We outline recent results on convergence of Padé approximants for a class of functions including the partial theta function.

Let \(f(z) = \sum_{j=0}^{\infty} a_j z^j \) be a formal power series. Let \(m, n, a, b \) be nonnegative integers. The \(m/n \) Padé approximant of \(f(z) \) is a rational function \(p(z)/q(z) \), where \(p(z) \) and \(q(z) \) have degree at most \(m \) and \(n \) respectively, and \(q(z) \neq 0 \).

A model function for \((1,1)\) is the partial theta function

\[
q(z) = \sum_{j=1}^{\infty} j(z^{j-1})^{2j},
\]

for which the limit in \((1.1)\) may be replaced by equality for all \(j \geq 1 \).

Let \(n = 0 \) and \(n = 1 \) and \(n = 1 \).
denominator $Q_{mn}(z)$ in $[m/n](z)$ satisfies [3]

\[(1.4) \quad Q_{mn}(z) = G_n(-zq^m), \quad m \geq n - 1 \geq 0,\]

where $G_n(z)$ is the Rogers-Szegő polynomial

\[(1.5) \quad G_n(z) = G_n(z; q) := \sum_{j=0}^{n} \binom{n}{j} z^j, \quad n = 1, 2, 3, \ldots .\]

and where

\[(1.6) \quad \binom{n}{j} := \frac{(1-q^n)(1-q^{n-1})\cdots(1-q^{n-j})}{(1-q)(1-q^2)\cdots(1-q^j)}, \quad 1 \leq j \leq n,\]

\[= 1, \quad j = 0.\]

We also set $G_0(z) = 1$.

2. Rogers-Szegő Polynomials

The zero distribution of $(G_n(z))_1^\infty$ may be obtained from the following result [3]:

Theorem 1. Let $\| \cdot \|$ denote the sup norm on $|z| = 1$.

(a) If $\theta/(2\pi)$ is a rational number μ/ν, where μ, ν are relatively prime positive integers, then

\[(2.1) \quad \lim_{n \to \infty} \| \mu \|^{1/\nu} = 2^{1/\nu}.\]

(b) If $\theta/(2\pi)$ is irrational.

\[(2.2) \quad \lim_{n \to \infty} \| G_n \|^{1/\nu} = 1.\]

It can be shown [3] that all zeros of $(G_n(z))_1^\infty$ lie in the annulus $r_0^{-1} < |z| < r_0$, where $r_0 := 2\sqrt{2} + 1 + \sqrt{1 + q}$.

Regarding the limiting behavior of $(G_n(z))_1^\infty$, we can prove

Theorem 2. If integer, there integers, such

\[(2.3) \quad \text{One impor} \]

3. For rows

**Theorem 3 (Row:)

radius of conver:

\[(3.1) \quad \lim_{j \to \infty} \Delta_{nq} := \text{The full } r

uniformly to } f(\)

\[(3.2) \quad \Delta_{nq} := \text{If } r_+ = r

converges local

(c) \text{If } r_+ = r

converges local

Part (c) is the conjecture by Buslaev. Con

Suppose th

$h_q(z)$ "good" if $|z| < 1$; otherw

Theorem 3 (c) s
Pade Approximants of Partial Theta Functions and the Rogers-Szegoe Polynomials

Theorem 2. If $\Theta(2x)$ is irrational and t is a nonnegative integer, there exists an increasing sequence ξ of positive integers, such that locally uniformly in $|z| < 1$,

$$\lim_{n \to \infty} G_n(z) = G_\xi(z).$$

One important case of (2.3) is $\xi = 0$, for which $G_\xi = 1$.

3. Convergence of Padé Approximants

For rows of the Padé table, we can prove [3]:

Theorem 3 (Rows). Let $n \geq 2$. Suppose $f(z) = \sum_{j=0}^{\infty} a_j z^j$ has radius of convergence r ($0 < r < \infty$) and that

$$\lim_{j \to \infty} a_j / a_{j+1} = q = e^{i \theta}. \quad \Theta(2x) \text{ irrational.}$$

Let $r_- = \liminf_{j \to \infty} |a_j / a_{j+1}|$ and $r_+ = \limsup_{j \to \infty} |a_j / a_{j+1}|$. Then

(a) The full row sequence $((m/n)(z))_{m=1}^\infty$ converges locally uniformly to $f(z)$ in $|z| < \Delta_n r^-$, where

$$\Delta_n := \min\{|z| : G_n(z) = 0\} \in (0, 1).$$

(b) There exists a subsequence of $((m/n)(z))_{m=1}^\infty$ that converges locally uniformly to $f(z)$ in $|z| < \Delta_n r^-$.

(c) If $r_- = r < \infty$, then no subsequence of $((m/n)(z))_{m=1}^\infty$ converges locally uniformly in $|z| < \Delta_n r + \varepsilon$, for any $\varepsilon > 0$.

Part (c) above furnishes a class of counterexamples to the conjecture of Baker and Graves-Morris, recently resolved by Buslaev, G.čar and Suetin [1].

Suppose that we call a sequence of Padé approximants to $h_n(z)$ "good" if it converges locally uniformly throughout $|z| < 1$; otherwise it is "bad". When $\Theta(2x)$ is irrational, Theorem 3 (c) shows that every subsequence of every row
\((\{m/n\}(z))_{n=1}^{\infty}\) with \(n \geq 2\) fixed, is bad. By contrast, a subsequence of the main diagonal \((\{n/n\}(z))_{n=1}^{\infty}\) is good (so that the Baker-Gammel-Wills Conjecture is true for \(h_q(z)\)).

while some other diagonal subsequence is bad:

Theorem 4. (Main Diagonal). Let \(\theta/(2\pi)\) be irrational. Then

(a) \((\{n/n\}(z))_{n=1}^{\infty}\) converges in capacity to \(h_q(z)\) in \(|z| < 1\), and converges locally uniformly to \(h_q(z)\) in \(|z| < \Delta_q\), where

\[\Delta_q := \inf(\Delta_{nq} : n \geq 1) \in (0, 1).\]

(b) There exists \((n_j)_{j=1}^{\infty}\) such that \((n_j/n_j)(z)_{j=1}^{\infty}\) converges locally uniformly to \(h_q(z)\) in \(|z| < 1\).

(c) There exists \((n_j)_{j=1}^{\infty}\) such that \((n_j/n_j)(z)\) has a pole \(z_j\) with \(\lim_{j \to \infty} |z_j| = \Delta_q\).

Further details and proofs will appear in [3].

References

2. Lubinsky, D. S., Uniform Convergence of Rows of the Padé Table for Functions with Smooth Maclaurin Series Coefficients, Manuscript.

D. S. Lubinsky

NRMS, CSIR

P.O. Box 395

Pretoria 0001

Rep. of South Africa

E. B. Saff

Inst. for Constructive Math.

Department of Mathematics

University of South Florida

Tampa, FL 33620

"The research of this author was supported, in part, by the NSF."