ON SEQUENCES OF POLYNOMIALS AND THE OISTRIBUTION OF THEIR ZEROS
H.-P, Blatt, E. B. Saff

We discuss the asymptotic behavior of the zeros of special polynomial
sequences {pp} such as best polynomial approximants. For example, let f be
a function continuous on a compact set E, analytic in the interior of £
put not on E itself. Moreover, let the complement (with respect to the ex-
tended plane) of E be connected and possess a classical Green's function
with pole at infinity, Then it is shown that the proportion of zeros of
(pn} in the neighborhood of a free boundary arc J of X is characterized
asymptotically by the value at « of the harmonic measure of J with re-
spect to K.

{. Introduction

Let £ denote a compact set in the z-plane and A(E)} the collection of
functions that are analytic in the interior of £ and continuous on £, If
K := @*~E is connected, then the theorem of Mergelyan states that
Aiz En(f) = 0, where

(1.1) E (f) := min UIf-pllg: pem 3,

M, denotes the collection of polynomials of degree at most n and ||-||E is

the sup norm on E. To relate the speed at which En(f) tends to zero to

the smoothness of f we assume furthermore that X is regular in the sense

that K possesses a classical Green's function G{z) with pole at infinity,
The minimum in (1.1) will be attained by a unique polynomial

1. = n
(1.2) Par(z) =a* 2" + .. em.

;l“ (1] we proved that the coefficient a; carries the information as to
= Whether £ is analytic on E; namely we proved:

THEOREM | Let f € A(E) and c = cap(E) be the logarithmic capacity of E.
_Ihsa the following assertions are equivalent:

f is not analytic on E.
Tim sup |a;|1/" = 1/c.
M-

Formula (ii) is reminiscent of the Cauchy-Hadamard formula for the
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radius of convergence of a power series. Together with Walsh's theory of
harmonic majorants (cf. [6]), it leads to the following divergence result,

THEOREM 2 Let f€A(E), but f not analytic on E. Moreover, Jet S be a
continuum (not a single point) of K, then

. 1/n
(1.3) 1im sup ”pn*[ls >1,
N0

i.e. the sequence {pn*}: diverges on S,

For example, let f(x) = |x]| on € = [~1,1]. Then the best approximating
polynomials diverge on every continuum S outside [-1,1) (S not a single
point). This is in contrast to the approximation of [x] by rational func-
tions where Blatt, Iserles and Saff [3] have established the following
result:

_ Let R;(x) be the (real) rational function of degree at most n of best
uniform approximation to f(x) = |x| on [-1,1]. Then

§
%
g
§

z if Rez>0

(1.4) im Rr’;(z) =

1

N0 -z if Re z<0,
The following result of Blatt and Saff [1] provides an analogue of
the classical theorem of Jentzsch (cf. [5, p. 2381).

THEOREM 3 Let fE€A(E), but f not analytic on E. Assume that f does not
vanish identically on the interior of any component of €. Then every point

of the boundary of E is a Jimit point of zeros of the sequence of best
approximating polynomials {p *}3.

2. Distribution of zeros of polynomial sequences

Next, we want to obtain Szegd-type results for the distribution of
the 2eros of the polynomials pn*. These polynomials pn’ as well as maxi-
mally convergent polynomials when f is analytic on E are special cases
of the following more general situation (cf. (2}):

Let E be a compact and bounded set in the extended plane €* with
connected and reqular complement K, ¢ = cap(f), {pn} a polynoniial sequence
satisfying the following properties:

(A1) n 6X1:={n1<n2<n3<.” },

. - n
(A 2) Pp €M~ sp 2y =2 20+ L,

n-1
(A3 Vi 2 )M <,
M=o
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. |
(x4 lin lip,ltg”™ = 1,

(A 5) for any compact set C in the interior of £ the number of zeros
Zn(C) of P, in C satisfies Zn(C) = o(n) as n-e,

In (A 3) - (A 5) the limits are considered for n € JL.

In {1] the distribution of the zeros of polynomial sequences satis-
fying (A 1) - (A 4) was studied in the neighborhood of an analytic Jordan
arc J<aE for the case when K is simply connected (see also [2]). In this
note we announce a generalization of the results of {1]) for multiply
connected K and also give a new characterization in terms of harmonic
measures.

THEOREM 4 Let {p } satisfy (A 1) - (A 5). Furthermore, let J be a subarc

in the interior of a free boundary arc of K and let D be a neighborhood
of the interior of J such that

(2.1) OnaE = J.
If Z.(0) denotes the number of zeros of Pp Jn D, then

2,(0)

(2.2) lim
N=xo

= w(w;d),

where w(z;J) is the harmonic measure of the arc J with respect to K.
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