H N MHASKAR & E B SAFF
A Weierstrass-type theorem for certain
weighted polynomials

After the notion of incomElete Polynomials was introduced by G. 6.

Lorentz in 1976 [4], there has been extensive research concerning these

polynomials; especially to the theory of orthogonal polynomials. The

Suppose w(x) is a nonnegative weight function continuous on its

support I ¢ R = (-, ), (By the Support of w we mean the closure .of

the set where y is pPositive.) Assume that w({X) vanishes at points of

I; that is,
Z :={x ¢35 : w(x) = 0} # ¢

{or in the case g is unbounded, then ]x[ w(x) + 0 as ,xl > o), If

Hn denotes the collection of al} pPolynomials of degree at most n, then
the sup norm over Z of the weighted polynomial [w(x)]n Pn(xl Pn € Hn,

actually "lives" (is attained) on some compact set Scy \ z which is

independent of g and Pn' The problem is to determine the smallest

such set g,
Using potential theoretic methods, we solved this problem for a rather

general setting in [7]. as a further consequence of our results, it

follows that if W satisfies certain technical conditions and if a

bounded function f:I+R is the uniform limit on 5 of a sequence
of weighted polynomials of the form {[w(x)]n Pn(x)}, Pn € Hn, n o+ o,

then £ jg continuous on 3 apg f(x) =0 for anl X eI\ 5 (see [s].
In the converse direction, no geheral Weierstrass—type theorem for such
wCighted polynomials has yet been proved. However, the following
‘Onjecture, which is stated in [9] for €xponential weights, seems likely

hjecture, Suppose that W is an admissible weight in the sense of {7
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and that f : £ > R is a bounded continuous function. Then f is a

uniform limit on £ of a sequence of weighted polynomials of the form

{w(0)1" P (0}, Pe T, >, if and only if f£(x) = 0 for all

xe L \S.

In this conjecture, 'm > ' means that n tends to infinity through some

subsequence of the positive integers. Using the terminology of "'weighted
polynomial" to denote 2 function of the form [w(x)]nPn(x), Ppen, n 2

nonnegative integer, it is important to notice that the sum of weighted
polynomials is not necessarily a weighted polynomial; however, their
product is a weighted polynomial. Moreover, there is no apparent

monotonicity in n for the error in best approximation by the weighted
polynomials [W(x)]nPn(x). These facts tend to complicate the analysis.
For the incomplete polynomials of Lorentz, where r = [0, 1] and
Wi = /179 (g <o < 1), it is known that § = (62, 1]. In this
case, the conjecture was proved by gaff and Varga [10], and also by

M. v. Golitschek [3].
In this note, we prove the conjecture for the Laguerre weight ‘exp(—x)

on T = [0, ») for which it is known [11] that § = [0, 2]. As a
consequence, We shall also prove the conjecture for the Hermite weight,
w(x) = exp(—xz), t = R, for which we have 5 = [-1, 1] (see [S]j.
More precisely, we establish the following theorems.

Theorem 1. Let £ € c[o, 2] with f(2) = 0, and let € > 0. Then there

exists an integer N and polynomial P of degree at most N - 90/N such

that
max | £(x) - e—NXP(x)I < €, 1)
xe[0,2]
max Ie_NxP(x)l < €. (2)
xe[2,%)

Theorem 2. Let f € c[-1, 1] with £(1) = £f(-1) = 0, and let ¢ > 0.

Then there exists an integer M and a polynomial of degree at most
M - 90/M such that
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max ]f(x) - exp(—sz)P(x)l < €, (3)
xe[-1,1]

max Iexp(—sz)P(x)] < €. (4)
]leI
The proof of Theorem 1 is similar to the one given in [10] for the case
of the incomplete polynomials of Lorentz; namely, a Muntz theorem type
argument [1] is utilized. Thus, we shall first approximate a suitably
chosen function by weighted polynomials of the form exp(—nt)Pn(t),
Pn € Hn, in L2 [0, 2]. Next, we use this result to approximate a
continuously differentiable function on [0, 2]. Since such functions are
dense in C[0, 2], this will essentially prove Theorem 1. In contrast to
the proof in [10] we shall use the generating formula for Laguerre
polynomials instead of Gram determinants.

We let {Lk} denote the orthonormal Laguerre polynomials of respective

degree k:
L) Lk(x)Lj(x)exp(—x)dx = ij . (5)

For integers n = 0, N > 0, set

p;’N(x)#:= e kgo -1 L, (200 (g—;%)k el . (6)
Lemma 3. With

3y i f: [e7t - e_NtPﬁ_loo[m]’N(t)lzdt 7
we have

lim Jy = %~e_4 . (8)

N>

Proof. For the sake of brevity of notation, we write, in this proof,
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n instead of N - 100[/5], P instead of P; N and let x := 2Nt. Then
’

00 l .
Iy = fo!otx) A e - Pl erp(-x)dx (%)

where

0 - 225 1:2:0 L () Loy
(10)
= lJ%ﬁw kgo Lk(x) wk
with
wist iy - (11)

From the generating formula for Laguerre polynomials (cf. [12, p. 101]),

we have

’ w 1 X 1 1 - w k
oy —— ) = 201 - = - e E 1 x)}w 12
V2N exp(-x 1 - w) v2N exp[z( N)] V2N k=0 k( ) (12)

and soO

K (L-w’ _Qa - w? W - (13)

(=

] oW
N b 2N N L2

w2 1 2N -2N n/N
77—[(1 -9 1+ 1

Since n/N—+ 1 and Ww > _1 as N > =, assertion (8) follows from (13).0

Lemma 4. Put
-Nx L Nt
SN(x) 1= e Sﬁ(x) 1= [X e pﬁ-lOO[Vﬁ],N(t)dt . (14)

*
Then, SN € HN-lOO[/ﬁ] and
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lim max e

X et sl = o0, (15)
N»o  xe[0,2]

* : . .
Proof. The fact that SN € nN-lOO{/ﬁ] follows easily by induction.

In view of Lemma 3, the sequence

TNt 2
L) le™™" P 100 /iy, n(E)] ot J

is bounded. Let & > 0. Using arguments similar to those in [2], [5],

[8], it follows that, for each p > 0,

. -Nt
lim J [e px (t)lpdt = 0. (16)
Noow 1246 N-100[VN1,N
Let x € [0, 2], p*(t) := Pﬁ-loo[/ﬁ](t)“ Then
le™ - e - s 0 = IJ et - e Npr(e)1%at - 77
X
(17)
2448 .
- If et - e Mpr(ylat + (727 - &%) s 2+ ).
X
So,
max le™ - e 2 SN(x)|
xe [0, 2]
2448
< J le™® - oM pr(eyat + 720 - o7+ [sy2 + 0]
0 ,
! (18)
26 e Nt 2 _2-8 -2
< V2 + 6 [ le™ = e p*((t) | “dt + e - €
0
+ ]sN(z + 8)].

In view of Lemma 3 and (16),

119



246 >
J le™® - e Npr ()| %at = 3y - I le™ - e Nepr (0] 2at
2+6

0
(19)
= %—e_4 - %—e—4_26 +0o(1), N=»=.
Substituting (19) into (18) and noting that (16) also implies that
SN(2 +68) =0o(l) as N> =, we get
. -X -2
1im sup max Ie - e - SN(X)|
N+« xe[0,2]
(20)
1/2
A it L TR le? - e
Finally, (15) follows on letting & =~ O. O
Corollary 5. With Sﬁ defined in (14),
) 2 2
Lin max Je Xt - ef - Nt s§(2t2)\ = 0. (21)

Mo |t]<1

pProof of Theorem 1. In view of the classical Weierstrass theorem, we
assume without loss of generality that f 1is a polynomial. Since

f£(2) = 0, the function g defined by

g(x) := —«;?LZl—fi (22)1;

e - €

is continuous for all Xx. Let e > 0 and set

G := max |gx)|, r = e/(G+2), n := min(1, A). (23
xe {0, 3]

By the Weierstrass theorem and Lemma 4, there exist an integer N and -

R € Hg[/ﬁ] such that

lg(x) - R(x)| <n, xe [0, 3]

and

120



-X -2 ~Nx

[e™ - e - e s§(x)l <n, xe [0, 2]. (24b)

3 e *
Then, with P : RSN € HN-9O[/ﬂ]’ we have

160 - e™ Pl 6o+ (1 -eZum) s n<(G+ 2nse (25
for x ¢ [0, 2].

It remains to show that the integer N can be selected so that

le™MP)] < e, xe [2, » (26)

= * i
where P RSN and R € Hg[yﬂ] depends on N. Let 8 <1 be a fixed

positive number that will be specified later. Since the sequence

{exp(-Nx)R Sﬁ} is uniformly bounded on [0, 2], it follows {as with

(16)) that
-Nx -Nx
max ,e P(x)l =  max le R(x)Sﬁ(x)l >0 as N-» « (27)
[2+6,2) [2+8,%)

For x e [2, 2 + 8] we have from (24a) and (14)

o0

Ie_NXR(x)Sﬁ(x)[ < (6 + 1) f“ leNpx (1) fat, - o (28)
X

* - px%
where P¥*(t) PN—IOO[/N],N(t)' Furthermore, for x ¢ [2, 2 + §],

00

0 248
( |e'NtP*(t)|dt < j Ie'NtP*(t)ldt + f le'NtP*(t)ldt
X 2 2+8

1

2

246 :
< /5 - [ le Ntpx (2| 2at (29)
2

. f le Ntp ()] at .
2+8

“ow from (16), the last integral in (29) tends to zero as N -+ o, and
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and also, from Lemma 3, the sequence

1
2

2+8
[ | Ntpx ()| Pat

is bounded, say by the constant A. Thus

1im sup max I ‘e-NtP*(t)ldt <A 5. (30)
N > = xe[2,2+6] °X

we see that it is possible to select

B

Finally, using (30), (28) and 27y,

§ and N soO that (26) 1is satisfied.
proof of Theorem 2. This is similar to the proof of Theorem 1.

We use Corollary 5 instead of Lemma 4. ]
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