D. S. Lubinsky

dentities [1.p. 90].

$$\frac{D(m-1/n-1)D(m+1/n)}{D(m/n-1)D(m/n)}$$

nditions on the D . (5) by induction or n = 0 and n = 1.

qⁿ.

n - 1 and n, we led proofs.

B. Gragg and E. B.

s. P. R.. Pade __ (Encyclopedia of ey. Reading. 1981.

R., Zeros of otes in Math., Vol.

e of Rows of the h Maclaurin Series.

nvergence of Pade ions and the t.

ade Approximants of ers-Szego

tly Visiting:
of Mathematics
of South Florida

33620

PADÉ APPROXIMANTS OF PARTIAL THETA FUNCTIONS AND THE ROGERS-SZEGO POLYNOMIALS D. S. Lubinsky and E. B. Saff

We outline recent results on convergence of Padé approximants for a class of functions including the partial theta function.

1. Introduction

Let $f(z) = \sum_{j=0}^{\infty} a_j z^j$ be a formal power series. Let m.n

be nonnegative integers. The m.n Padé approximant to f(z) is a rational function [m/n](z) = P(z)/Q(z), where P and Q have degree at most m and n respectively, $Q \neq 0$, and $(fQ - P)(z) = O(z^{m+n+1})$ formally.

In [2], one of the authors investigated convergence of Padé approximants for functions f(z) that have "smooth" coefficients, in the sense that

(1.1)
$$\lim_{j\to\infty} a_{j-1}a_{j+1}/a_j^2 = q \in \mathbb{C}.$$

A model function for (1.1) is the partial theta function

(1.2)
$$h_{q}(z) := \sum_{j=0}^{\infty} q^{j(j-1)/2} z^{j}.$$

for which the limit in (1.1) may be replaced by equality for all i > 1.

We consider the Padé approximants of $h_q(z)$ for the delicate case when |q|=1, say

(1.3)
$$q := e^{i\theta}, \theta \in [0.2\pi).$$

When $\theta/(2\pi)$ is rational, $h_q(z)$ is a rational function, but when $\theta/(2\pi)$ is irrational, $h_q(z)$ has the unit circle as its natural boundary. In the latter case, the normalized Padé

APPROXIMATION THEORY V

Copyright © 1986 by Academic Press, Inc. All rights of reproduction in any form reserved. ISBN 0-12-174581-3

Padé Approximants of F

THEOREM 2. IF

integer, there integers, such

(2.3)

One impor

3. For rows (

THEOREM 3 (Row:

radius di conve

(3.1) lime j→∞

Let r_ := lim i j→°

(a) The full r

uniformly to f(

(3.2) Δ_{nq} :

(b) There exis

 $\frac{\text{converges local}}{\text{(c)}} \frac{\text{If } r_{\perp} = r}{\text{converges local}}$

Converges local

Part (c) a
the conjecture
by Buslaev. Gon
Suppose th
hq(z) "good" if
|z| < 1: otherw
Theorem 3 (c) s

denominator $Q_{mn}(z)$ in [m/n](z) satisfies [3]

(1.4)
$$Q_{mn}(z) = G_n(-zq^m), \quad m \ge n - 1 \ge 0,$$

where $G_{n}(z)$ is the Rogers-Szegő polynomial

(1.5)
$$G_n(z) = G_n(z;q) := \sum_{j=0}^{n} \begin{bmatrix} n \\ j \end{bmatrix} z^j \cdot n = 1.2.3....$$

and where

(1.6)
$$\begin{bmatrix} n \\ j \end{bmatrix} := \begin{cases} \frac{(1-q^n)(1-q^{n-1})\dots(1-q^{n+1-j})}{(1-q)(1-q^2)\dots(1-q^j)}, & 1 \leq j \leq n, \\ 1 & . & j = 0. \end{cases}$$

We also set $G_0(z) \equiv 1$.

2. Rogers-Szego Polynomials

The zero distribution of $\{G_n(z)\}_1^{\infty}$ may be obtained from the following result [3]:

THEOREM 1. Let $\|\cdot\|$ denote the sup norm on |z|=1. (a) If $\theta/(2\pi)$ is a rational number μ/ν , where $\mu.\nu$ are

relatively prime positive integers, then

(2.1)
$$\lim_{n\to\infty} \|G_n\|^{1/n} = 2^{1/\nu}.$$

(b) If $\theta/(2\pi)$ is irrational.

(2.2)
$$\lim_{n\to\infty} \|G_n\|^{1/n} = 1.$$

It can be shown [3] that all zeros of $\{G_n(z)\}_1^{\infty}$ lie in the annulus $r_0^{-1} < |z| < r_0$, where $r_0 := 2\sqrt{2} + 1 + |1 + q|$. Regarding the limiting behavior of $\{G_n(z)\}_1^{\infty}$, we can prove

es [3]

m > n - 1 > 0.

mia 1

 z^{j} , n = 1.2.3...

 $\frac{(1-q^{n+1-j})}{(1-q^j)}$, $1 \le j \le n$.

. j = 0.

miais may be obtained from

 $\frac{n \text{ on } |z| = 1.}{z}$

v. where μ.ν are

of $(G_n(z))_1^{\infty}$ lie in $2\sqrt{2} + 1 + |1 + q|$. $z)_1^{\infty}$, we can prove THEOREM 2. If $\theta/(2\pi)$ is irrational and ℓ is a nonnegative integer, there exists an increasing sequence f of positive integers, such that locally uniformly in |z| < 1.

(2.3) $\lim_{n \in \mathcal{I}} G_n(z) = G_{\ell}(z).$

One important case of (2.3) is $\ell=0$, for which $G_{\ell}\equiv 1$.

3. Convergence of Padé Approximants

For rows of the Padé table, we can prove [3]:

THEOREM 3 (Rows). Let n \geq 2. Suppose $f(z) = \sum_{j=0}^{\infty} a_j z^j$ has radius of convergence r (0 \leq r \leq ∞) and that

(3.1)
$$\lim_{j\to\infty} a_{j-1}a_{j+1}/a_j^2 = q = e^{i\theta}. \qquad \theta/(2\pi) \text{ irrational}.$$

Let $r_- := \lim_{j \to \infty} \inf \left| a_j \right|^{a_{j+1}} = \lim_{j \to \infty} \sup \left| a_j \right|^{a_{j+1}}$.
Then

(a) The full row sequence $\{[m/n](z)\}_{m=1}^{\infty}$ converges locally uniformly to f(z) in $|z| < \Delta_{nq}r_{-}$. where

(3.2)
$$\Delta_{nq} := \min\{|z| : G_n(z) = 0\} \in (0.1).$$

- (b) There exists a subsequence of $\{[m/n](z)\}_{m=1}^{\infty}$ that converges locally uniformly to f(z) in $|z| < \Delta_{nq}r$.
- (c) If $r_+ = r < \infty$, then no subsequence of $\{[m/n](z)\}_{m=1}^{\infty}$ converges locally uniformly in $|z| < \Delta_{nq} r + \epsilon$, for any $\epsilon > 0$.

Part (c) above furnishes a class of counterexamples to the conjecture of Baker and Graves-Morris, recently resolved by Buslaev, Gončar and Suetin [1].

Suppose that we call a sequence of Padé approximants to $h_q(z)$ "good" if it converges locally uniformly throughout |z| < 1: otherwise it is "bad". When $\theta / (2\pi)$ is irrational. Theorem 3 (c) shows that every subsequence of every row

 $\left(\left[m/n\right](z)\right)_{m=1}^{\infty}$ with $n \ge 2$ fixed, is bad. By contrast, a subsequence of the main diagonal $\left(\left[n/n\right](z)\right)_{n=1}^{\infty}$ is good (so that the Baker-Gammel-Wills Conjecture is true for $h_q(z)$), while some other diagonal subsequence is bad:

THEOREM 4. (Main Diagonal). Let $\theta/(2\pi)$ be irrational.

- (a) $\{[n/n](z)\}_{n=1}^{\infty}$ converges in capacity to $h_q(z)$ in |z| < 1.

 and converges locally uniformly to $h_q(z)$ in $|z| < \Delta_q$. Where $\Delta_q := \inf\{\Delta_{nq} : n \ge 1\} \in \{0,1\}.$
- (b) There exists $\{n_j\}_{1}^{\infty}$ such that $\{[n_j/n_j](z)\}_{1}^{\infty}$ converges locally uniformly to $n_q(z)$ in |z| < 1.
- (c) There exists $\{n_j\}_1^{\infty}$ such that $[n_j/n_j](z)$ has a pole z_j with $\lim_{j\to\infty} |z_j| = \Delta_q$.

Further details, and proofs, will appear in [3].

References

- Buslaev, V. I., Goncar, A. A. and Suetin, S. P., On the Convergence of Subsequences of the mth Row of the Padé Table, Math. USSR. Sbornik, 48 (1984), 535-540.
- Lubinsky. D. S.. Uniform Convergence of Rows of the Pade Table for Functions with Smooth Maclaurin Series Coefficients, Manuscript.
- Lubinsky, D. S. and Saff. E. B.. Convergence of Padé Approximants of Partial Theta Functions and the Rogers-Szego Polynomials. Manuscript.

D. S. Lubinsky.
NRIMS. CSIR.
P.O. Box 395.
Pretoria 0001.
Rep. of South Africa.

E. B. Saff,*
Inst. for Constructive Math.
Department of Mathematics
University of South Florida.
Tampa, FL 33620.

Abstract:

Let U = polynomials $\Delta^n := \{z \in (0) \text{ Oka-Weil un: approximation in a notation that are all }$

The ma
classical C
convex doma
will be acc
result will
We beg

Theorem 1.

the origin

(with U cc

sequence o

This
(see for i
A com
K = K: = {
convex hul
For a
holomorphi
of meromo:
polar sets

APPROXIMATE

The research of this author was supported, in part, by the