q( , T) exists and is unique for all
O0<r< . , B

We denote the zeros of P(-, 7) and Q(-, 7) by {{(7)}i-, and {7,(7)}%-; respectively.
Thus, it follows from (1) that for 0 < 7 < 1, without loss of generality

fl(T)<f)1(T)<fZ(T)< "'fn(7)<ﬁ,,(7)<0. (2)
Furthermore, as a consequence of our analysis, " ‘
m(r.><ﬁ2(T>< c (1) <0

for all 0 <

Let us suppose that there exists 7* € (0, 1] for which (2) is no longer true. Then there must
exist 7, € (0, 7*] for which either lim, _. - {1(7) = — 0 Oor §k(71) = 7, (7,) for some k€ {1,..., n}
or {4 1(m) =7,(m) for some k € {1,..., n— 1}. Each of these implies degeneracy of the ratxonal
interpolant, ie. the existence of 0<ny, ny, ny+n,<2n—1, such that deg P, 7)) = ny,
deg O, (-, ) = n,. Since this is impossible, it transpires that (2) is valid for all 7 € [0, 1), hence
the desired interlace.

Since interlace implies uniform boundedness in compact subsets of C\(— oo, 0], it is now
elementary to use a-normal families argument (Vital’s theorem) to prove convergence for various
configurations of interpolation points—cf. [4] for the case of best L_ approximants.

Rational interpolation of Stieltjes functions has already been explored by Barnsley [3], who
used continued S-fractions to prove convergence of multipoint Padé approximants. Alas, since
S-fractions, unlike J-fractions, are not linked to orthogonal polynomials, the present theory
provides, in our view, a more natural extension of the classical Padé theory.

3. German polynomials

Let f, and f, be two Stieltjes functions, that correspond to distributions ¢, and ¢,
respectively. In the present section we consider simultaneous Padé approximation (German
polynomials) to f; and f,.

For simplicity we assume that each f, is approximated to order n + m by P, m/an, where
deg P, ,=m,deg Q,,=2n and m>2n—1.

In the case m=2n — 1, Angelesco [1] has already proved that convergence occurs if the
supports of ¢, and ¢, are two mutually €xclusive intervals. More interesting analysis is due to
NikiSin {12]. It is based, essentially, on bi-orthogonal polynomials and herewith we re-formulate
it in this formalism:

Let

3)=ka.1x[, fk./=(—-l)lf "'/d‘f’/k('r), 120, k=1,2,
/=0 0 v
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and

Q2n Z qu q0=1'

The order conditions lead to
min{2n,j)

- (see [6]). Let di (1) =r"*1"21dy, (), k=1, 2. Then it follows easily that (3) is equivalent to

[ 70, (r) ddi(r)=0,  k=1,2, O<r<n-1, . (4)
0
where J,, is the ‘inverted’ denominator,

0,,(x)=x*Q,,(~1/x).
Let 2=(1,2,3,...}. We define
do(x, r)=x""1d,(x), 1<r<n,
do(x, ry=x""""Ydd,(x), n+1<r<2n.

It now follows at once from (4) and g, =1 that O, (x)=p,.(x; 1, 2,...,2n), the corresponding
bi-orthogonal polynomial. Consequently (and with obvious modifications for a discrete 2), the
satisfaction of interpolation property by ¢ implies that Q,, has 2n distinct zeros in (— o0, 0).

Nikilin goes to prove, by quadrature techniques, that, in the case m =2n — 1, for certain ¢,
and {,, each P, has m negative zeros that interlace with the zeros of Q,,. There is a short step
from this to convergence in compact subsets of C\ (— co, 0}].

An important instance when the mterpolatlon property holds for d¢(x, r) is dy,(x)=
x® di,(x), a non-integer [9]. Moreover, in the absence of interpolation property things may well
go wrong: consider '

_log(1+2z) _nga 1 , 1
h(z)= Z "y filz)=3+ 21+z+52+z'
Both are, clearly, Stieltjes functions. Let n— -1 Since xﬂ(x)-— x for x €[0, 1], whereas

¥,(x) is a step function with jumps of B, 1, and % at 0, { and 1 respectively; the interpolation
property is invalid. Moreover, the simultaneous Padé approximants are
1+ 52 1+ 43z
8 = 1,2 and 8 = 1.2
1+T§Z"‘T§Z 1+'1—52'—ng

respectively, with poles at 4 + y31 —one outside (— o, 0).

4. Levin-Sidi approximants

Levin [11} introduced a powerful algorithm to accelerate convergence of sequences. If that
algorithm is used to sum up power series it generates a sequence of rational approximants, in
parallel with the familiar e-algorithm that generates Padé approximants. The algorithm has been

Z fk'j_,q,=0, m+1lgjg<n+m, vk=l,2 (3)
=0 '
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analysed by Sidi [14], who also showed that it produced very efficient quadrature schemes which
compete well with Gaussian quadrature.

Let
o . dy (r
= 7k=
- £ o [

Tz
be a Stielyjes funcuon Then, for m >n — 1, the Levin-Sidi approximant can be given explicitly
by P./Q,, where

S—

m+1 n . c .
= Z ( Z ('—1) ( \)(171_)1+2+j)" ’L’_”_‘“_f_*_’_‘_’ zm+1—l,
=1 \ j=max(O./=m+n—1) J Con et 1
- (5
n n_l
0,(z)=) (—1)1(';)(111—11+2+1)"'1 z _
1=0 Cr—n+i+1

This can be obtained, after obvious modifications, from Sidi [14]. It is a Padé-type approximant
(5] of order m + 1.
Let 2 =(a, b) =(0, c0) and
do(x, p) = (x/p)" " de(x/p), peQ. (8
It is easy to verify that for every dlstmct fys---y i, € £ the nth bi-orthogonal polynomial reads
explicitly
pn(x; [J.l,...,‘U.") Com+1 Z k’ (7)

k=0 Cm—n+1+k

where L7 _ g, x* = HZ 1(x — ) [9] Sidi proves that the polynomial

()= X (D (fa+ R g0,
k=0
has n distinct zeros in (0, 1]. Consequently, if these zeros are p,,..., ¢, then it follows from (5)

and (7) that
n—1
0,() = (-1t

Therefore, it follows that: ..

20, (1/z5 py, e, 1)

Theorem 1. If ¢, as given in (6), possesses the interpolation property then the Levin-Sidi
approximation has n distinct positive poles.

Several interesting choices of ¢ give rise, via (6), to interpolation property. The following
lemmata are in the spirit of [10] and follow readily by identical reasoning.

Lemma 2. Let g(x) = L7 ,q,x* be a monic polynomial with m distinct positive zeros and let «, B
be any positive numbers. Then the polynomial
k=0 f( k + B )

[34
Possesses m distinct positive zeros.
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Proof. By considering dy/(x) =x#"1e " dx, m=n— 1/6) and (7). O
The lemma generalises a result by Pélya and Szegd [13], which pertains to a =1, f=2.

Lemma 3. Let q(x) = Z;qux"_be a monic polynomial with m distincr positive zeros and let « be a
number in (0, 1). Then the polynonial

”n
~ — &2 k
Ba(x)= ) oFgux
k=0
possesses m distinct positive zeros.

Proof. We consider the distribution of the Stieltjes—Wigert polynomials. i
’ (o4 2 2
d b{x)=—e~° (logx) dx’ ) .
¥(x) = |
where 0:=1/(2{—log a)> 0. ¢ is, again, given by (6). It is known that

2

(see {7]), hence, by (7),
Pn(X5 tyseees ) = @70 Y kg,
‘ k=0
where p,,..., f,, > 0 are the zeros of ¢. Thus

m(m+2) 2

Pa(x)=a @™ 2xs py e i)
Finally, we demonstrate the interpolation property: set

1 a? 2 [+]
w(x, p) = —e o tloex/1)" afx) = —x.
I v
Since
e—a:(log(x/l,x))2 - e-—dz((logx)z-b(logp)z)xZo:logy’
it follows that
det(w(xk’ #/))k.1=1

m

9 2 ¥ 2 2 2071
= expf —o log x,)" + (lo det} x;° B
s =" T (g )"+ (g ) (s3],

Interpolation property follows since det(x#), ;-1 ..
distinct yy,..., »,, [9). This concludes the proof. O

- * 0 for every distinct’ x,..., x,, and

m

The significance of the last two lemmata to Levin-Sidi approximation is clear although, of
course, they are of interest on their own merit.
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Unfortunately, the interpolation property fails in numerous interesting instances. In particu-
lar, it is invalid if the support of ¢ 1s finite. Sometimes one may then resort to different

techniques.

Lemma 4. Given n < m < 2n — 2. let us suppose that the polynomial

” k
‘ — —1 k n ______E____
(0= X -0 ({) =

has n distinct positive zeros. Then so has the denominator Q,,.

Proof. Let Q,,(z) =z"0Q,(1/z) and v+=z(d/dz). It is straightforward that

Q'n‘(z)=z—~m+n—2yn;—l{zm——n+lsn(z)}' :7:1:1_‘

Since m<2n— 2, no zero of x™~"*2s (x) has multiplicity greater than n. The lemma now

follows readily by repeated application of the Rolle theorem. O

Frequently s, can be identified with an orthogonal polynomial with positive support:
=I(m—-n+a+1+k), k>0, leads to the Laguerre polynomial L{"~"**) although this
choice of ¢;’s merely specialises Lemma 2. More interestingly, ¢, =(a),/(B);., k=0, for
a>n—m~—1, B> a+n—1, yields the Jacobi polynomial P{e*m-mB=a=m shifted to (0. 1). In
both cases all zeros are positive and distinct.

Another approach is to consider

k

n
X

Qn,r(z)’= Z (—1)1((2)(,-4, 1 +k)n—1

k=0 Crvk

Of course, r=m —n+ 1 yields Q,. The polynomials Q,,‘, obey the recurrence relation

Q~n.r(z):= (r+1)Qn—I.r(Z)— (n+r+ 1)2Qn—-l,r+l(z)v ,72‘1, rz O

Hence, since r=m —n +1 gives n +r+1=m+ 2> 0, it is easy to see that if the zeros of Q,,_l ,
and Q,_,,., are all positive and distinct and if they interlace then the zeros of 0,, are.
likewise, positive and distinct. Unfortunately, no general conditions are presently available for
the interlace of zeros of Q,_,, and Q,_; 41
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