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WHERE DOES THE LP-NORM
OF A WEIGHTED POLYNOMIAL LIVE?

H. N. MHASKAR AND E. B. SAFF

ABSTRACT. For a general class of nonnegative weight functions w(z) having
bounded or unbounded support ¥ C R, the authors have previously char-
acterized the smallest compact set &, having the property that for every
n =1,2,... and every polynomial P of degree < n,
[Hw(@)]™ Pz}l oo () = llw(@)]" P()|| Loo(&,,) -
cerdain

In the present paper we prove that, under st conditions on w, the LP-norms
(0 < p < 00) of such weighted polynomials also “live” on &, in the sense that
for each # > 0 there exist a compact set A with Lebesgue measure m(A) < 9
and positive constants c¢1, ¢z such that

[w™PllLe(gy < (1 + e1exp(—can))[lw™ Pl Lo(s,ua)-

As applications we deduce asymptotic properties of certain extremal polyno-
mials that include polynomials orthogonal with respect to a fixed weight over
an unbounded interval. Our proofs utilize potential theoretic arguments along
with Nikolskii-type inequalities,

1. Introduction. In 1974, G. Freud [3] proved the following “infinite-finite
range inequality” for weighted polynomials.

Suppose that @ is an even, convex, positive function on R, differentiable on
(0,00) and Q'(¢) is positive and increasing to co for 0 < ¢ < co. Then there exist
positive constants ¢y, ce, cs depending only on ) with the following property: For
every integer n > 1 and every polynomial P of degree not more than n,

| i@ en(-Quyp ds
(1.1) —oo
< (1 +c1 eXp(—czn)) . / [P(t) eXp(—Q(t))]2 dt,

[t|<c392n

where ¢5,, is defined by the equation
(1.2) 22n Q' (g20) = 2n.

This inequality has been generalized or investigated in further detail for specific
weight functions by several authors including Bonan [1], Lubinsky [7], Zalik [15]
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and the present authors (9, 10]. In [11], we obtained the following sharp result for
the sup norm, under less restrictive conditions on Q.
Let a,, > 0 be defined by the equation

1 /
(1.3) 2 [ anzQlana) dz = n.

T Jo V1—22

Then for every integer n > 1 and polynomial P of degree not exceeding n,

(1.4) max W (z) P(z)| = max W (@) P()],

where W (z) := exp(—Q(x)). Moreover, (1.4) cannot be improved in the sense that
the sequence {a,} cannot be replaced by {a,(1 — §)} for any positive é.

In this paper, our aim is to obtain similar precise results for the LP-norms of
the “weighted polynomials,” i.e. expressions of the form W{z)P(z), where W is a
weight function and P is a polynomial. Our theorems are general in that they apply
to weights W with bounded or unbounded support (not necessarily an interval) and
allow W to have zeros at interior points. Of particular interest are the cases when
W is supported on R, [0,00), or on a finite union of disjoint closed intervals. In
our investigations, we also obtain new results concerning the L°-norm of weighted
polynomials that complement those in [11].

In the next section we state and discuss our main results. The proofs are given
in §3.

2. Main results. We begin by recalling some definitions and theorems that
appear in [11].

DEFINITION 2.1. Let w: R — [0,00). We say that w is an admissible weight
function if each of the following properties holds.

(1) 2 := supp(w) has positive capacity.

(ii) Z := {z € T: w(z) = 0} has capacity zero.

(iil) The restriction of w to & is continuous on X.

(iv) If £ is unbounded, then |z|jw(z) — 0 as |z| — 00, z € L.

By supp(w) we mean the closure of the set where w > 0 and by capacity we mean
the inner logarithmic capacity (cf. [14, p. 55]). We use C(E) to denote the capacity
of a set E C R2. The class of all polynomials of degree at most n is denoted by
I1,,. We also adopt the convention that ¢, ¢y, ¢5, etc. will denote positive constants
that are independent of n, but may depend on w and other relevant parameters.
Furthermore, the same symbol may denote different values even within a single
formula. Constants that retain their values will be denoted by capital letters.

If K is a compact set with positive capacity, then vx will denote the unique unit
equilibrium measure on K with the property that

(2.1) /K log |z — t|dvi(t) = log C(K)

quasi-everywhere (g.e.) on K (cf. [14, p. 60]). A property is said to hold q.e. on a
set A if the subset £ C A where it does not hold satisfies C(E) = 0.
For an admissible weight w, we always set

(2.2) Q(z) :=log[l/w(z)].
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Finally, if K ¢ ¥\Z is compact and C(K) > 0, the F-functional of K is defined
as in {11] by the formula

(2.3) F(K):=logC(K / Qdvg.

For admissible weight functions, we proved

THEOREM 2.2 [11]. There exists a unique compact set S, C E\Z with C(S,,)
> 0 that has the following properties:

(a) For every compact set K C ¥\Z with C(K) > 0,
(2.4) F(K) < F(6y)

where F is defined in (2.3).

(b) If equality holds in (2.4), then &, C K.

{c) For any positive integer n, if P € 11, and the inequality
(2.5) [w(=z)]"P(z)] <1

holds q.e. on &, then it holds ¢q.e. on X.

(d) If & is regular, i.e. for all k large; N [—k, k| is regular with respect to the
Dirichlet problem for its complement on the Riemann sphere, then for every P € 11,
and everyn=1,2,...,

(2.6) I{w(@)]" P(2)lloo, 2 = [I[w(2)]" P(2)|loo,&.,

where || - lloo, 4 denotes the sup norm over a set A.

(e) In particular, when S\Z is a finite union of disjoint nondegenerate intervals
and @ s convez in each of the components of X\Z, then &, s itself a finite union
of nondegenerate disjoint closed intervals, at most one in each component of Y\ Z;
moreover, if K C X\Z is compact with C(K) > 0, then F(K) < F(8,,) unless
Gy C K and C{K\G,,) =0

The major theorems of this paper can now be formulated as follows.

THEOREM 2.3. Let w* be admissible for every A € (0,1], n > 1 be an integer
and P € I1,,. Suppose that

(2.7) [w(@)]"P{z)| 1 gq.e. on B,
where 8, 1s given by Theorem 2.2. Then
(2.8) [w(@)"P(z)| <e ™ <1 ge. onS\&™

where the constant ¢ = =e{w,z) > 0 s zndependent of n and P. Moreover, sz 18

regular, then ¥ ’ -
every compact set K C 2\6*

(2.8a) fw(@)]" P(2)|loo,,c < €7 <1,
where ¢ := c¢{w, K) > 0 is independent of P and n.

We will show that the set &* in Theorem 2.3 can be taken as &* =2, &, /n>
where &;,, is the extremal set of Theorem 2.2 corresponding to the weight
[w(z)]Y/(1+8) with § = 1/n (see Lemma 3.4).

For our new results for LP-norms, we need the following definitions.
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DEFINITION 2.4. Let E C R be Lebesgue measurable. We say that E is interval-
like if for every ¢ > O there is a sequence {6, } of positive numbers (depending upon
E and ¢) with the following properties:

(i) 6p — 0 as n — o0;

(if) liminf 62" = 1;

(ili) For quasi-allz € E,

m(ENIy(z)) > (1 —c¢/n?)ép, n>1,

where, for each n, I,(z) is one of the intervals [z, z+ 6,], [x — bn, 2], and m denotes
the Lebesgue measure.

DEFINITION 2.5. We say that w is strongly admissible if

(i) w* is admissible for every A, 0 < A < 1,

(i) T ¢s regular, and

(iif) Z\Z s interval-like.

If A C R is Lebesgue measurable, g: R — R is Lebesgue measurable, and
0 < p < o0, we set

(2.9) lgllpa = ( / |g<x>|”dz)1/p.

For strongly admissible weight functions, the following theorem states that, in a
sense, the LP-norms of w™P -~ “live” on &"

THEOREM 2.6. Suppose that w s strongly admissible and 0 < p < 00.

(a) Let n > 0. Then there are constants ¢y = ¢y (w,n,p) > 0, ¢ := ca(w,n,p) >
0 and a compact set A := A(w,n,p) with m(A) < n such that for every integer
n>1and Pell,,

(2.10) [w™ Pllp,ss < (14 ¢1exp(—can))|[w" Pllp,e* ua-

(b) Let 0 < p,r < 00 and np > 0. Then, there exists a set A := A(w,n,p,r) with
m(A) < n such that whenever a polynomial P € I1,, satisfies

(2.11) |[w(@))" P(z)[lp,e* va <1,
we have
(2.12) |[w ()] P(z) ||y, 2\ (e ua)y < €1 exp(—can),

where ¢y 1= cy{w,n,p,7) and cq := co(w,n,p,T) are positive constants independent
of n and P.

THEOREM 2.7. Let ¥\Z be a finite union of nondegenerate disjoint intervals
and Q) be convex in each component of E\Z. Assume that w is strongly admissible.
Then 6, =: Ué»zl[aj,bj] (cf. Theorem 2.2(e)). Let {5]-}5»:1 be arbitrary positive
numbers.

(a) Then inequality (2.10) holds with &, U A = Ué-zl[aj —¢g5,b; + ¢5] for every
p > 0. (The constants ¢1,co will now depend upon w,p and {ej}ézl.)

(b) I/ 0 < p,r < 00, then with &, UA = '_,la; —&;,b; +&;], any polynomial
P €11, that satisfies (2.11) also satisfies (2.12).

To illustrate the result of Theorem 2.7 we discuss the special case of an expo-
nential weight on [0, +00).
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EXAMPLE. Let w(z) := exp(—2z%), o > 0, with support X := [0,+00). Then
Z = @ and Q(z) = log[1/w(z)] = z* is convex for & > 1. Hence, by Theorem 2.2
(e), the set G, for o > 1 consists of a single compact interval [a, b] C [0, +00). For
0 < a < 1, the function Q(z) is no longer convex, but does possess the property
that zQ'(z) is increasing on [0, +o00). It is not difficult to show that this property
again implies that &, is a single compact interval. To explicity determine &,, we
consider the F-functional (cf. (2.3)) for intervals K = [¢,d] C [0, +00). Since
C(le,d]) = d_ZE and  dypeq = 1 de

Td-2)@-0)
we find
d—c 1 [? z¥dz
F(le,d]) = log (T) e Vid-a)E-o

B d—c 1 o
—log< 1 ) ~5a O[d-i-c (d— ¢)cos 0]%d8.

On computing the partial derivatives dF /dc, 0F/dd, it is straightforward to show
that F' is maximized when ¢ = 0 and

-1/

/2 1/
d=dg = |20m" / sn?gdg| = [M] .

Hence G, = [0, dq]-

As a consequence of Theorem 2.7(a), for each p > 0 and ¢ > 0, there exist
positive constants ¢y, ¢z depending on «,p, and ¢ such that for every n > 1 and
Pell,,

[ee) o do+te «
/ l6="" P(2)[Pdz < (1 + ¢1 exp(—cam))? / le="° P(z)Pds.
0 0

Furthermore, suppose that P, € II,,, n = 1,2,..., is a sequence of polynomials
such that for some p >0 and € > 0

do+e€ «
/ [e™™" Pp(z)|Pdx <1, n=1,2,....
0

Then, from Theorem 2.7(b) with r = oo, we deduce that
e P, (z) » 0 for all x> dy.

For other applications of Theorem 2.7, see [8 and 12].

The proof of Theorem 2.3 uses potential theoretic arguments while the proofs of
Theorems 2.6 and 2.7 utilize a general Nikolskii-type inequality (Lemma 3.7) in ad-
dition to Theorem 2.3. Using Nikolskii-type inequalities, we can also deduce asymp-
totic properties of certain extremal polynomials. These polynomials, in particular,
include the orthogonal polynomials with respect to the Freud weights exp(—|z|).
Similar extremal problems have been studied by Gonchar and Rakhmanov [5].

In order to state our applications to polynomial extremal problems, we define

(2.19) Ep p(w) = inf {[[[w(@)]"[e" = P@)]llz.p: P € e}
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n=1,2,..., 0 <p< oo. The extremal polynomials T, (z;w,p) are defined by the
properties

(2.14a) To(zyw,p) =2+ €1,

(2.14b) l[w(@)" Tn(z;w,p)l[5,p = En,p(w).

In particular, T,,(z; w,2) is the nth member of the system of monic orthogonal
polynomials with respect to the weight function w?" and [E, 2(w)] ™' Th(z;w,2) is
the corresponding orthonormalized polynomial.

THEOREM 2.8. Let w be strongly admassible. Then
(2.15) nlim [Evp(w)]V/™ = exp(F(6,)); 0<p<Loo,
—00
where Sy, 18 defined in Theorem 2.2.

To illustrate Theorem 2.8 we again consider the weight w = w,(z) := exp(—z%),
a >0, on ¥ = [0,+00). Referring to the example following Theorem 2.7, a simple
computation yields

F(8,) = F([0,dy)]) = log (da/4) — 1/
Hence, by Theorem 2.8, the minimal errors

oo N 1/p
Ep p(wq) = inf { [/ e P g — P($)|pdm] :Pe Hn—l}
0

satisfy for each p > 0
lim [Enp(wa)]™ = exp(F(6y)) = da/(4/%).

n-—

In order to describe the distribution of zeros of the extremal polynomials
Tn(x;w,p), we recall our previous results [11] concerning the solution of a gen-
eralized energy problem. Let %) denote the collection of all positive unit Borel
measures ¢ with supp(u) C £. For y € M(E), and Q(z) = log[1/w(z)], we put

(2.16) Lu(u) = [ [ Bogle = t] - Q(a) - QU dutz) dat)
Let
(2.17) Vi i= sup{ly,(u): p € M(X)}.

We proved in [11] that V,, is a (finite) real number and that there exists a unique
tw € T(T) such that

(2.18) Vi = Ly (hw)-

The measure u, was shown to be the limiting distribution of the zeros of
Tn(z;w,00) under certain conditions on w [11, Corollary 2.5]. Various other in-
teresting properties of ., also proved in [11] are summarized in Lemma 3.1. The
following theorem is a generalization, in an L? sense, of Theorem 2.4 of [11].
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THEOREM 2.9. Let w be strongly admissible. Suppose that I C R s a closed
bounded interval containing Sy, Let {tg n}%_1,n=1,2,..., be a triangular scheme
of points lying in I. With this scheme, associate the sequence of polynomials

n
gn(z) := H(z—tk,n), n=12...,
k=1

and the sequence of unit measures {v{™}2_ |, where for any Borel set B
(2.19) v (B) = (1/n){k: tkn € B}, n=12,....
Assume that for some p (0 < p < 00)

(2.20) lim sup ||anonlg/Z < exp(F(&y)).
n—oo
Then, in the weak-star topology,
(2.21) lim v(™ = p,,.
n—r0o0
Moreover,
(2.22) lim_ g (2)]/ = exp [ [ 1081z = thdua(®)
n—00

uniformly on every compact set of the complex plane disjoint from I.

COROLLARY 2.10. Let w be strongly admissible and 0 < p < 00. Let {tkn}r_
be the zeros of the extremal polynomial T, (z;w,p) of (2.14). Then there exists a
closed bounded interval I containing &, and all the zeros {txn}i—y,n=1,2,....
Moreover, the relations (2.21) and (2.22) hold with g,(z) = Tn(z; w, p).

3. Proofs. Before providing the proofs of our theorems, we need to recall
certain properties of the extremal measure y,, defined in (2.18). These are summa-
rized in Lemma 3.1. In the statement of this lemma and in the sequel, we assume,
without loss of generality, that @Q{z) > 0 for all z € ..

LEMMA 3.1 [11]. Let w be admissible. Then

(a) The measure .y, has finite logarithmic energy.

(b) The set &y, of Theorem 2.2 is given by G, = supp(py,)-
(c) The inequality

(3.1) / log |z — tlduu(t) < Q(z) + F(SW)

holds q.e. on 3.
(d) The inequality

(3.2) / log |2 — tdpuu (1) > Q() + F(Sw)

holds for all z € G,,.
(e) The F-functional for S, is given by

(3.3) F(6y) =V, + / Qi

where Vy, 1s defined ¢n (2.17).
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(f) For any positive integer n, of P € I1,, and

(3.4) [w(z)]"P(z)] €1 qe on Sy,
then for all z € C
(3.5) |P(2)] < exp {n [/ log |z — t|dpw(t) — F((‘Sw)} } .

(g) If £ is regular, then (3.1) holds for all points of E\S,,.

Assertions (a)-(f) are contained in Theorem 2.3 of [11] while part (g) is an
observation in the proof of Theorem 2.1(c’) in [11, p. 84].

In what follows, we shall assume that w? is admissible for every A, 0 < A < 1.
For brevity, we denote the extremal measure p,, by u, its support &,, by & and
F(&) by F. Next, we define, for § > 0,

(3.6) ws(z) = exp(—Qs(x)) = exp (—ﬁ@(m) .

Since ws is admissible, we may apply our results in [11] to ws and get the corre-
sponding extremal measure us with supp(us) =: Ss. Thus, G5 will maximize the
corresponding F-functional defined for compact K with C(K) > 0 by the formula

(3.7 ' Fs(K) :=1logC(K) — /dil/}(.
The quantity Fs(Ss) will be denoted by Fs.
The following two lemmas will play a central role in the proof of Theorem 2.3.

LEMMA 3.2. Suppose that y is a nonnegative measure with finite logarithmic
energy and v s any measure with

(3.8) vl < ull-
Then, if the inequality

(3.9) /log |z — t|ldv(t) < /log |z — tldu(t) + ¢
holds p-almost everywhere, it must hold everywhere in the complex plane C.

Lemma 3.2 is a variant of the Second Maximum Principle. Landkof [6] gives a
proof of this principle for the case of Riesz potentials. Analogous arguments for the
logarithmic potential in the plane lead to the version stated in Lemma 3.2.

LEMMA 3.3. Let§ > 0 and suppose that zo € T\8;s satisfies

(3.10) [ 108120 — tldus(2) < @s(s0) + F.
Then
(3.11) /log I — t|du(t) < Q(zo) + F.

PROOF. Since zg ¢ 85 and &g is compact, there exists a polynomial P such
that

(3.12) |P(zg)| > 3/4 and |P(z)] <1/4 for all z € &s.
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Let r := N/é, where N is the degree of P. Then (3.12) and Lemma 3.1(c) imply
that

(3.13) log|P(z)|+r / log |z — tldu(t) < rQ(z) +rF +log(1/4) q.e. on &s.
Also, from Lemma 3.1(c), (d), we have
(3.14) Qs(z) = /log |z — tldus(t) — Fs q.e. on Gs.

Since 1+ 6 = (N + r)/r, we see from (3.13) and (3.14) that quasi-everywhere on
Gs

log |P(z)| + T/log |z — t|du(t)
(3.15)
<(N+71) / log [z — t|dus(t) — (N + ) Fs +rF +log(3).

Note that, by Lemma 3.1(a), the measure ps has finite logarithmic energy. Hence
the maximum principle of Lemma 3.2 implies that (3.15) holds for all z € C. In
particular, with x = zg, we obtain from (3.15) and (3.10),

(3.16) log |P(zo)| + 7 {/log |zo — tldu(t) — Q(zo) — F} < log(3)-
Finally, since log |P(zo)| > log(2), we see from (3.16) that
(3.17) / log |20 — tldu(t) — Qo) — F < r~log(}) < 0. O

In the next lemma, we summarize certain relationships between &;’s.

LEMMA 3.4. Let & :=(\_,Sy/,. Then

(3.18) Gce*
and

where the limit of the measures is the weak limit.

PROOF. Let

E, := {59 € £ : (3.10) does not hold with § = 1/n}, n=1,2,...,

Eo := {z € £ : (3.1} does not hold},

E .= E() U (U;o___l En)

Since each of the E,’s and Ey has capacity zero, it follows that C(E) = 0. Let
z € 6\6*. Then (3.2) holds and z ¢ &y for some N. If z ¢ E, then Lemma 3.3
yields a contradiction to (3.2). Thus, 8\&* C E and so C(6\&*) = 0. A similar
application of Lemma 3.3 to @1/, in place of Q shows also that C(&;,,\&1/,) =0
if m > n.

Now, if K is any compact set with C(K) > 0, then

FuyalK) = logC(K) = 25 | Qg

(3.20)
zlogC(K)—/KQdVK—*—n——lk—l/KQdVK'
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In view of our assumption that @ > 0 on R, we now see that Fy,,(K) > F(K) for
every compact set K with C(K) > 0. Hence (cf. Theorem 2.2(a))

(3.21) Fl/n o= Fl/n(gl/n) 2 Fl/n(e) > F(6) = F.
If K ¢ 6, and Q(2) < M for 2 € &1, then (3.20) also shows that
(3.22) Fy)(K)-F(K) < M/(n+1).

Thus, since F(&) > F(6,/,) and C(&1/,\61) =0,

Fl/n(Gl/n) - F(G) < Fl/n(gl/n) - F(61/n)
= Fl/n(Gl/nQGI) —F(Gl/nﬂGl) S M/(n+ 1).
Inequalities (3.21) and (3.23) give the first part of (3.19).
Next, for 6 > 0, v € M(X) and n = 1,2,..., we put

(22) 1) = [ llogla - t] - Qala) — Qu(0)] (o) ()

(3.23)

(3.24b) Vs :=sup{ls(v): v € M(D)},
(3.24¢) Iy(v) = Ly(v), Vo :=Vy.

Since C(61/,\61) = 0 and each of the measures y,/,,4 has finite logarithmic
energy, we may assume that each of these measures is supported on &;. Moreover,
on &;,0 < Q(z) < M. So,

Vim 2 fyn) = [ [logla =11~ -2 000) -
(3.25) > Io(pu) = Vo 2 Io(p1/n)

2
= Lim(pim) = m/Qdul/n > Vi —

— Q)| du(z)dpt)

2M
n+1"

Thus,
(3.26) hm Vi, = V.

n—oo

We shall use this fact to show the second half of (3.19), concerning the weak limit
of {#1/n}. Using Helley’s theorem, every subsequence of {u, /n} has a weakly
convergent subsequence. Therefore, it suffices to show that if {o}} is any weakly
convergent subsequence of {4/, } and limg_.c 0% =: 0 then ¢ = u. We may assume
further that {o} X o1} converges to o x o, and that o is supported on &;. Suppose
Ok = Yb1/n, and € > 0. Then for sufficiently large R > 0 and large k, we have

To(o) 2 [ logr la — 1) - Q@) - Q) do(e) do(t) — /4
> [[ tosale -~ tl - Qo) - Q) do(a) don(t) — e/2

> [ 10812 1~ Qun, (8) = Quymy ()] don(a) dont) - 3e/4
= Vl/nk - 38/4 Z Vo — &,

(3.27)
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where logp ¥ := max(logy, —R), y > 0. Thus, Iy{o) > Vy. But, the definition of
Vo then gives Ig{e) = Vo = Iy{y). Since u is the unique measure satisfying this
equation, we have o = u. This proves that p,/, — @ as n — oo.

Finally, we need to show that & C &*. Since puy/, — p as n — oo, it follows
from Lemma 3.1(d) and the principle of descent ({6, p. 62] that

/Iog [z —t|du(t) > limsup [ log |z — t{duy /m(t)
n—Cco

3.28) : n
( > lim sup [mQ(w) + Fi/n

n—o0

=Qz)+F forzes®

Next we integrate both sides of (3.28) with respect to dve«(z). Interchanging the
order of integration and using the fact that C(S\&*) = 0, we see that F(6*) >
F(&). Theorem 2.2(b) then gives 8 C &*. @

PROOF OF THEOREM 2.3. Let G&* be defined as in Lemma 3.4 and assume
that P € I1,, satisfies

(3.29) [[w(z)]*P(z)] <1 qe. onG.
Then Lemma 3.1(f) gives, for z € &,

630 (W@ <ewn{n | [logls— du) - Q) - Fe) }.

In view of Lemma 3.3, for quasi-all z € Z\&* and hence, for quasi-all z € T\,
this gives

(3.31) [[w(z)]"P(z)] £ ™" < 1, ¢ :=c(w,z) > 0.

When ¥ is regular, it follows from Lemma 3.1(g) and the continuity of the
logarithmic potential that (3.31) holds for all z in any compact subset K C L\&*,
with ¢ 1= ¢(K) > 0 independent of z in K. 0O

REMARK. When X\ Z is a finite union of nondegenerate disjoint intervals and
(@ is convex in each component of ¥\ Z then each of the sets &,y is a finite union
of nondegenerate disjoint intervals, at most one in each component of £\ Z. This,
together with the fact that & C &* and C(6*\&) = 0 shows that in this important
special case, &* = &. This fact generalizes our earlier results in {9 and 10].

A major step in the proof of Theorem 2.6 is to obtain Nikolskii-type inequalities
relating the various LP-metrics of weighted polynomials. This, in turn, requires an
estimation of Christoffel functions. When ¥\ Z is a union of finitely many disjoint
nondegenerate intervals, this is easily done using the now classical ideas of Freud
in [3 or 4]. For the more general case we need the following lemma.

LEMMA 3.5. Let 0 < p < co. Then there exists a constant Ay > 0 depend-
ing upon p alone with the following property: If n > 1, P € I, B C [-1,1] is
measurable and

(3.32) m({-1,1\B) < As/n?,
then
(3.33) “P”p,[—l,l] SQHPHP,R
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Let r := N/§, where N is the degree of P. Then (3.12) and Lemma 3.1(c) imply
that

(3.13) log|P(z)| + r/log |z —t|ldu(t) < rQ(z) + 7F +log(1/4) q.e. on Ss.
Also, from Lemma 3.1(c), (d), we have
(3.14) Qs(z) = / log |z — t|dus(t) — Fy  q.e. on &

Since 1+ 6 = (N +7)/r, we see from (3.13) and (3.14) that quasi-everywhere on
Ss

log | P(2)| + r/log e — tdu(t)
(3.15)
< (N + r)/log |z — t|dus(t) — (N +r)Fs + rF +log(3).

Note that, by Lemma 3.1(a), the measure us has finite logarithmic energy. Hence
the maximum principle of Lemma 3.2 implies that (3.15) holds for all z € C. In
particular, with £ = xp, we obtain from (3.15) and (3.10),

316)  log|Plao)+r{ [ Toglao - tdu(t) - Qlao) - P} <logh)
Finally, since log |P(zo)| > log(2), we see from (3.16) that
(3.17) /log 2o — tdu(t) - Q(z0) — F < r~'log(1) < 0. 0

In the next lemma, we summarize certain relationships between Sg’s.

LEMMA 3.4. Let &* :=(\,";6y/,. Then

(3.18) Gco
and
(3.19) Jm Fyp =F lm gy = p,

where the limit of the measures is the weak limit.

PROOF. Let

E, := {29 € £ : (3.10) does not hold with § = 1/n}, n=1,2,...,

Ey:={z € X : (3.1) does not hold},

E:=EyuU (U;.,.ozl E,).

Since each of the E,’s and Ey has capacity zero, it follows that C{E) = 0. Let
z € G\&*. Then (3.2) holds and = ¢ &,/ for some N. If z ¢ E, then Lemma 3.3
yields a contradiction to (3.2). Thus, &\G* C E and so C(6\&*) = 0. A similar
application of Lemma 3.3 to @y, in place of Q shows also that C(&;/,,\&1/,) =0
ifm > n.

Now, if K is any compact set with C(K) > 0, then

FynlK) =08 C(K) ~ 2 [ Qav

1
(3.20) nt

1
ZIOgC(K)—/KQdVK'Fm/KQdVK.
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In view of our assumption that @ > 0 on R, we now see that Fy,,(K) > F(K) for
every compact set K with C{K) > 0. Hence {cf. Theorem 2.2(a))

If K € 6; and Q(z) £ M for z € &y, then (3.20) also shows that
(3.22) Fyn(K)-F(K) < M/(n+1).

Thus, since F(&) > F(8,/,) and C(&;,,\&;) =0,

Fi/n(G1/n) ~ F(6) < Fi/n(G1/n) — F(G1/,)
= Fi/n(G1/n N61) = F(S1/n NG1) S M/(n+1).

Inequalities (3.21) and (3.23) give the first part of (3.19).
Next, for 6 > 0, v € M(T) and n =1,2,..., we put

(3.23)

(3.242) / / llog 2 — t] — Qs (z) — Qs(t)] dv(z) du(t),
(3.24b) Vs :=sup{Is(v): v € M)},
(3.24¢) (v) :=L,(v), Vo:=V,.

Since C(&1/,\61) = 0 and each of the measures p,,,u has finite logarithmic
energy, we may assume that each of these measures is supported on &;. Moreover,
on 61,0 < Q(z) £ M. So,

Vim > Tinte) = [ [logiz—t!——”—csu)— "_ o) dut)dutt)

+1
(3.25) > Io(p) =Vo 2 IO(,U'I/'n
= Lin(p1/n) — /Qd,ul/n > Vim — 2+1-
Thus,
(3.26) lim Vi, =Y.

We shall use this fact to show the second half of (3.19), concerning the weak limit
of {¢1/n}. Using Helley’s theorem, every subsequence of {u,/,} has a weakly
convergent subsequence. Therefore, it suffices to show that if {0y} is any weakly
convergent subsequence of {1/, } and limg_, o0 0k =: ¢ then o = . We may assume
further that {ox x o} converges to ¢ x ¢, and that o is supported on &;. Suppose
Ok = pb1/n, and € > 0. Then for sufficiently large R > 0 and large k, we have

o) > / / llogr |2 — t] ~ Q(z) — Q1)) do(z) do(t) — £/4
> // llogg |z — t| — Q(z) — Q(t)] dok(z)dok(t) —e/2

2 // [loglz — t| — Q1/n, (z) — Qu/n, (t)] dow(z) dow(t) — 3¢/4
= Vl/'ﬂlc - 35/4 2> VO — €,

(3.27)
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where logp y := max(logy, —R), y > 0. Thus, Iy(c) > V. But, the definition of
Vo then gives Ip(o) = Vo = Ip(p). Since u is the unique measure satisfying this
equation, we have ¢ = u. This proves that uy/, — p as n — oo.

Finally, we need to show that & C &*. Since u;/, — p as n — oo, it follows
from Lemma 3.1(d) and the principle of descent [6, p. 62] that

/Iogla: —t|du(t) 2 limsup/log |z — t|dpy /m(t)

(3.28) > lim sup [——Q( ) + Fim

n—00

= Q(z) + F, for z € 6.

Next we integrate both sides of (3.28) with respect to dve-(z). Interchanging the
order of integration and using the fact that C(G\&*) = 0, we see that F(6*) >
F(6). Theorem 2.2(b) then gives & C &*. 0O

PROOF OF THEOREM 2.3. Let &* be defined as in Lemma 3.4 and assume
that P € I1,, satisfies

(3.29) Hw(z)]"P(z)| <1 q.e.on 6.
Then Lemma 3.1(f) gives, for x € T,

330 @) P@) < o {n| [ 105l - lau) - @) - Fe)] }.

In view of Lemma 3.3, for quasi-all z € Z\&* and hence, for quasi-all z € Z\&,
this gives

(38.31) [[w(z)]"P(z)| < e " < 1, c:=c(w,z)>0.

When ¥ is regular, it follows from Lemma 3.1(g) and the continuity of the
logarithmic potential that (3.31) holds for all z in any compact subset K ¢ L\&*,
with ¢ ;= ¢(K) > 0 independent of z in K. O

REMARK. When X\ Z is a finite union of nondegenerate disjoint intervals and
Q is convex in each component of £\Z then each of the sets &y, is a finite union
of nondegenerate disjoint intervals, at most one in each component of £\ Z. This,
together with the fact that & C &* and C(&*\S) = 0 shows that in this important
special case, 8* = &. This fact generalizes our earlier results in [9 and 10].

A major step in the proof of Theorem 2.6 is to obtain Nikolskii-type inequalities
relating the various LP-metrics of weighted polynomials. This, in turn, requires an
estimation of Christoffel functions. When ¥\ Z is a union of finitely many disjoint
nondegenerate intervals, this is easily done using the now classical ideas of Freud
in {3 or 4]. For the more general case we need the following lemma.

LEMMA 3.5. Let 0 < p < 0o. Then there exists a constant Ay > 0 depend-
tng upon p alone with the following property: If n > 1, P € II,, B C [-1,1] s
measurable and

(3.32) m([-1,1]\B) < A;/n?,
then
(3.33) IPllp, 1.1 < 2[|Pllp,5-



120 H. N. MHASKAR AND E. B. SAFF

PROOF. Let
(3.34) mp(P,y) :=m{z € B: |P(z)| > y}.
Then it is well known [16, Vol. 11, p. 112] that
o
(3.35a) I1P|> 5 = p/ v imgp(P,y) dy,
000
(3.35Db) ||P||§,[_1,1] = p/o yP T m_1,y(Py) dy.

But m_; 1)(P,y) = 0if y > [|P|| := || Plloo,(~1,1- So,

1P|
1Pl — 10 = p/O v {ms(Py) + mi_11n\p(P.y) } dy
< |IPlp, + (Ar/n?) | PIP

provided m([—1,1\B) < A /n?.
Now in view of Corollary 16 in [13, p. 114],

(3.37) IPIP < Aan?| P2

(3.36)

p,[—1,1]

Thus, if we choose A; so that 0 < (1 — A;A2)™! < 27, then (3.36) gives (3.33). O
In the case when ¥\Z is interval-like, we can now obtain an estimation of the
Christoffel functions.

LEMMA 3.6. Let w be strongly admissible in the sense of Definition 2.5 and
G =6, be the unique compact set of Theorem 2.2. Put

(3.38) (WP 2) = mln [P / [P(t)

(3.39) w(@,6) := max {|Q(¢ ) Q(y)l~ yeB, tel, |y—t| <6},
(3.40) d:=inf{ly—z2]:y€6, 2€2Z}.

Then, for n sufficiently large, we have for allz € X

(3.41) An (W™, 3) > cobnn~? exp {—2nw(Q, 6,)} [w(z))?",

where the sequence {6,} satisfies the conditions of Definition 2.4 with E = ¥\Z
and ¢ = A1 /2 with A, defined in Lemma 3.5.

PROOF. First, let € & be such that the condition (iii) in Definition 2.4 holds
with A;/2 in place of ¢. Choose n so large that 6, < d/2. Then,

M a) 2 iy P [ PO

and so in view of Lemma 3.5, we have
(3.42)

An (W, 2) > cw?™ () exp(—2nw(Q, 6n))-1§n1n {[P(a:)] 2/1 ( )P(t)2 dt}

1
> ebpw?™(z) exp(—2nw(Q, 6n)) - Rrgil_xlln {[R(O)]_?/0 R(t)2dt} .
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Using standard estimations for the Legendre polynomials, we then get

(3.43) A (W™, 2) > cobpn™ 2 exp(—2nw(Q, 6,))w?™ (z).
Setting

(3.44) M, = [6,n72 exp(—2nw(Q, 6,))] 1,

we have then proved

(3.45) w?(2)A H(w™,2) < eg' - M, qe. on .

Since A\, (w?™,z) is a polynomial of degree 2n, inequality (3.45) holds everywhere
on ¥ in view of Theorem 2.2(d). O

Using Lemma 3.6, we may now proceed exactly as in [9] to get the following
inequalities.

LEMMA 3.7. Let w be strongly admissible and M,, be as in (3.44), 0 <p <r <
co and P € I1,,. Then there exists a constant ¢ > 0 independent of n and P such
that '

(3.46) llw(@)]"P@)lls < ¢ - Ma/P~ Y7 |[[w(@)]"P()|p,5-
Using the fact (cf. Definition 2.4) that
: 1/n __
(3.47) nlLIr;o M)/"=1

it is now easy to see that even if ¥ is unbounded, the LP-norm of a weighted
polynomial on ¥ almost “lives” on a fixed, compact interval. The following lemma
makes this precise.

LEMMA 3.8. Let w be strongly admissible and 0 < p < oo. Then there is a
fized compact interval J, and constants ¢1,cq > 0, depending only on p,w and &
with the following property: '

If Pell,, then

(3.48) [w™Pllp,z < (14 cre” ") |w" Pllp, 0.

PROOF. First, let § be an integer such that § > 1/p and choose A such that
(cf. (3.6))

(3.49) S5 C [-A4, Al
Then for z € [~A4,A]NT
|2 w(z)" P(z)] < A™|[w(2)"P(2) oo, 4, a0z
(3.50) < A" [lw(z)" P(2)| 0,5
< AMeMYPw™ P, 5.

Here the last inequality follows from Lemma 3.7. Now, in view of (3.47), let n > 2
be so large that

(3.51) ML™ < 2%P,

Then, on writing " P(z)w(z)" = 2™ P(z)ws(x)*1*+%) and using Theorem 2.2(d)
and (3.50), we see that

(3.52) |P(z)w(2)"| < e(24)"|[w"Plps - |27,  z€Z.
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